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Abstract
Macroecological studies have primarily focused on investigating the relationships between body size and geographic distri-
bution on large scales, including regional, continental, and even global levels. While the majority of these studies have been 
conducted on terrestrial species, a limited number of studies have been carried out on aquatic species, and even fewer have 
considered the importance of phylogeny in the observed patterns. Cephalopods provide a good model for examining these 
macroecological patterns due to their large geographic and bathymetric ranges, wide range of body sizes, as well as diverse 
fin sizes and shapes. In this study, we assess the relationships between mantle length, fin size, and hatchling size with the 
geographic and bathymetric distribution of 30 squid species from the worldwide distributed family Loliginidae. To test a 
macroecological hypothesis, we evaluated the phylogenetic signal and correlated evolution to assess the role of biological 
traits in squid distribution, using a molecular phylogeny based on two mitochondrial and one nuclear genes. Biological traits 
(mantle length and fin size) exhibit high phylogenetic signals, while distribution demonstrates low signal. The correlation 
analyses revealed the existence of a relationship between adult mantle length and fin size with geographic and bathymetric 
distribution, but not with hatchling size. The geographic distribution of loliginid squids evolved in relation to mantle length, 
where larger squids with large fins (e.g. Sepioteuthis) have wide distributions, while small-finned species (e.g. Pickfordia-
teuthis) have narrow distributions. This study paves the way for exploring similar relationships in other squid families or 
other marine swimming animals.
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Introduction

The geographic distribution of species is determined by eco-
logical and evolutionary factors, as well as the dispersal abil-
ities of each species, and environmental conditions (Brown 
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et al. 1996). The locomotion mode aids species in migration 
and dispersal to colonize new habitats, thereby expanding 
their geographic ranges. Species that have evolved special-
ized anatomical structures for long-distance movement, 
such as wings or fins, exhibit wide geographic distributions 
(e.g. birds, bats, fishes) (Böhning-Gaese et al. 2006; Laube 
et al. 2013; Luo et al. 2019). Recently, Luo et al. (2019) 
demonstrated that bat species with larger wings have larger 
distribution ranges compared to those with smaller wings 
and that the size of geographic ranges was associated with 
wing aspect ratio. That study highlights the relationship 
between specialized anatomical structures and distribu-
tions, suggesting the significant role of dispersal capacity in 
shaping species’ geographic distributions (Luo et al. 2019). 
In aquatic species, such as fishes and cephalopods, that uti-
lize fins for locomotion, it is possible that the distribution 
patterns are going to be similar to those reported for birds 
and bats (Laube et al. 2013; Luo et al. 2019). On the other 
hand, in marine invertebrates, dispersal capabilities and con-
sequently geographic distributions are influenced by larval 
size and movement capacities (Hansen 1980; Brown et al. 
1996; Cowen and Sponaugle 2009; Villanueva et al. 2016; 
Ibáñez et al. 2018). Therefore, it is pertinent to investigate 
whether body size, fins, or larval dispersal influences the 
size of geographic ranges in marine invertebrates.

Cephalopods are exclusively marine animals that include 
nautilids, cuttlefishes, squids, and octopods, with approxi-
mately 860 species distributed across 50 families and 174 
genera (Hoving et al. 2014; Luna et al. 2021). Some spe-
cies reach large sizes as adults, enabling them to have wide 
geographic distributions spanning over 5000 km (Rosa et al. 
2008a, b; Ibáñez et al. 2009, 2019; Rosa et al. 2012, 2019). 
They primarily inhabit the first 1000 m depth and have daily 
vertical migrations (Boyle and Rodhouse 2005). The combi-
nation of several characteristics, such as wide distribution, 
jet propulsion, high dispersal, and wide range of adult body 
size, makes cephalopods a good model for testing biogeo-
graphic hypotheses.

Since all cephalopods share funnel and jet propulsion, 
the distinct size and shape of fins could be determining fac-
tors in their movement capabilities (Clarke 1988). There are 
nine major fin shapes among squids, all of which contribute 
to fast swimming and orientation control (following Clarke 
1988; Boyle and Rodhouse 2005). These fins are muscular 
hydrostats with an intramuscular network of crossed con-
nective tissue fibres that provide support for fin movements 
(Johnsen and Kier 1993). Among pelagic squids, those 
belonging to the Loliginidae family display diverse fin mor-
phologies, a wide amplitude of body sizes in both juveniles 
and adults, and high variability of geographic and bathym-
etric distribution (Anderson 2000a; Jereb et al. 2010). These 
traits make them an excellent study model to understand the 
factors that explain their distribution. Loliginidae contains 

species which can reach a rather large size (at least 900 mm 
of mantle length, ML, in Loligo forbesii), along with dwarf 
species like Pickfordiateuthis, where females can mature up 
to 7.9 mm ML (Brakoniecki 1996). These benthopelagic 
squids have a pelagic paralarval stage, form schools, are 
active swimmers, and are chasing predators (Nesis 1980). 
Loliginid squids have elongated flapping fins that produce 
large-amplitude waves for economical, gentle swimming 
and hovering, as well as for controlling stability and aiding 
jet escape (Clarke 1988). By combining finning and jetting, 
cephalopods can generate different swimming gaits (Ander-
son and DeMont 2000; Stewart et al. 2010).

To understand the historical and ecological processes that 
influence the distributions of species, it is necessary to inte-
grate comparative-quantitative biogeographic and phyloge-
netic studies (Brown et al. 1996; Hernández et al. 2013). In 
this study, we aim to test predictions of macroecology based 
on data about the distribution, fin characteristics (shape and 
size), and mantle length of both hatchling and adult loligi-
nid squids worldwide. To achieve this, we collected data on 
distribution (latitudinal range, area, and depth) and biologi-
cal traits (mantle length of young and adults and fin size) of 
loliginids. Additionally, with inferred the phylogenetic rela-
tionships of the loliginids to estimate the phylogenetic cor-
relation between these traits. This study aims to test whether 
the geographic distribution can be predicted by dispersal 
capacity, inferred from mantle length and fin size, among 
loliginids within a phylogenetic comparative framework.

Materials and methods

Database

In this study, we included 30 species of loliginid squids from 
ten genera out of the 47 reported by Jereb et al. (2010). The 
data collected included squid mantle lengths (maximum 
mantle length, ML, mm, Fig. S1) as indicator of body size, 
hatchling size (ML), fin length (FL, mm, Fig. S1), and dis-
tribution (latitudinal range, bathymetric range, and area dis-
tribution). Fin shapes were classified as: rhomboid, round, 
or elliptic. In several loliginid species, males exhibit larger 
ML than females, while rarely females are larger (Jereb 
et al. 2010). This indicates different jet swimming capacities 
between genders. Additionally, some species, the maximum 
ML corresponds to only one gender. To explore the effect of 
mantle length gender on distribution, we conducted analy-
ses separating the data based on gender when enough data 
were available. To avoid allometric effects, we transformed 
the fin length into fin length index (FLI, Roper and Voss 
1983) (see supplementary material, Table S1). The distribu-
tion areas for all different species were estimated using maps 
from the literature (Jereb et al. 2010). To ensure accuracy, 
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we georeferenced these maps using the open-source GIS 
software QGIS 3.0.1 (QGIS Development Team 2018) with 
the plugin Georeferencer GDAL 3.1.9. This process assigned 
spatial information to each pixel in a map, relating it to a 
coordinate in geographic space. From the georeferenced 
maps, we recreated the distribution area as a polygon shape-
file, from which we obtained its latitudinal range (in degrees) 
and area  (km2) with the plugin Calculate Geometry 0.3.2. 
We also recorded maximum depth of each species from the 
literature, to assess the bathymetric distribution range (m). 
This database was combined with a new molecular phylogeny 
reconstructed with data from GenBank (Table S2).

To assess the relationship between distributional data 
(latitudinal ranges, bathymetric range, and area distribution) 
and fin shape (rhomboid, round, and elliptic), we performed 
one-way ANOVA in R v4.1.2 core (R Development core 
team 2022), after log transformation of the data.

Phylogenetic analysis

Nucleotide sequences (16S, COI, and RHO) for each gene 
were separately aligned using Multiple Sequence Compari-
son by Log-Expectation (MUSCLE) with default param-
eters for gap insertion and gap extension (Edgar 2004), 
implemented in the MEGA X software (Kumar et al. 2018). 
The best-supported substitution model for each gene was 
identified prior to the phylogenetic analysis using jModel-
Test2 (Darriba et al. 2012) (Table S3). Once aligned, the 
sequences for each of the three genes were concatenated into 
a single partitioned matrix using Mesquite v3.10 (Maddison 
and Maddison 2016), which allowed for a separate substitu-
tion model to be used for each gene (Table S2).

We estimated phylogenies for the partitioned dataset using 
Bayesian Inference with MrBayes v3.2 software (Ronquist 
et al. 2012). Bayesian phylogenetic inference was performed 
using 10,000,000 generations of four heated Markov chain 
Monte Carlo (MCMC), sampling every 1,000 generations. 
We discarded the first 10% (1,000,000) of generations as 
burn-in, resulting in a total of 9,001 trees sampled from the 
posterior probability distribution. A majority consensus tree 
(50%) was computed from these 10,000 trees. We also evalu-
ated convergence to the posterior distribution and mixing of 
the MCMC using Tracer v1.6 (Rambaut et al. 2014). Effective 
sample size (ESS) > 200 was accepted. The trees were rooted 
using Spirula spirula (Owen, 1836), Ommastrephes bartramii 
(Lesueur, 1821), and Sthenoteuthis oualaniensis (Lesson, 
1830) as outgroups. Certain cryptic lineages (i.e. Doryteuthis 
pleii, D. pealeii, Lolliguncula brevis, and Sepioteuthis lesso-
niana) lacked morphometric and distribution data. Only the 

lineages with the most data (and their respective distribution) 
were included in the phylogeny in order to avoid obscuring the 
results with cryptic species or genetic lineages (Okutani 1984, 
2005; Segawa et al. 1993; Cheng et al. 2014).

For comparative purposes, all outgroup species (three 
tree tips, S. spirula, O. bartramii, and S. oualaniensis) were 
removed from the tree using the drop.tip function in “APE” 
package (Paradis et al. 2004), implemented in R v4.1.2 core 
(R Development Core Team 2022). The new phylogram was 
transformed into an ultrametric tree using the Grafen’s (1989) 
method. To explore the association between the standardized 
database and the phylogeny, a heatmap was employed using 
the phylo.heatmap function in “Phytools” package (Revell 
2012).

Phylogenetic signal

The ultrametric tree was used to estimate the phylogenetic sig-
nal of each trait, denoted as Pagel’s λ (Pagel 1999). Lambda 
(λ) varies between 0 and 1, quantifying the amount of phylo-
genetic signal in the studied trait. A value of λ = 0 indicates 
that the trait distribution across species is independent of the 
phylogeny, while λ = 1 suggests that the distribution of trait 
values conforms to the expectations of the Brownian motion 
model (Pagel 1999). The analyses were conducted using the 
phylosig function, implemented in “Phytools”. The likelihood 
value of λ estimated for each trait was compared to the likeli-
hood value of λ equal to 0 through likelihood ratio test (LRT).

To determine whether fin shape exhibits a phylogenetic 
signal, we employed the “phylo.signal.disc” algorithm, com-
paring the number of transitions according to unrestrained 
parsimony against a null distribution obtained by randomiz-
ing the species data, effectively disrupting any underlying 
phylogenetic structure (Rezende and Diniz-Filho 2012). The 
null distribution was based on 1000 replicates and was imple-
mented in R.

Correlated evolution

We used phylogenetic generalized least squares models 
(PGLS; Pagel 1999) to establish the existence of a linear 
relationship between ML (females, males, and hatchlings), 
FLI, and distribution data (latitudinal, bathymetric, and area). 
These models were performed using the corPagel function in 
the “APE” package in R. The correlation structure of PGLS 
was based on the assumption of Brownian motion model, mul-
tiplying the off-diagonal elements (the covariances) by λ. To 
compare all predictor variables, we calculate IC 95% for coef-
ficients of all PGLS analyses.
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Results

Biological data

The mantle length of the 30 loliginid species ranged from 
22  mm in Pickfordiateuthis pulchella to 937  mm in L. 
forbesii, whereas fin length index ranged from 23 in Allo-
teuthis africana to 90 in Sepioteuthis lessoniana (Table S1). 
The geographic distribution ranged from 73,729  km2 in 
Lolliguncula argus up to 28,000,000  km2 in S. lessoniana 
(Table S1).

Among the distributional data, the only significant rela-
tionship was found between the distribution area compared 
with fin shape (F2,27 = 5.158, P = 0.0127); the species with 
elliptic shape had the larger distribution (see Fig. 1).

Phylogenetic signal

Both squids’ mantle length (ML) (female and male) and fin 
length index (FLI) were highly structured across the phy-
logeny in the heatmap (Fig. 2), with both traits exhibiting 
a high significant phylogenetic signal (λ > 0.75, P < 0.05; 
Table 1). These results provide evidence of a concordance 
between loliginid phylogeny and both biological traits evalu-
ated. All distribution data showed a low phylogenetic signal 
(λ < 0.70, P > 0.5; Table 1) and an absence of phylogenetic 
structure (Fig. 2).

Fin shape shows a higher correspondence with the 
phylogeny of loliginids (Fig. 3). The “phylo.signal.disc” 
algorithm for fin shape shows that five transitions were 
required to obtain the observed distribution along the lol-
iginid phylogeny (Fig. 3). This result differed significantly 
(P < 0.001) from the median number of transitions (11; range 
7–12) across the 1000 replicates employed to build the null 
distribution.

Correlated evolution

The largest loliginid squids have wider distribution, indicat-
ing a positive correlation with area distribution and bathym-
etric distribution (Table 2, Fig. 4). However, neither female 
nor male ML correlated with the latitudinal range (β < 0.12, 
Table 2, Fig. 4). The PGLS analysis showed a significant 
correlation between female and male ML with geographic 
distribution (β > 0.75, Table 2, Fig. 4). Similarly, FLI was 
positively and significantly correlated with area distribution 
and bathymetric range (β > 1.0, Table 2, Fig. 5), but not with 
latitudinal range (β < 0.1, Table 2, Fig. 5). Hatchling size did 
not show a correlation with the distribution data (Table 2, 
Fig. 5). Among all predictor traits (body size, hatchling size, 
and fin length), the best predictor of geographic and bathy-
metric distribution of loliginid squids was FLI (β = 1.4–2.4, 
Table 2, Fig. 6). Finally, the box-and-whisker plot does not 
show clear differences between female and male coefficients 
for all PGLS analyses.

Fig. 1  Box plots showing the distribution data by fin shape. Boxes represent percentiles of 25% and 75%, and the bar represents the 95% confi-
dence interval (CI)
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Discussion

Geographic range size, which refers to the extent of a spe-
cies’ occurrence, is a fundamental biogeographic variable 
influenced by several intrinsic and extrinsic factors (Brown 
et al. 1996; Gaston 2003). In the case of loliginid species, 

Fig. 2  Phylogenetic heatmap 
tree of loliginid squid biologi-
cal and distributional traits. The 
scale bars are in standard devia-
tion (SD) units for each column 
of data

Table 1  Phylogenetic signal of each trait obtained with univariate 
analyses

Lambda (λ) logLik λ logLik λ = 0 P value

FML 0.949 − 186.192 − 188.992 0.018
MML 0.919 − 202.003 − 202.604 0.027
FLI 0.761 − 118.927 − 122.037 0.013
Latitude 0.000 − 132.209 − 132.208 1.000
Area 0.090 − 506.614 − 506.675 0.726
Depth 0.632 − 201.941 − 202.786 0.194

Fig. 3  Phylogenetic signal of fin shape of loliginid squid
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we observed that larger species with larger fin sizes have 
broader bathymetric and geographic distribution, akin to 
the positive correlation between wings and distribution 
observed in birds and bats (Böhning-Gaese et al. 2006; 
Laube et al. 2013; Luo et al. 2019). This macroecologi-
cal relationship suggests exploring these patterns in other 
squid families or marine swimming animals (e.g. fishes) 
to understand whether the geographic range size is related 
to these and other biological traits.

The geographic distribution, encompassing area and lati-
tudinal and bathymetric range, does not exhibit a significant 
phylogenetic signal throughout the family. This contradicts 
the statements made by other authors (Brakoniecki 1986; 
Anderson 2000a, b; Ulloa et al. 2017), who posited that geo-
graphically close species share common ancestors. However, 

our data are quantitative (i.e.  km2), not qualitative (i.e. bio-
geographic provinces), and thus do not exhibit significant 
phylogenetic signal. In contrast, biological traits (i.e. body 
size and fins) have a strong phylogenetic signal, as suggested 
by other studies on cephalopods (Ibáñez et al. 2018; 2021; 
Anderson and Marian 2020).

The geographic distribution of loliginid squids is sug-
gested to be influenced by their environment and ecology 
(Sales et al. 2013, 2017; Costa et al. 2021). One crucial fac-
tor is their dispersion capacity. For certain American Loligi-
nid species from the Doryteuthis and Lolliguncula genera, 
the Amazon plume Barrier (Floeter et al. 2008) does not 
impede the dispersion of D. pleii, D. pealeii, and L. bre-
vis above the major influence area of the plume (between 
Pará and Amapá states, and North Coast of Brazil, Muller-
Karger et al. 1988; Hoorn et al. 2010), despite the significant 
reduction in salinity. However, low-salinity environments 
can act as barriers for both adults and paralarvae, resulting in 
high mortality (Hanlon and Messenger 1996; Hanlon 1998; 
Boyle and Rodhouse 2005). Nevertheless, the considerable 
capacity of dispersion of loliginid squids is evidenced by 
that these species do in fact disperse above the plume area 
of influences (Boyle and Rodhouse 2005; Jereb et al. 2010).

Body size and distribution

Our results show that loliginid squids with larger body 
size, both females and males, exhibit a larger geographic 
distribution, while smaller species have a restricted dis-
tribution, similar to some marine fishes (Hernández et al. 
2013). However, the swimming capacity of squids differs 
that of fishes. For millions of years, cephalopods roamed 
the world’s oceans as jet-propelled masters of the pelagic 
world, until fishes, using highly efficient undulatory loco-
motion, displaced them from many nektonic habitats (Hoar 
et al. 1991). According to Nesis (1980), the evolution of 
squids, such as Loliginidae, has been strongly influenced by 
competition with fishes. In fact, their biology, distribution, 
and geographic variation are determined by direct competi-
tion between species that occupy different ecologic habitats 
(depth and thermal preferences) and exhibit inverse circa-
dian activity levels (Martins and Juanicó 2018). Indeed, the 
directional jet propulsion of the cephalopods provides better 
acceleration and manoeuvrability than many fishes (Foyle 
and O’Dor 1988). Combined with lift production by the fins, 
squids may have more dynamic lift capabilities (Hoar et al. 
1991). In this study, the positive relationship between mantle 
length, fin length, bathymetric range, latitudinal range, and 
distribution area suggests that dispersal capacity plays a role 
in shaping species’ geographic distributions. When there are 
no geographic or ecological barriers preventing it, larger 

Table 2  Parameters of the relationship among mantle length (ML), 
fins length index (FLI), and geographic distribution of loliginid 
squids obtained by phylogenetic generalized least squares (PGLS) 
analyses

Latitudinal 
range

Female ML Male ML FLI Hatch-
ling 
ML

λ 0.1565 0.1752 0.1663 – 
0.0019

logLik – 0.6421 – 0.5745 0.2193 – 
1.8005

α 1.3922 1.3500 1.7741 1.6637
β 0.0898 0.1075 – 0.1070 – 

0.1278
SE 0.1293 0.1058 0.3773 0.2594
t value 0.6942 1.0162 – 0.2834 – 

0.4925
P value 0.4933 0.3182 0.7789 0.6283

Distribution 
area

Female ML Male ML FLI Hatchling 
ML

λ 0.1570 0.1979 – 0.0034 – 0.1681
logLik – 21.6914 – 20.4387 – 21.8995 – 14.3162
α 3.9798 4.1231 1.8342 5.8792
β 0.9272 0.8501 2.4319 0.6993
SE 0.2742 0.2150 0.7994 0.5320
t value 3.3812 3.9542 3.0421 1.3146
P value 0.0021 0.0005 0.0051 0.2052

Bathymetric 
range

Female ML Male ML FLI Hatchling 
ML

λ 0.4104 0.3379 0.6992 0.7270
logLik – 14.5215 – 14.2278 – 18.2750 – 10.0345
α 0.0765 0.3263 – 0.4122 2.2618
β 0.8764 0.7532 1.4090 – 0.2209
SE 0.2110 0.1722 0.7396 0.3752
t value 4.1529 4.3727 1.9052 – 0.5888
P value 0.0003 0.0002 0.0671 0.5633
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squid will have greater dispersal capacity, enabling them to 
reach a wider distribution range.

The geographic distribution of loliginids appears to have 
evolved in relation to body size. Larger squids (Sepioteuthis) 

have wide distributions, while smaller species (Pickfor-
diateuthis, Afrololigo) have narrow distributions (Fig. 2). 
Previous studies in vertebrates have detected a positive 
relationship between geographic range size and body size 

Fig. 4  Plots illustrating the relationships between female and male 
mantle length and distributional traits of loliginid squids, where A 
female mantle length/latitudinal distribution, B female mantle length/
geographic distribution, C female mantle length/bathymetric distri-

bution, D male mantle length/latitudinal distribution, E male mantle 
length/geographic distribution, and F male mantle length/bathymetric 
distribution. Dashed lines represent regressions from PGLS

Fig. 5  Plots depicting the relationships between biological and distri-
butional traits of loliginid squids, where A fin length index/latitudinal 
distribution, B fin length index/geographic distribution, C fin length 
index/bathymetric distribution, D hatchling mantle length/latitudinal 

distribution, E hatchling mantle length/geographic distribution, and F 
hatchling mantle length/bathymetric distribution. Dashed lines repre-
sent regressions from PGLS
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(Diniz-Filho and Tôrres 2002; Hernández et al. 2013), which 
is consistent with the relationships between mantle length 
and geographic distribution in our results (Fig. 4). However, 
the existence of significant variation in the sizes of geo-
graphic ranges among small species is a common pattern 
in macroecology (Brown 1995). Species falling below to 
regression line (ML vs distribution) have a smaller spatial 
distribution than predicted by its body size, for instance, L. 
argus, a coastal species characterized by its small size at 
maturity (Jereb and Roper 2010), which would decrease its 
potential final size. This species reaches the smallest area 
of all the studied loliginid species (73,729  km2). A similar 
case occurs in the small species that inhabits sandy-mud 
bottoms Afrololigo mercatoris, which shares many morpho-
logical traits with Lolliguncula (Jereb et al. 2010), such as 
the small size.

Size and shape have important implications for the hydro-
dynamics of marine organisms (DeMont and Hokkanen 
1992). The absence of shared common ancestors along geo-
graphically close species may be determined by the biology 
and dispersal ability of each species. Indeed, the high mobil-
ity of adult loliginids (Boyle and Rodhouse 2005) makes 
their dispersal more widespread. A notable case is that of 
the three neritic species of the genus Loligo, which have 
a high dispersal ability, and an evident difference between 
the maximum ML of their males, which could be one of the 
reasons for habitat choice (L. forbesii, L. vulgaris, and L. 
reynaudii; Jereb et al. 2010; Iwata et al. 2018). Similarly, 
in adults of A. africana and Uroteuthis bartschi (maximum 
ML of 200 mm in males, 150 mm in females; Voss 1963; 
Jereb et al. 2010), there is a remarkable sexual dimorphism, 

where males display the characteristic extremely long and 
spike-like tail (73% of the dorsal ML in A. Africana adults) 
as secondary sexual trait. However, our results did not reveal 
a strong difference in distribution related to ML of females 
and males. In this line, both genders have the same dispersal 
capacity and sexual dimorphism could be related to other 
factors (e.g. growth, reproduction).

Fins shape/length and distribution

Fin length and shape exhibit a highly significant phylo-
genetic signal, demonstrating the existing concordance 
between the fin size and shape and loliginid phylogeny. Fins 
shape undergoes changes during ontogenetic growth, with 
hatching squid having fins proportionally smaller than those 
of adults. This change in relative size may also reflect a shift 
in the use of the fins, similar to the different usages of the 
variously shaped adult fins (Hoar et al. 1991). The shape of 
the lateral fins of cephalopods varies in accordance with the 
animal’s size and lifestyle (Packard 1972), with hydrody-
namic constraints being primary determinant of fin shape 
(Daniel 1988). For species such as from the genus Uroteu-
this, fins play an efficient role in maintaining position in the 
water column. As growth occurs, and the animal transitions 
from a viscosity-dominant to an inertia-dominant system, 
the development of the fin structure becomes crucial, with 
shape further influencing friction and pressure drag on ani-
mals during movement (Moltschaniwskyj 1995).

Fin size emerges as the most important biological trait 
for predicting the distribution of loliginid squids (Fig. 6), 
with species possessing the largest elliptical fins (i.e. 

Fig. 6  Box-and-whisker plots showing the PGLS coefficients of all phylogenetic regressions. The boxes represent the percentiles of 25% and 
75%, and the bar represents the 95% confidence interval (CI)
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Sepioteuthis) exhibiting wider distributions. Sepioteuthis 
lessoniana, widely distributed throughout the Indo-Pacific 
and Mediterranean regions, is the species with the broadest 
range of distribution among these squids. The genus features 
very large and distinctive fins, broadly oval in outline and 
with a fin length comprising over 90% up to nearly 100% 
of ML (Jereb et al. 2010), making them markedly different 
from other loliginids. In contrast, Sepioteuthis australis, dis-
tributed in the southwestern Pacific Ocean, is distinguished 
from S. lessoniana by the angular lateral margins of its fins, 
although not by the fin length (Jereb et al. 2010). The dis-
tant geographic distribution of both species may explain this 
contrasting phylogenetic footprint. On the other hand, the 
loliginids A. africana and L. argus have the smallest FLI and 
limited distribution. Among the medium-sized, continen-
tal shelf species, Uroteuthis (P.) edulis exhibits a broad fin 
(70% ML in length, 60% ML in width), as does its congener 
Uroteuthis (P.) chinensis with a fin spreading to two-thirds 
of the ML. However, both Uroteuthis have a less extensive 
range of distribution than it would be expected based solely 
on their fin size.

Another important factor affecting the dispersal capacity 
of the loliginids is the speed they can achieve in swimming 
and their manoeuvrability, combining finning and jetting to 
generate different swimming gaits (Anderson and DeMont 
2000; Stewart et al. 2010). For instance, there are differ-
ences between the locomotive repertoire and the high degree 
of manoeuvrability enabled by fin propulsion of Loligun-
cula brevis (Bartol et al. 2001) than the extensive use of the 
fins for swimming of the ommastrephid Illex illecebrosus 
(Harrop et al. 2014). In the first species, its swimming gaits 
could help them achieve a distributional range similar to 
that of larger loliginids. The high diel vertical migration 
behavioural flexibility expressed by L. forbesii could be very 
advantageous in terms of energy conservation, prey cap-
ture, and predator avoidance (Cones et al. 2022), leading 
to greater evolutionary success and, consequently, a larger 
dispersal capacity than expected for its size.

Hatchling size and distribution

Marine mollusc species lacking a planktonic larval phase 
in their life cycle tend to have smaller size ranges compared 
to species with more readily dispersed planktotrophic lar-
vae (Brown et al. 1996; Villanueva et al. 2016; Ibáñez et al. 
2018). In fact, some Neogastropoda snails exhibit wide 
distributions, extended gene flow, and resistance to isola-
tion, resulting in greater species longevity for species with 
planktonic larvae (Hansen 1980). Loliginids, on the other 
hand, have a pelagic paralarval stage during which they 
spend two to three months in the plankton (Garcia-Mayoral 
et al. 2020). During this time, they disperse but remain on 
the continental shelf by controlling their vertical position 

(Roura et al. 2016, 2019). Consequently, this group tends 
to have large size ranges, leading to extensive geographic 
distribution (Villanueva et al. 2016). Some squids exhibit 
very high dispersal rates, due to lengthy planktonic paralar-
val stages and highly migratory adult stages, leading some 
authors to predict panmixia (genetic homogeneity) of squid 
populations across large geographic areas (e.g. Shaw et al. 
2010). Nonetheless, many loliginid squids show structured 
population at large scales (Brierley et al. 1995; Shaw et al. 
1999; Herke and Foltz 2002; Aoki et al. 2008; Ibáñez et al. 
2012). This pattern is associated with reduced paralarval dis-
persion, since eggs are deposited on the seabed or attached 
on sessile organisms (e.g. kelps, corals), which promotes 
structure between populations (Carrasco et al. 2021).

Despite all this, our results show that species of loliginid 
squids (both females and males) falling above the regres-
sion line (ML vs distribution, Fig. 4) have larger distribution 
ranges than predicted by their body size. This pattern could 
be associated with paralarval dispersion, but our results do 
not support the idea that paralarvae dispersion explains the 
wide distribution of some species, as our analyses did not 
find a correlation between hatchling size and distribution 
data (Fig. 5). This might indicate a reduction in distribution, 
or it could suggest that our knowledge of their distribution 
is still lacking.

In this comparative study, we evaluated the potential 
effects of body size (young and adults) and fins (shape and 
size) of squids as predictors of their distribution using a phy-
logenetic approach. This approach has been scarcely used in 
macroecological studies on marine animals, particularly in 
the assessment of phylogenetic signal on geographic distri-
bution (i.e. Hernández et al. 2013; Ulloa et al. 2017; Ibáñez 
et al. 2018). In this sense, our research is among the first 
studies correctly address trait comparisons for marine ani-
mals, suggesting that further research should incorporate 
this approach in macroecological studies. New approaches to 
the knowledge of the distributional range of mobile species, 
such as the bio-logging tags (Flaspohler et al. 2019; Cones 
et al. 2022), or eDNA could help in accurate assessments 
of the real extent of the species, as well as their biological 
activity and behavioural patterns.
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