
Vol.:(0123456789)1 3

Marine Biology (2024) 171:16 
https://doi.org/10.1007/s00227-023-04332-y

ORIGINAL PAPER

Population genomic analysis of the commercially important shrimp 
Pleoticus muelleri (Crustacea: Decapoda: Solenoceridae) reveals 
the existence of two, northern and southern, lineages with adaptive 
genetic differences

Estefanía Gesto1,2  · Santiago Ceballos3,4 · Pedro De Carli1,2 · Viviana Confalonieri5 · Patricia Pérez‑Barros6,7

Received: 6 October 2022 / Accepted: 21 October 2023 / Published online: 22 November 2023 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Identifying the population genetic structure and adaptive diversity of fishery resources is essential for their resilience and 
sustainability. Pleoticus muelleri is one of the most important fishing resources in Argentina. It inhabits the Southwestern 
Atlantic Ocean from 20° to 50° S. We genotyped 1740 SNPs in 42 individuals using Restriction Site-Associated DNA 
Sequencing and discovered two genetic lineages, one in the south (Golfo San Jorge and off Rawson), and the other in the 
north of its distribution (Macaé). Individuals found in intermediate locations (Punta del Diablo and Rio Grande do Sul) sug-
gested the existence of admixture between these two groups. In addition, we found loci correlated with some environmental 
variables suggesting the existence of divergent selection between both populations. The STRU CTU RE analysis including 
only putatively neutral loci gave similar results to the one with all loci, indicating either differentiation originated because 
of a physical barrier to dispersion, or that the lack of gene flow because of selection has already affected neutral loci. This 
knowledge can contribute to its sustainable management and conservation.
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Introduction

Conserving the intraspecific diversity of species under 
exploitation is essential to maintain their adaptive poten-
tial and resilience to environmental changes (Hilborn et al. 
2003), and promote their sustainability. The underestimation 

of the number of stocks due to the lack of knowledge of the 
population genetic structure in species with fishing impor-
tance can generate the loss of genetic diversity and affect its 
fishing potential (Ward 2000; Viñas et al. 2011). Therefore, 
a detailed understanding of population genetic structure is 
especially relevant for fisheries management and conserva-
tion (Hauser et al. 2002; Viñas et al. 2011).
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The shrimp Pleoticus muelleri (Bate 1888) is one of the 
most important resources of Argentine fisheries (Boschi 
1997; Fernández and Hernández 2002). This decapod crus-
tacean has a wide geographic distribution along the South-
western Atlantic Ocean from Espíritu Santo, Brazil (20° 
S), to Santa Cruz, Argentina (50° S) (Boschi 1989). It has 
demersal-benthic habits and remains within the marine envi-
ronment throughout its life cycle (Boschi 1997). Its great-
est concentrations are found along the Patagonian coast, in 
areas with temperatures between 6 and 20 °C, and salini-
ties between 31.5 and 33.5 PSU (Boschi 1986). It has been 
caught at depths ranging from 3 to 100 m (Bertuche et al. 
2000b) and has become one of Argentina's main fish export 
products due to its high commercial value in international 
markets (Fischbach et al. 2006). In 2018, this crustacean 
registered a historical export maximum that represented 
61% of the total of the fishing sector, and an annual income 
of more than 1,200 million US dollars (Piedrabuena and 
Salama 2021).

Pleoticus muelleri´s fishery in the Patagonian coast began 
to develop in the 1980s, and encouraged research on this 
resource. In 1984, the first closure area was established 
prohibiting fishing activity in a delimited zone south of 
the Golfo San Jorge (Mazarredo) to protect the shrimp´s 
breeding and growth grounds. In 1990s, after the Golfo San 
Jorge was declared as a biological and economic unit for the 
exploitation of the shrimp resource, an adaptive management 
system with dynamic closure areas was established to avoid 
overfishing of young individuals, with sizes smaller than 
those desirable for the fishery (growth overfishing) (De Carli 
2012; Marcucci et al. 2017). Currently, management strate-
gies for this species lack information on its genetic diversity, 
but are based on the precautionary approach (Weiss 1992) 
with a permanent monitoring (Bertuche et al. 2000a), and 
assuming that the resource behaves as a single stock (De 
Carli et al. 2012). Annual shrimp catches fluctuate signifi-
cantly, with minimums of 1100, 6500 and 7500 t in 1987, 
1995 and 2005, respectively (Fischbach et al. 2006; Sánchez 
et al. 2012). As of 2008, the fishing capacity was concen-
trated in waters of national jurisdiction at the same time that 
fishing effort in the Golfo San Jorge began to be reduced 
(Marcucci et al. 2017). Thereafter, total catches increased 
until they reached its maximum in 2018 with 254,925.7 
t, since then, catches varied annually. In 2020, a decrease 
of 27.9% was registered compared to 2018, and in 2021 it 
increased again (223,653.7 t) (Navarro et al. 2014, 2019, 
2022; Dirección Nacional de Coordinación y Fiscalización 
Pesquera 2021).

Particularly P. muelleri has larval stages that are plank-
tonic and their position in the water column varies according 
to environmental conditions (e.g., luminosity, turbulence and 
transparency) (Boschi 1989). It is a species characterized by 
a large population size with a high dispersal capacity, that 

inhabits an open marine environment without recognizable 
migration barriers; and therefore, it could easily represent 
a single genetically homogeneous (panmictic) population 
with high levels of gene flow (Machado-Schiaffino et al. 
2011; Palumbi 1994). Nevertheless, the possibility that 
organisms with these characteristics can exhibit population 
genetic structure determined by different factors, such as 
the environment or life history traits (Machado-Schiaffino 
et al. 2011), is not ruled out, even across large geographic 
distances (Ward et al. 1994; Marcucci et al. 2017).

The first genetic information of P. muelleri was used to 
identify species of crustaceans in food products (Calo-Mata 
et al. 2009). Then, De Carli (2012), Marcucci et al. (2017) 
and Carvalho-Batista et al. (2018) investigated several mito-
chondrial DNA sequences covering all together the entire 
geographical distribution of the species. However, none 
of these studies found genetically structured populations. 
According to the characteristics of this species and previous 
studies, we tested the hypothesis of panmixia, analyzing the 
distribution of the genetic variability of P. muelleri in all 
its geographical range, using a Restriction Site-Associated 
DNA Sequencing approach (RADSeq, Miller et al. 2007; 
Baird et al. 2008; Davey and Blaxter 2010). RADSeq is the 
most widely used Next Generation Sequencing technique 
for the detection and genotyping of single nucleotide poly-
morphisms (SNPs) in ecological and evolutionary studies of 
non-model organisms, since it does not require prior infor-
mation on the genome of the species under study (Andrews 
et al. 2016). In the field of fisheries, it has been implemented 
in studies of phylogenomics and species delimitation (Díaz-
Arce et al. 2016; Pedraza-Marrón et al. 2019), population 
genomics (Deagle et al. 2015; Xuereb et al. 2018), trace-
ability (Jiang et al. 2020), detection of markers linked to 
sex (Carmichael et al. 2013) and natural selection (Chen 
et al. 2020), among others (Cancela et al. 2010; Kumar 
and Kocour 2017). The implementation of this technique 
allowed us to perform powerful population genetic analyses 
in P. muelleri, and to obtain results never attained before in 
this species. This investigation provides basic knowledge 
that can be used to design better strategies for its sustainable 
management and conservation.

Materials and methods

Sample collection

A total of 42 individuals of Pleoticus muelleri were col-
lected from eight sampling sites in the Southwestern Atlan-
tic Ocean; i.e., south (SGJ, N = 6) and north of Golfo San 
Jorge (NGJ, N = 6); Jueves Santo (JS, N = 5), Rawson (RA, 
N = 2) and Deseado (DE, N = 5) off Rawson (Argentina); 
Punta del Diablo (UR, N = 7) (Uruguay); Rio Grande do Sul 
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(RG, N = 2); and Macaé (RJ, N = 9) (Brazil) (Fig. 1). Argen-
tinian specimens were obtained from commercial vessels, 
between 2013 and 2017, whereas the samples from Uruguay 
and Brazil were acquired in 2013, by means of a collabo-
ration between the Univesidade Federal do Rio Grande do 
Sul and the Universidad Nacional de la Patagonia Austral 
(Supplementary Table S1).

DNA extraction and library preparation

High quality genomic DNA of each sample was isolated 
from a portion of telson muscle preserved in 96% ethanol, 
using “DNeasy Blood & Tissue” kit (Qiagen) following 
the procedure indicated for animal tissue, or a salting-out 
method for DNA extraction (Aljanabi and Martinez 1997). 
In both cases, after proteinase K tissue digestion, 3 µl RNase 
A were added to each extract (PBL, Argentina, 10 mg·ml−1) 
and were incubated at 37 °C for one hour to remove residual 
RNA. Later, the process continued following the protocol 
for each method. DNA concentration was measured using 
the Qubit dsDNA BR assay kit with a Qubit fluorometer 

(Invitrogen; Thermo Fisher Scientific, Inc.). DNA integrity 
was inspected on a 1% agarose gel electrophoresis.

For the RAD library preparation (Miller et al. 2007; Baird 
et al. 2008; Davey and Blaxter 2010), one microgram of 
total DNA (20–50 ng·µl−1) was used following the protocol 
described in Roesti et al. (2013), modified from Hohenlohe 
et al. (2010). In brief, each sample was individually sub-
jected to restriction digestion using the SbfI enzyme (New 
England BioLabs Inc.), followed by the ligation of a P1 
barcoded adapter to the restricted DNA of each individual 
(Supplementary Table S2). DNA was multiplexed, sheared 
with a Covaris M220 sonicator, size selected (300–500 bp), 
end repaired, and ligated to the Illumina P2 adapter (Supple-
mentary Table S2). Ligation products were enriched using 
18 cycles of high-fidelity PCR amplification (Supplementary 
Table S2). Final library concentration was quantified using 
a Qubit fluorometer (Invitrogen; Thermo Fisher Scientific, 
Inc.). The molar concentration of the library and the median 
size of the library smear were examined by agarose gel elec-
trophoresis. The library was paired-end sequenced in an Illu-
mina HiSeq 4000 at the Genomics & Cell Characterization 
Core Facility, Oregon University.

Fig. 1  Map of the Southwestern Atlantic Ocean, showing the geo-
graphic origin of samples of Pleoticus muelleri used in this study. 
For each sampling location it shows the genetic clustering graphs for 
the number of clusters K = 2, result of STRU CTU RE analysis (658 
SNPs). Each vertical bar represents an individual, and the color cor-

responds to that individual’s estimated membership fraction in each 
of the K inferred clusters (red and green clusters). In the upper left 
corner of the figure, the graph of DeltaK (mean(|L’’(K)|) sd(L(K))-1, 
Evanno et al. 2005) as a function of K (potential number of genetic 
clusters)
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Sequence data analysis

Data quality was first checked using FastQC version 0.11.8 
(Andrews 2010). Stacks version 2.4 (Catchen et al. 2013) 
was used to build loci de novo from raw reads in absence 
of a reference genome. Paired end sequences were demul-
tiplexed using process_radtags according to individual bar-
codes, and reads with low quality scores were filtered out. 
Additionally, reads containing the adapter sequence were 
filtered, and the remainder of the SbfI enzyme recognition 
site was identified from each sequence. Clone_filter was 
used to filter PCR duplicates. After this, single end reads 
were used. Assembly parameters, i.e., m, M and n, were 
optimized as follows. We ran denovo_map pipeline several 
times varying just one parameter each time. We varied m 
from 1 to 6, M from 0 to 8 and n from 1 to 6, while keeping 
all other parameters consistent (m = 3, M = 2 and n = 0). We 
extracted the number of (i) assembled loci, (ii) polymorphic 
loci, and (iii) SNPs for each run of the program and selected 
those parameters that maximized the number of polymor-
phic loci present in 80% of the samples (r80 loci rule, Paris 
et al. 2017; Rivera-Colón and Catchen 2022). Then, the 
final denovo_map.pl with optimal parameters, i.e., m = 4, 
M = 2, n = 4 was ran, and the populations module of Stacks 
was used to set the minimum number of populations a locus 
must be present in to process that locus (p 8), the minimum 
proportion of individuals in a population required to process 
a locus for that population (r 0.80); and to remove from fur-
ther analysis SNPs based on minor allele frequency (min-
maf 0.035) and loci that exceeded the maximum allowed 
observed heterozygosity (max-obs-het 0.70) following the 
recommendation of Rochette and Catchen (2017). A Vari-
ant Call Format (vcf) file was exported. Using R software 
version 4.2.2 (R Core Team 2022) loci with more than four 
SNPs were eliminated and only the first SNP per locus was 
retained for the analyses. Missing data threshold was 0.90 
(max-missing in VCFtools version 0.1.13, where 0 allows 
sites that are completely missing and 1 indicates no missing 
data allowed). VCFtools was also used to export the file in 
PLINK format (Danecek et al. 2011).

Loci in linkage disequilibrium (LD) equating to an r2 
value of more than 0.5 were removed from some analyses, 
i.e., genetic diversity estimates, pairwise genetic differentia-
tion (FST) and STRU CTU RE, using PLINK’s—indep com-
mand (SNP window size: 300; SNPs shifted per step: 5; 
and variance inflation factor (VIF): (2), which recursively 
removes SNPs within a sliding window (PLINK 2.0, Chang 
et al. 2015).

Genetic diversity

Estimates of genetic diversity such as the number of private 
alleles per population, the percentage of polymorphic loci, 

nucleotide diversity (Pi), observed (HO) and expected het-
erozygosity  (HE), and the inbreeding coefficient (FIS), were 
estimated using the populations program in Stacks (Catchen 
et al. 2013). The allelic richness (R) (El Mousadik and 
Petit 1996) was calculated using hierfstat 0.5–7 R package 
(Goudet and Jombart 2020).  FST between populations and 
their significance were calculated following the Weir and 
Cockerham (1984) formulation as implemented in Arlequin 
3.5.2.2 (Excoffier and Lischer 2010) with 99,999 permuta-
tions. Sampling locations with N = 2, i.e., RA and RG, were 
excluded from this analysis to avoid low sample size bias.

A neighbor joining (NJ) analysis was performed using 
the poppr package version 2.8.7 in R software (Kamvar et al. 
2014, 2015) using Nei's genetic distance calculated between 
individuals with 10,000 bootstrap replicates.

Population structure analysis

We performed a Discriminant Analysis of Principal Com-
ponents (DAPC, Jombart et al. 2010) using the R package 
adegenet v2.0.1 (Jombart 2008) to visualize relationships 
among groups of samples. The “find.clusters” function was 
executed retaining 35 PCs (accounting for 89.9% of the vari-
ance), and the Bayesian Information Criterion (BIC) was 
used to determine the optimal number of clusters (K). Then, 
two DAPC analyses were ran with 21 PCs to explain 60.9% 
of the variance, one with the optimal K = 2, and the other, 
with the samples preassigned to the original sampling sites 
(i.e., SGJ, NGJ, JS, RA, DE, UR, RG and RJ). The most 
contributing alleles to the first discriminant function (DF1) 
above a threshold loading of 0.006 (argument threshold) 
were identified, and their allele frequencies per populations 
were graphed.

Population structure was explored with STRU CTU RE 
version 2.3.4 software (Pritchard et al. 2000). We chose the 
admixture model and assumed correlated allele frequencies 
(Falush et al. 2003; Hubisz et al. 2009). Three independent 
runs were performed for each number of genetic clusters 
evaluated (K = 1–8). The initial burn-in period was set to 
100,000, and the run length to 150,000 steps. STRU CTU 
RE HARVESTER v0.6.94 (Earl and vonHoldt 2012) was 
used to process STRU CTU RE results, and to perform the 
Evanno method (Evanno et al. 2005), to detect the number 
of K groups that best fitted the data.

Detection of loci associated with environmental 
variables

BayPass (Gautier 2015) was used to identify loci subjected 
to selection. All loci with a minor allele frequency of at 
least 0.035 were used (1740 loci in total). We chose the 
standard covariate model (STD), which allows identifying 
genetic markers associated with environmental variables 
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(Gautier 2015). This model corrects for the scaled covari-
ance matrix of population allele frequencies (Ω, calculated 
under the core inference model) to completely remove isola-
tion by distance or substructure effects. We considered the 
annual average surface (https:// doi. org/ 10. 5067/ MODSA- 
AN4D9; http:// navig ator. ocean sdata. ca) and bottom seawa-
ter temperature (Baldoni et al. 2015; http:// navig ator. ocean 
sdata. ca), the annual average surface (https:// doi. org/ 10. 
5067/ SMP50- 3TMCS; http:// navig ator. ocean sdata. ca) and 
bottom seawater salinity (Baldoni et al. 2015; Piola et al. 
2018; http:// navig ator. ocean sdata. ca), and the annual aver-
age surface seawater chlorophyll a concentration (https:// 
doi. org/ 10. 5067/ AQUA/ MODIS/ L3B/ CHL/ 2018) at each 
sampling site (Table 1). Spearman's rank correlation coef-
ficients were calculated to estimate the relationship between 
the variables using the R function cor, and showed that some 
environmental variables were statistically correlated (surface 
vs. bottom seawater temperature: r = 0.84; surface seawater 
temperature vs. bottom seawater salinity: r = 0.9; bottom 
seawater temperature vs. bottom seawater salinity: r = 0.77; 
P < 0.05). Therefore, only three uncorrelated variables, i.e., 
bottom seawater temperature, surface seawater salinity and 
chlorophyll a concentration, were used for this analysis. 
BayPass uses BFs (Bayes Factors) to associate SNPs with 
population specific covariates. Associations with BF ≥ 10 
were considered as statistically significant according to Jef-
freys’ rule (Jeffreys 1961).

Pcadapt R package (version 4, Privé et al. 2020) was 
also used for outlier detection. This is a statistical tool 
to detect genetic markers involved in biological adapta-
tion based on Principal Component Analysis of individual 
genotype data. To choose the number of principal compo-
nents (K) to run pcadapt we followed Cattell’s graphical 
rule, i.e., we kept PCs to the left of the straight line of 
the “scree plot” (Supplementary Fig. S1.a) that displays 
the eigenvalues in descending order (Luu et al. 2017). In 
addition, “score plots” were used to assess the value of K 
that corresponds to a relevant level of population struc-
ture (Luu et al. 2017, https:// bcm- uga. github. io/ pcada pt/ 
artic les/ pcada pt. html; Supplementary Fig. S1.b). Once the 

“pcadapt” function was executed with the optimal num-
ber of PCs, the R package qvalue (version 2.22, Storey 
et al. 2020) transformed the P-values into q-values. For an 
α = 0.01 value, SNPs with q-values less than α were con-
sidered as outliers with an expected false discovery rate 
bounded by α (Luu et al. 2017). Only those loci detected 
consistently as candidates by BayPass and pcadapt were 
retained.

Potentially adaptive loci were identified in the catalog of 
RAD loci obtained from Stacks, and blasted against Gen-
Bank (http:// blast. ncbi. nlm. nih. gov/ Blast. cgi). The search 
focused on the protein database using the nucleotide query 
(BLASTX 2.13.0 + , Altschul et  al. 1997) and the non-
redundant protein sequence (nr) database. Sequences with 
percentage identity and query cover of 75% or more were 
reported. The possible function of matched proteins was 
searched in the UniProtKB database (The UniProt Consor-
tium 2021). Finally, we verified if allelic variants of these 
sequences were synonyms or non-synonyms, and the allele 
frequencies per population were graphed.

The STRU CTU RE analysis was also performed after 
removing potentially selected loci from the dataset.

Results

Sequence data analysis

After demultiplexing, quality filtering and PCR clone 
removal, a total 156,136,888 paired reads were retained with 
an average of 3,717,544.95 (SD = 1,618,830.36) per sample. 
The mean depths of coverage for processed samples calcu-
lated by the single end denovo_map pipeline, was 81.38x 
(SD = 28.40). The widely shared loci (R 0.80) were 21,981, 
composed of 10,713 variant sites. A total of 1740 loci met 
all the filters specified in “Materials and methods” (i.e. p 
8, r 0.80, min-maf 0.035, max-obs-het 0.70, loci with ≤ 4 
SNPs, only the first SNP per locus, and max-missing 0.90). 
Removal of loci under LD resulted in a 658 loci matrix.

Table 1  Summary of annual average environmental variables (Baldoni et  al. 2015; https:// doi. org/ 10. 5067/ AQUA/ MODIS/ L3B/ CHL/ 2018; 
https:// doi. org/ 10. 5067/ MODSA- AN4D9; https:// doi. org/ 10. 5067/ SMP50- 3TMCS; http:// navig ator. ocean sdata. ca; Piola et al. 2018)

SGJ south of Golfo San Jorge, NGJ north of Golfo San Jorge, JS Jueves Santo, RA Rawson, DE Deseado, UR Punta del Diablo, RG Rio Grande 
do Sul, RJ Macaé

Environmental variable SGJ NGJ JS RA DE UR RG RJ

Seawater temperature (surface, °C) 9.99 12.18 13.33 13.79 12.15 18.72 22.44 24.28
Seawater temperature (bottom, °C) 8.00 8.00 8.30 9.50 10.50 15.20 17.00 18.50
Seawater salinity (surface, PSU) 33.60 33.72 34.07 33.93 34.11 31.86 36.20 36.88
Seawater salinity (bottom, PSU) 33.40 33.60 34.03 33.50 33.50 35.30 35.70 36.15
Seawater chlorophyll a concentration (mg·m−3) 1.29 1.16 2.20 1.61 1.62 2.50 1.09 0.65

https://doi.org/10.5067/MODSA-AN4D9
https://doi.org/10.5067/MODSA-AN4D9
http://navigator.oceansdata.ca
http://navigator.oceansdata.ca
http://navigator.oceansdata.ca
https://doi.org/10.5067/SMP50-3TMCS
https://doi.org/10.5067/SMP50-3TMCS
http://navigator.oceansdata.ca
http://navigator.oceansdata.ca
https://doi.org/10.5067/AQUA/MODIS/L3B/CHL/2018
https://doi.org/10.5067/AQUA/MODIS/L3B/CHL/2018
https://bcm-uga.github.io/pcadapt/articles/pcadapt.html
https://bcm-uga.github.io/pcadapt/articles/pcadapt.html
http://blast.ncbi.nlm.nih.gov/Blast.cgi
https://doi.org/10.5067/AQUA/MODIS/L3B/CHL/2018
https://doi.org/10.5067/MODSA-AN4D9
https://doi.org/10.5067/SMP50-3TMCS
http://navigator.oceansdata.ca
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Genetic diversity

Estimates of HO and HE over the 658 loci varied across sam-
pling locations (Table 2). Positive FIS values indicated that 
individuals in a population were related, however, the values 
of  FIS were low (FIS < 0.05) indicating random mating in 
sampling locations (Hartl and Clark 1997), except RJ that 
showed average values (FIS = 0.0835, Table 2) according to 
the scale proposed by Hartl (2000). The individuals of UR 
showed the highest values of Pi, HO, HE and R indicating the 
highest genetic diversity among the eight locations, whereas 
RG showed the lowest values. RG and RA displayed the 
lowest percentage of polymorphic loci (34.35% and 36.93% 
respectively), suggesting that many SNPs were monomor-
phic with one allele fixed, however, this was probably due to 
the small sample size in these locations. Allelic richness was 
low and similar in all sites (R = 1.344–1.410). The number 
of private alleles per population ranged from 0 (SGJ, JS, RA 
and RG) to 5 (RJ) (Table 2).

Pairwise  FSTs revealed that genetic differentiation 
between pairs of Argentinian populations was low and not 
significant (Table 3). However, these populations showed 

significant differences with the populations from UR and RJ 
(Table 3). In addition, UR also differed significantly from RJ 
(P < 0.01) (Table 3).

The NJ dendrogram showed two well supported clus-
ters (bootstrap support over 98%, Fig. 2), one including all 
Argentine samples and the other one all RJ samples. In turn, 
UR and RG individuals were scattered in both groups.

Population structure analysis

The DAPC plot (Fig.  3) showed differentiation among 
individuals consistent with  FST values and the NJ analysis 
(Table 3; Fig. 2). The “find.clusters” function identified two 
genetic clusters (Supplementary Table S3), one formed by 
all Argentine samples and the other by all Brazilian sam-
ples. Most of the UR samples were also in this last cluster, 
except for one (i.e., UR_F23). Then, the DAPC analysis was 
performed using K = 2 (Fig. 3a). Based on the DF1 (eigen-
value = 552.7) DAPC calculated the membership prob-
abilities of each individual for the different groups (Supple-
mentary Table S4) which can be interpreted as proximities 
of individuals to the different clusters. All individuals had 

Table 2  Summary of genetic diversity statistics (658 SNPs) for Ple-
oticus muelleri from eight sampling locations (SGJ: south of Golfo 
San Jorge—NGJ: north of Golfo San Jorge—JS: Jueves Santo—RA: 

Rawson—DE: Deseado—UR: Punta del Diablo—RG: Rio Grande do 
Sul—RJ: Macaé)

Number of individuals per sampling location (N), number of private alleles per sampling location, allelic richness (R), percentage of polymor-
phic loci, mean value of nucleotide diversity (Pi), mean observed (HO) and mean expected heterozygosity (HE), mean measure of inbreeding 
coefficient (FIS), and the standard deviation of each statistic (SD)

Location N Private 
alleles

R % Polymor-
phic Loci

Pi SD HO SD HE SD FIS SD

SGJ 6 0 1.3927 65.8055 0.2131 0.0074 0.2039 0.0081 0.1947 0.0068 0.0194 0.0148
NGJ 6 1 1.3936 64.4377 0.2143 0.0076 0.1986 0.0081 0.1957 0.0070 0.0358 0.0145
JS 5 0 1.4019 62.0061 0.2185 0.0079 0.2037 0.0088 0.1958 0.0070 0.0319 0.0147
RA 2 0 1.3693 36.9301 0.1999 0.0103 0.1907 0.0114 0.1499 0.0078 0.0137 0.0000
DE 5 4 1.4015 62.3100 0.2182 0.0079 0.1882 0.0082 0.1952 0.0070 0.0454 0.0158
UR 7 2 1.4097 71.1246 0.2185 0.0072 0.2046 0.0078 0.2021 0.0066 0.0389 0.0173
RG 2 0 1.3435 34.3465 0.1864 0.0102 0.1809 0.0113 0.1398 0.0076 0.0084 0.0000
RJ 9 5 1.3886 73.4043 0.2106 0.0069 0.1822 0.0071 0.1982 0.0065 0.0835 0.0195

Table 3  Pairwise  FST values 
over 658 SNPs across six 
sampling locations of Pleoticus 
muelleri 

SGJ south of Golfo San Jorge, NGJ north of Golfo San Jorge, JS Jueves Santo, DE Deseado, UR Punta del 
Diablo, RJ Macaé
Asterisks indicate significant values (*P < 0.05; **P < 0.01; ***P < 0.001)

SGJ NGJ JS DE UR RJ

SGJ 0
NGJ – 0.002 0
JS – 0.00845 0.00821 0
DE – 0.00254 – 0.00399 0.00404 0
UR 0.00736* 0.018* – 0.00069* 0.00829* 0
RJ 0.04645*** 0.06306*** 0.04335*** 0.05172*** 0.02309** 0
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probabilities of 1 of belonging to cluster 1 and 0 to cluster 
2, or vice versa, except for three individuals from UR and 
one from RG that had membership probabilities between 0 
and 1 (see Supplementary Table S4), suggesting possible 
admixture.

A second DAPC performed with samples preassigned 
to the original sampling locations yielded similar results. 
The DF1 (eigenvalue = 124.97) showed that individuals are 
genetically structured in groups arranged along a latitudi-
nal gradient (Fig. 3), with the Argentinian sampling sites 
largely overlapping (Fig. 3b, c). The second discriminant 
function (eigenvalue = 9.87) contributed little to explain the 
differentiation between samples. Four loci reflected most 

contribution to the genetic differentiation linked to the geo-
graphic distribution (DF1) (Fig. 4a). The allele frequency 
graphs showed that these loci changed their allele frequen-
cies throughout the geographic distribution of this species 
(Fig. 4b).

The STRU CTU RE analysis evidenced the presence of 
two genetic clusters (K = 2; Fig. 1). Individuals found in the 
south of P. muelleri´s distribution (SGJ, NGJ, JS, RA and 
DE) had an estimated membership to one of the two clusters 
(green color, Fig. 1) of > 0.850 (except for one individual in 
JS that had a 0.636), while individuals in the north (RJ) had 
an estimated membership > 0.883 to the other cluster (red 
color, Fig. 1), indicating correspondence between the genetic 

Fig. 2  NJ dendrogram of individuals of Pleoticus muelleri based on 
the analysis of 1740 RAD (Restriction site Associated DNA) loci. 
Individuals are identified with sampling location followed by sex (M 
male, F female) and the sample identification number. SGJ south of 

Golfo San Jorge, NGJ north of Golfo San Jorge, JS Jueves Santo, RA 
Rawson, DE Deseado, UR Punta del Diablo, RG Rio Grande do Sul, 
RJ Macaé
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groups detected and the geographic origin of individuals 
(Fig. 1). In general, individuals found in in-between loca-
tions (UR and RG) showed intermediate estimated member-
ship values to both clusters, suggesting admixture of these 
two neighbouring groups (Fig. 1).

Detection of loci associated with environmental 
variables

BayPass identified 20 loci correlated with environmental 
variables (Table 4), of these, 17 were associated with bottom 
seawater temperature, two with surface seawater salinity, and 
one with chlorophyll a (Table 4). For the analysis using pca-
dapt two principal components (K) were retained (see Sup-
plementary Fig. S1.a and b). Pcadapt detected 13 possible 

outlier loci (q-value < 0.01, Supplementary Fig. S1c), nine 
of which coincided with loci identified by BayPass as cor-
related with bottom seawater temperature (Table 4, Supple-
mentary Table S5). The remaining four loci were not identi-
fied by BayPass (IDs 874, 1125, 1554 and 13,142).

The four loci that were identified by DAPC as the major 
contributors to the genetic differentiation in DF1 (i.e., ID 
4054, 9481, 10,209 and 11,727; Fig. 4a), were also detected 
by BayPass and pcadapt (Table 4).

Only one of the nine potentially adaptive RAD loci identi-
fied by BayPass and pcadapt (ID 1240, Table 4) blasted with 
high percentage of coverage and identity (≥ 75%) in the Gen-
Bank protein search (Supplementary Table S6). It matched 
against the protein monocarboxylate transporter 13-like or 
12-like of P. chinensis, P. japonicus and P. monodon (Penae-
oidea superfamily) (Supplementary Table S6). Allelic vari-
ants found for locus 1240 throughout the geographic dis-
tribution of P. muelleri (see Supplementary Fig. S2) were 
non-synonymous, i.e., they codified either for leucine or 
for methionine. Monocarboxylate transporters belong to a 
superfamily of membrane transport proteins (Major Facilita-
tor Superfamily, MFS) that facilitate movement of solutes 
through cell membranes as a response to chemiosmotic gra-
dients (Pao et al. 1998). Some authors have found that this 
type of protein can be involved in osmoregulation (Ertl et al. 
2019; McCarty et al. 2022), hypoxia and acid–base regula-
tion in marine invertebrates (Tresguerres et al. 2020).

The STRU CTU RE analysis performed after removing the 
potentially selected loci from the dataset (656 loci), gave 
similar results to the previous ones (K = 2, Supplementary 
Fig. S3).

Discussion

This work is the first attempt to use genome wide data to 
assess broad-scale population differentiation and genetic 
structure of Pleoticus muelleri. 1740 loci could be geno-
typed using the RADSeq technique. In contrast to what 
we hypothesized, all our results pointed to the existence of 
population structure along the studied geographic range of 
P. muelleri. Two genetic clusters were identified, one found 
in the south (SGJ, NGJ, JS, RA and DE), and the other in 
the north of its distribution (RJ). Individuals found in inter-
mediate locations (UR and RG) suggested the existence of 
admixture between these two neighbouring groups. Nine 
potentially adaptive loci were correlated to bottom seawater 
temperature, and/or with variables correlated to it, i.e., sur-
face seawater temperature and bottom seawater salinity, and 
four of them explained much of the genetic structure found 
along the geographic distribution of this species.

Pleoticus muelleri inhabits the continental shelf off 
eastern South America, which is characterized by a strong 

Fig. 3  Genomic variation by non-parametric Discriminant Analy-
sis of Principal Components (DAPC) of individuals of Pleoticus 
muelleri based on the analysis of 1740 RAD (Restriction site Asso-
ciated DNA) loci and 21 principal components (explaining 60.9% 
of the total variance). a Density plot generated using K = 2 (red and 
black clusters), result of the “find.clusters” function (DF1 eigen-
value = 552.67). b Density plot of individual scores on the first discri-
minant function (eigenvalue = 124.97) using preassigned populations 
according to sampling sites. c Scatterplot of the first and second dis-
criminant functions (eigenvalue = 9.87) using preassigned populations 
according to sampling sites. SGJ south of Golfo San Jorge, NGJ north 
of Golfo San Jorge, JS Jueves Santo, RA Rawson, DE Deseado, UR 
Punta del Diablo, RG Rio Grande do Sul, RJ Macaé
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contrast in water mass characteristics. In the upper layer, it 
is influenced by the continental discharge of the Río de la 
Plata (34° S) and, more locally, of the Patos Lagoon (32° S). 
The position of this low salinity plume (S < 33) varies sea-
sonally, reaching 28° S during winter, while it is limited to 
the south of 32° S in summer. Below this low salinity layer, 
the relatively cold, fresh Subantarctic Shelf Water is found 
south of 33° S; whereas to the north, warm, salty Subtropical 
Shelf Water occurs. Between both extends a relatively nar-
row frontal zone, i.e. the Subtropical Shelf Front. The front 

has approximately a N-S direction, and appears as a shelf 
extension of the confluence of the subtropical Brazil Cur-
rent and the subantarctic Malvinas Current, situated near the 
mouth of the Río de La Plata (Piola et al. 2000; Matano et al. 
2010). All these conditions can be contributing to the reduc-
tion of gene flow observed between northern and southern 
populations of Pleoticus muelleri.

Certain flow fields, such as the one generated by converg-
ing marine currents, may be capable of acting as barriers to 
dispersal in benthic marine species with planktonic larvae, 

Fig. 4  SNPs that contributed to explain the genetic structure along 
the latitudinal gradient. a Loading plot based on 1740 RAD (Restric-
tion site Associated DNA) loci of Pleoticus muelleri. Numbers above 
peaks indicate the identification number (ID) of the most contributing 
SNPs (above a threshold loading of 0.006) to the first discriminant 

function (eigenvalue = 124.97) of the DAPC analysis. b Allele fre-
quencies per population of each contributing locus. SNP #: SNP ID in 
the total catalog. SGJ south of Golfo San Jorge, NGJ north of Golfo 
San Jorge, JS Jueves Santo, RA Rawson, DE Deseado, UR Punta del 
Diablo, RG Rio Grande do Sul, RJ Macaé
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even in the absence of other constraints (Gaylord and Gaines 
2000; Hohenlohe 2003; Pelc et al. 2009). Furthermore, the 
association of some SNPs with environmental variables, 
identified through BayPass, suggested the existence of diver-
gent selection between northern and southern populations 
that could be related to bottom seawater temperature, and/
or to variables correlated to it, i.e., surface seawater tem-
perature and bottom seawater salinity. Although this asso-
ciation may not necessarily imply a causal relationship, this 
could be suggesting that temperature and/or salinity could 
be involved as selective pressures in the genetic divergence 
observed.

Changes in temperature and salinity can affect growth 
rate and physiologic functions of various marine inverte-
brates, such as shrimp, oysters, mussel and clams (Ertl et al. 
2019). Besides, variations in water temperature can modify 
the breeding season and induce maturation and spawning 
(Sancinetti et al. 2019). The candidate locus that matched in 
the protein search with monocarboxylate transporters (i.e., 

1240) showed non-synonymous allele frequency variation 
between northern and southern populations of P. muelleri. 
Monocarboxylate transporters have been proposed to have 
a role in osmoregulation (Ertl et al. 2019; McCarty et al. 
2022), hypoxia and acid–base regulation in marine inver-
tebrates (Tresguerres et al. 2020). However, information is 
still scarce to secure the identity and function, as well as the 
potentially adaptative advantage of the different alleles of 
this locus; and therefore, to ensure the underlying adaptive 
mechanism. Finally, we cannot rule out that other environ-
mental factors not considered in this study, such as grain 
particle size, organic matter content and sediment texture 
might be involved in adaptation (Ruello 1973; Costa and 
Fransozo 2004; Costa et al. 2004; Sancinetti et al. 2014). 
Additional studies such as whole genome sequencing can 
help investigate the adaptative mechanism involved in P. 
muelleri´s differentiation, enabling the discovery of genes 
linked to the candidate loci reported in this study that may 
have a known function in related species.

The fact that the STRU CTU RE analysis including only 
the putatively neutral loci gave similar results to the one 
performed with all loci, reveals that genetic differentiation 
affects more loci than just the selected ones. This could indi-
cate either that the lack of gene flow as a result of selection 
has already affected neutral loci (Tigano and Friesen 2016), 
or that differentiation originated because of the presence of 
a physical barrier to dispersion, making it difficult to distin-
guish between ecologically driven divergence and allopatric 
differentiation with posterior adaptation (Teske et al. 2019). 
Therefore, we cannot know whether the observed intermedi-
ate zone constitutes a primary or a secondary contact zone. 
To determine the scope of the hybrid area, samples from 
intermediate zones will be studied.

To inspect whether the inclusion of localities with small 
sample size (N = 2), i.e., RA and RG, had an effect on popu-
lation structure analyses, DAPC and STRU CTU RE were run 
without including these samples. Results obtained were the 
same as those obtained when including all samples. They 
revealed the existence of two clusters, one in the south and 
one in the north of P. muelleri´s distribution, with individu-
als found in the intermediate location (UR) suggesting the 
existence of admixture between these two neighbouring 
groups (results not shown).

Overall, these novel markers constitute a powerful tool 
for studies of genetic structure and population assignment 
in P. muelleri. This high-resolution genetic information is 
expected to be useful in improving conservation and man-
agement policies for this species, since the underestimation 
in the number of stocks can result in the loss of intraspecific 
diversity (Viñas et al. 2011) due to overexploitation, harm-
ing the adaptation capacity to changes or modifications in 
the environment (Villaseñor Gómez 2005; Rocha and Gasca-
Pineda 2007). Resilience and sustainability of commercially 

Table 4  BayPass results of the SDT covariate model

Twenty RAD loci out of the 1740 analyzed in Pleoticus muelleri 
showed association with some environmental variable (i.e. bottom 
seawater temperature, surface seawater salinity and surface seawater 
chlorophyll a concentration) with a BF ≥ 10
ID identification of each locus in the total Stacks catalog. BF.dB. esti-
mated Bayes Factor in dB unit
Those loci also recovered by DAPC as with a high contribution to 
differentiation are highlighted in bold. Asterisks indicate loci also 
detected by pcadapt

ID Bottom seawa-
ter temperature 
BF.dB

Surface sea-
water salinity 
BF.dB

Surface seawater 
chlorophyll a 
BF.dB

1240* 11.055
1644 12.396
1992* 17.457
2443* 20.152
2584 13.508
3048 16.076
3879 11.094
4054* 27.648
4867 17.884
6500 11.967
6833 12.026
8564 20.010
9481* 41.272
10,025* 22.846
10,209* 19.922
10,825 14.581
11,727* 21.141
11,776* 13.674
11,875 11.317
14,153 12.294
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relevant species depend on identifying population structure 
and adaptive diversity to preserve all discrete biological 
units of fisheries resources (Hilborn et al. 2003; Mullins 
et al. 2018; Clucas et al. 2019).

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00227- 023- 04332-y.
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