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Abstract
Seabird parents during chick rearing is hypothesized to regulate body mass to reduce flight costs and invest energy in current 
reproduction. Alcids have 2‒4 times higher wing-loading and higher flight costs than other seabirds. In particular, rhinoc-
eros auklets Cerorhinca monocerata (RHAU) carry the heaviest meals among alcids despite its medium-size, therefore, we 
expected that they might be more likely to keep their body mass small and within a narrow range during chick rearing. We 
examined between-breeding stage and interannual variations in RHAU body mass using 27-year monitoring data, then tested 
whether the interannual variation shown by the coefficient of variation (CV) in body mass during chick rearing was smaller 
than in other seabirds, and if their body lipid stores were smaller. RHAU during chick rearing have 15‒20 g lower body mass, 
corresponding to 5‒7% decrease of flight costs, than those during incubation. We found that CV of body mass in RHAU 
(1.4) was smaller than those of 10 other seabird species (1.7‒7.5), while CVs in provisioning metrics, such as meal mass, 
chick growth, fledgling mass, and fledging success, were the largest or second largest. RHAU body lipid stores during chick 
rearing (3.8‒4.0%) was also smaller than six other species (5.7‒9.5%). Results suggest that chick-rearing RHAU maintained 
a narrow range of body mass with minimum body lipid stores, possibly because of their greater wing-loading and heavier 
meals. Such constraints on body mass regulation might affect their variable investment in their chicks under environmental 
variability, as shown large variation in provisioning metrics.
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Introduction

Life-history theory predicts that avian parents regulate their 
own body mass to maximize their life-time fitness (Clutton-
Brock 1991; Stearns 1992). Avian parental body mass varies 
mainly with body lipid mass (Niizuma et al. 2001b, 2002; 
Jacobs et al. 2011) which is an important factor determining 
their survival (Oro and Furness 2002; Harding et al. 2011). 
Body mass also determines flight costs through changes in 

wing loading. Avian parents during chick rearing, in particu-
lar, face to accept extra flight costs to carry meals for chicks 
although the meal mass is different by species. They are 
hypothesized, therefore, to reduce their body mass between 
the incubation stage and the chick-rearing stage to save on 
flight costs and carry meals for their chicks (Nordberg 1981; 
Moreno 1989). However, there are interannual variations in 
adult body mass during chick rearing, though not as large 
variations as in provisioning metrics (including meal mass 
and chick growth) (Piatt et al. 2007). Inter-annual changes 
in prey availability driven by climate change or variability 
in environmental condition might induce these variations 
(Weimerskirch et al. 2001; Gaston and Hipfner 2006a). The 
extent of the interannual variation in body mass of each 
species may be associated with species-specific flight costs 
since body mass largely determines flight costs (Niizuma 
et al. 2001b; 2002). Because species working with higher 
flight costs may have as narrow a body-mass range as pos-
sible to save flight costs, such species may show only small 
interannual variability.
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Seabird parents likely face life-history tradeoffs given 
the extensive fluctuation in the marine ecosystem (Cairns 
1987; Piatt et al. 2007). Alcids, a seabird family with 2‒4 
times the wing loading of others (Fig. 1), have to flap their 
wings continuously at high frequencies to produce sufficient 
lift, so they must accept the highest concomitant flight costs 
(Pennycuick 1987; Elliott et al. 2013). Therefore, they may 
have narrower ranges of adaptive body mass during chick 
rearing so as to carry heavy meals. In particular, among 
alcids, rhinoceros auklets Cerorhinca monocerata despite 
their medium size carry the heaviest meals in their bills for 
their chicks (Gaston and Jones 1998). Their body mass vari-
ability, therefore, is expected to be smaller than other sea-
birds including alcids because of their higher wing loading 
when they are carrying meals to the chicks. Indeed, the body 
mass of parent rhinoceros auklets was found to be about 
30 g (5.3–5.5%) lower during chick rearing than during the 
incubation stage, suggesting that they save on flight costs 
during chick rearing (Niizuma et al. 2002). By comparing 
annual variability in body mass during chick rearing in rhi-
noceros auklets with that of other seabirds including alcids, 
we can test the hypothesis that the species retains its body 
mass within a narrow range during chick rearing when they 
have higher flight costs.

To discuss the inter-species difference in body mass 
variability and flight costs, we must consider inter-species 
differences in body lipid stores (body lipid mass ratio to 
body mass). In seabirds, changes in adult body mass dur-
ing breeding mainly reflect the change of body lipid stores 

(Niizuma et al. 2001b, 2002; Jacobs et al. 2011). If the spe-
cies is sensitive to save flight costs, then it will retain as little 
as possible body lipid stores during chick rearing, but such 
low body lipid stores may force them to maintain body mass, 
because to ensure their survival they are unable to lose any 
more body lipids.

In this study, first, we analyzed the adult body mass and 
the provisioning metrics (meal mass, chick growth, fledg-
ling mass and fledging success) of rhinoceros auklets during 
chick rearing. We used long-term monitoring data collected 
at Teuri Island, located in the Sea of Japan off Hokkaido, 
between 1994 and 2020. More specifically, we tested (1) 
whether the body mass of adults during chick rearing was 
smaller than during incubation, and (2) whether annual mean 
parental body mass during chick rearing varied simultane-
ously with provisioning metrics, (3) whether the provision-
ing metrics and annual mean parental body mass during 
chick rearing correlated with an environmental variability 
index which coincides with the variation in availability of 
forage fish for rhinoceros auklets, and then we calculated 
(4) the amplitude of interannual variation in annual mean 
adult body mass and provisioning metrics by coefficients of 
variations (CVs). In addition to the data at Teuri Island, we 
also analyzed data collected at Daikoku Island, located in the 
Pacific Ocean off Hokkaido, between 2014 and 2017, to con-
firm the consistency in inter-annual and -seasonal body mass 
variation in the species among colonies (above (1) and (4)).

Second, by species comparison we further tested two 
hypotheses, (5) that interannual variability in adult body 
mass during chick rearing in rhinoceros auklets with high 
flight costs is smaller than other species of seabirds, and 
(6) that the small body-mass-variability of this species is 
associated with their small body lipid store during chick 
rearing. To compare the CVs for rhinoceros auklets obtained 
in (4) with those for other seabird species including alcids, 
we used data from published literature. Also, we compared 
the body lipid stores (body lipid mass ratio to body mass) 
during chick rearing among seabirds including rhinoceros 
auklets using information from the literature.

Methods

Study species

Rhinoceros auklets are a medium-sized alcid (body mass: 
500–600 g) breeding widely in the mid-latitudes of the 
North Pacific. They feed on forage fish by making 0–50 m 
deep dives 225–580 times a day (Kuroki et al. 2003). They 
lay one egg annually, both parents take turns every other 
day to incubate it for over 45 days (Gaston and Jones 1998). 
After hatching, both parents feed their chick once per night 
for up to 40‒60 days until fledging (Gaston and Jones 1998; 

Fig. 1  Seabird wing loading (WL) in relation to body mass (BM). 
Data from Pennycuick (1987) and Spear and Ainley (1997). Colors 
indicate each seabird family. Each point mean species. The solid line 
on alcidae points is the regression line estimated by Phylogenetic 
generalized least squares (PGLS) model (log10(WL) = 0.4356962*
log10(BM) + 2.9417711); The dotted lines indicate lower and upper 
of 95% confidence intervals of the model. The PGLS model that 
assumed Brownian motion model of evolution was fitted to log10 WL 
as response variable, and log10 BM as predictor. See Supplementary 
Information 2 for the method and summary of PGLS model
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Takahashi et al. 2001). Their meal mass (ca. 30 g  load−1) is 
the heaviest among alcids (Gaston and Jones 1998). During 
chick rearing, they travel up to 160 km from their colonies 
to forage (Kato et al. 2003; Wilkinson et al. 2018; Okado 
and Watanuki 2023) by beating their small wings at 8.9 Hz 
(Kikuchi et al. 2015). Their trip duration (i.e., provision-
ing frequency) is basically 1 day (Wilkinson et al. 2018; 
Sato et al. 2022), but sometimes longer than 2 days pos-
sibly because of distant foraging under conditions of poor 
prey availability (Takahashi et al. 1999, 2001; Deguchi et al. 
2010).

Several studies in California, British Columbia, and 
northern Japan have shown that rhinoceros auklets increase 
provisioning metrics during chick rearing inter-annually 
with the increase in prey availability driven by interannual or 
-decadal environmental variability (Hedd et al. 2006; Thayer 
and Sydeman 2007; Borstad et al. 2011). At Teuri Island, 
Hokkaido, Japan, rhinoceros auklet change their provision-
ing metrics inter-annually possibly in relation to changes in 
the forage fish community that may be associated with local 
ocean currents at the annual scale and environmental vari-
ability at the decadal scale (Takahashi et al. 2001; Watanuki 
et al. 2009, 2022). Variability in parental body mass, and 
whether it varies in line with provisioning metrics, has not 
been examined.

Fieldwork

We conducted fieldwork at rhinoceros auklet colonies on 
Teuri Island in north-western Hokkaido (44° 25ʹ N, 141° 19ʹ 
E) and on Daikoku Island in eastern Hokkaido (42° 57ʹ N, 
144° 52ʹ E) (Fig. 2). Nest burrow numbers were estimated 
379,000 on Teuri Island with multiplying average nest bur-
row density by overall nesting area (Biodiversity Center of 
Japan 2017), and 77,000 on Daikoku Island with sum of 
those calculating above estimation by each vegetation type 
(Okado et al. 2019). For this study, we used data collected 
on Teuri Island from 1994 to 2020 and on Daikoku Island 
from 2014 to 2017.

We captured parent rhinoceros auklets landing with 
meals in their bills at the edge of the colony at the south 
end of Teuri Island. We caught auklets throughout 
the chick-rearing stage from mid-May to early August 
(1994–2020) (see Watanuki et al. 2022 for details). We 
arbitrarily captured 10 individuals each week by hand or in 
hand nets during the period 30–120 min after sunset (total 
2,400 individuals; range = 52–128 each year, Table S1 and 
S2). In the same plots, we captured adults without meals 
during the incubation stage, from mid-April to late-May 
in 1994, 1996, 2004–2007, 2009–2010 and 2014–2019 
(total 490 individuals; range = 14–69 each year, Table S1 
and S2). All of the 48 birds caught during the incubation 
stages in 2004 and 2017 had noticeable brood patches. We 

assumed therefore that most of the birds caught during 
the incubation stage in the sampling plot were breeding. 
We assumed that we did not sample the same individuals 
repeatedly during the same year given the high density of 
burrows and large enough sampling area of both colonies 
(Teuri Island: 1.36 burrows  m−2, Biodiversity Center of 
Japan 2017, c 100 m along 4 m wide road, Daikoku Island: 
1.26 burrows  m−2, Okado et al. 2019, c 50 m × 50 m). We 
occasionally re-trapped adults that had been ringed by 
Japanese Ministry of the Environment on Teuri Island; 
however, according to records during chick rearing over 
six years (Okado and Watanuki unpublished), it was very 
rare to catch individuals repeatedly during the same season 
(1995, 0/36 individuals; 1999, 0/9; 2000, 0/27; 2002, 0/17; 
2003, 1/23; 2004, 0/8). No individuals were re-trapped 
during the incubation stage in 2010 (0/4 individuals). In 
addition, we believe that our sample size is large enough to 
discount individual variation. On capture, we measured the 
size of external traits using calipers following to Niizuma 
et al. (1999): bill depth to the nearest 0.1 mm (maximum 
depth of the bill at the front of the nostril) and head plus 
bill length to 0.1 mm (distance from the tip of the bill to 
the rear of the supraoccipital bone). We measured mass 
to the nearest 5 g using a Pesola spring balance. On Dai-
koku Island, we captured adults without meals during the 
middle of the incubation stage during late-May in 2016 
and 2017 (total 45 individuals; range = 21–24 each year, 
Table S1 and S2), and parents carrying meals during the 
early chick-rearing stage in early July 2014–2016 (total 68 
individuals; range = 22–24 each year, Table S1 and S2). 
We measured their morphometrics as on Teuri Island.

Fig. 2  The study area map. Our study colonies of rhinoceros auklets 
Cerorhinca monocerata are indicated as the stars. The location of the 
square on the map of Japan (inset)
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Body mass

As male rhinoceros auklets are larger than females (Nii-
zuma et al. 1999), body mass was examined separately for 
males and females. We sexed individuals using a discri-
minant function relying on bill depth and head plus bill 
length. The function could sex 95% of individuals cor-
rectly (91.2% for males and 100% for females; Niizuma 
et al. 1999). Annual mean body mass of adults reflects 
variation in body lipid stores between years (Niizuma 
et al. 2001a, 2002; Jacobs et al. 2011). For inter-species 
comparisons we used interannual variation of body mass 
reported in many previous studies (Table 1). When using 
annual mean body mass to show interannual variability, 
we noted that body size may also change between years. 
In rhinoceros auklets, Niizuma et al. (2001a) provided a 
method for calculating an index of body-size-corrected 
body lipid stores (See Supplementary Information 2). We 
have confirmed that there was a strong linear correlation 
between the annual mean body mass and annual mean of 
the index of body-size-corrected body lipid stores across 
year-colony-breeding stage (Females: Pearson Correlation 
Test, t44 = 44.017, r = 0.99, P < 0.001, n = 45, Fig. S1a, 
Males: t44 = 36.315, r = 0.98, P < 0.001, n = 45, Fig. S1b, 
Supplementary Information 2).

Provisioning metrics

We used mean meal mass, chick growth rate, fledgling mass, 
and fledging success at Teuri Island as provisioning metrics 
in 1994‒2020 (Watanuki et al. 2022). Even though these 
indices are correlated with each other, we used all four of 
them for comparison with other species. We collected meals 
from captured birds for body mass monitoring and weighed 
the wet mass of each meal. To monitor chick growth, fledg-
ling mass, and fledging success on Teuri Island, 10–84 
chicks were weighed by spring balance each year, every 
5 days from hatching to fledging (they typically disappeared 
from their nests after 40 days of age) (Watanuki et al. 2022). 
Chick growth rate (including those that may have died) was 
calculated as the slope of the linear regression of mass on 
age (g per 5 days) between 5 and 20 days for those giving 
r > 0.9. This means that slow-growing individuals were not 
removed but individuals showing non-linear growth were 
excluded. Chicks that disappeared after they were 40 days 
old were defined as fledglings, and the mass of the last day 
before their disappearance was defined as their fledgling 
mass. The proportion of chicks fledging, relative to the num-
ber that had hatched, was defined as fledging success. As 
fieldwork was carried out only during the early chick-rearing 
stage at Daikoku Island, only meal mass data were collected 
(Okado et al. 2020, 2021).

Environmental variability index

To examine the relationship between environmental vari-
ability and provisioning metrics or annual mean adult mass 
during chick rearing at Teuri Island, we referred the Pacific 
Decadal Oscillation (PDO) during 1994–2020. The PDO is 
defined as the leading principal component of monthly sea 
surface temperature anomalies in the North Pacific, typically 
north of 20° N. Generally, high PDO values indicate warm 
conditions in the eastern but cool conditions in the western 
North Pacific (Mantua et al. 1997; Chavez et al. 2003, but 
see Kuroda et al. 2020; Litzow et al. 2020). On a decadal 
scale, the PDO coincides with climatic shifts between warm 
and cold phases which are associated with changes in fish 
communities, including forage fish such as anchovy, across 
the North Pacific (Mantua et al. 1997; Chavez et al. 2003; 
Tian et al. 2006). During 1994–2020, the PDO index tended 
to be positive in 1994–2020, negative in 1998–2013 and 
positive in 2014–2020 (Kuroda et al. 2020; Watanuki et al. 
2022). Japanese anchovy Engraulis japonicus, a highly prof-
itable prey species for rhinoceros auklets, tends to increase 
during negative PDO phases (i.e., warm years in North 
Western Pacific) (Takasuka et al. 2008); rhinoceros auklets 
at Teuri Island fed more Japanese anchovy to chicks during 
negative PDO phase (1998–2013) but fed more other for-
age fish species during positive PDO phase (1994–1997, 
2014–2020); the provisioning metrics of rhinoceros auklets 
were larger in years when Japanese anchovy was the main 
diet (Watanuki et al. 2022). Given these contexts, we con-
sidered the PDO to be an important index of environmen-
tal variability that may be related to provisioning metrics 
or adult mass of rhinoceros auklets. In this study, we used 
the annual mean of the PDO calculated from monthly data 
obtained from NOAA (https:// www. ncei. noaa. gov/ access/ 
monit oring/ pdo/, accessed on 20th June 2023).

Statistical analysis of rhinoceros auklet data

The following analyses were performed using R ver 4.1.3 
(R Core Team 2022). First, we used ANOVA to test the 
difference between adult mass during incubation and dur-
ing chick rearing at each colony, or the difference in adult 
mass during the incubation or chick-rearing stage between 
colonies. We validated model assumptions and fit by visually 
checking the normality of the model residuals, QQ-plot and 
plot of the residuals versus the fitted values, and confirmed 
acceptable model fits (Fig. S6). Second, we examined the 
correlations between annual means of adult mass during 
chick rearing and provisioning metrics at Teuri Island using 
the Pearson correlation test (n = 24 or 27 years). Third, we 
examined the correlations between the annual mean PDO 
and means of adult mass during chick rearing or provision-
ing metrics at Teuri Island using the Pearson correlation test 

https://www.ncei.noaa.gov/access/monitoring/pdo/
https://www.ncei.noaa.gov/access/monitoring/pdo/
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(n = 24 or 27 years). Fourth, to assess interannual variability 
in adult mass and the provisioning metrics, we calculated 
the CVs across years using annual mean values for each 
colony-breeding stage.

Additionally, to examine the seasonal change in body 
mass of adult rhinoceros auklets during chick rearing, we 
performed Linear Mixed Models (LMMs) using the lmer 
function in the lme4 package (Bates et al. 2015). This analy-
sis was not the main objective of this study but only for refer-
ence. LMMs were performed for adults of both sexes dur-
ing chick rearing on Teuri Island (females n = 1520; males 
n = 880), but not for adults during incubation or those on 
Daikoku Island, because the sampling period there was dif-
ferent by year (Table S2 in Supplementary Information 1), 
so not appropriate to examine within-stage variation. The 
full structure of LMMs is described below.

Body mass (assumed Gaussian distribution) ~ Days from 
mean hatching date in each year (fixed effect, continuous 
variable) + Year (random effect, categorical variable).

In considering inter-year phenological differences, we 
used days from the mean hatching date each year between 
1994 and 2020 based on Watanuki et al. (2022). We vali-
dated model assumptions and fit by visually checking the 
normality of the model residuals, QQ-plot and plot of the 
residuals versus the fitted values, and confirmed acceptable 
model fits (Fig. S5). We assessed the significance of the 
fixed effects and in LMMs by t-tests using Satterthwaite's 
method and random effects using the likelihood ratio test, 
with the LmerTest package (Kuznetsova et al. 2017).

Species comparison of adult mass and provisioning 
metrics

We referenced studies that had reported annual mean body 
mass and indices of provisioning metrics for at least 4 years, 
making it possible for us to calculate the CV (Table 1). In 
these studies, sampling of adult mass was carried out either 
during the chick-rearing, incubation–chick-rearing or late 
incubating–early chick-rearing stages. The samples included 
either breeders only or breeders and non-breeders. We cal-
culated the CV of adult body mass and provisioning metrics 
for other species as we did for rhinoceros auklets (Table 1; 
Table S3 and S4). In cape gannets Morus capensis (Cohen 
et al. 2014) and black-legged kittiwakes (Piatt et al. 2007), 
adult body mass was divided by wing length. Using our rhi-
noceros auklet data from two islands, we calculated the CVs 
of body mass and that of body mass divided by wing length 
in each sex/stage (Table S1) and confirmed that CVs did 
not differ greatly between those based on body mass (2.6 
for incubating females, 1.4 for chick-rearing females, 2.4 
for incubating males, 1.4 for chick-rearing males) and those 
based on body mass divided by wing length (the same order 
as previously; 3.4, 2.0, 2.8, 2.1) (Wilcoxon matched-pairs 

test, V = 0, P = 0.13). We calculated CV based on data from 
multiple colonies if the studies described no body size dif-
ference among colonies (Gaston and Hipfner 2006a; Piatt 
et al. 2007; Price et al. 2021). For provisioning metrics 
for other species, we used reported parameters as similar 
as possible to those that we used for rhinoceros auklets, 
such as meal mass, fledging success, chick growth rate, and 
fledgling mass. For fledging success for Adélie penguins 
Pygoscelis adeliae, we used the number of chicks fledged 
against the number of nests at the early chick-rearing stage 
in the colony (Watanabe et al. 2020). For fledgling mass for 
thick-billed murres Uria lomvia (Gaston and Hipfner 2006a), 
yellow-nosed albatrosses Thalassarche chlororhynchos 
(Weimerskirch et al. 2001), and short-tailed shearwaters 
Ardenna tenuirostris (Price et al. 2021), we used the body 
mass in the late chick-rearing stage, which was likely before 
the pre-fledging mass recession.

When comparing species, we should note that CVs 
were calculated from different numbers of samples 
(n = 4‒32 year-colony for adult body mass, Table 1). To 
assess whether CVs based on different sample sizes were 
comparable, we conducted two CV simulations with differ-
ent sample sizes. First, using 27-year-colony data of annual 
mean body mass of rhinoceros auklets during the chick-rear-
ing stage at Teuri Island, we sampled n year-colony data out 
of 27-year-colony data and calculated the CV, and repeated 
this 200 times for each n (4‒27). As a consequence, we 
confirmed that mean CV did not differ with n (e.g. 1.4 in 
n = 4‒27 for females, Fig. S2a) but standard deviation of 
CV was larger with smaller n (e.g. 0.03 in n = 26 and 0.4 
in n = 4 for females, Fig. S2b). Second, we sampled 4 year-
colony data of annual mean body mass out of all available 
year-colony data and calculated CV; these were expected 
to be the most variable CVs, and repeated the process for 
all year-colony data combinations in each species including 
the comparison in Table 1 (year-data used: Table S3). For 
example, when five or 6 year-colony data were available, 
the number of combinations was 5 or 15, respectively. Com-
paring the 95% confidence interval of CVs among species 
(Fig. S3), the order of CVs in each species were similar as 
those when we calculated CVs from the raw data (i.e. CVs in 
Table 1). These two simulations indicated that CVs based on 
smaller sample sizes would be variable, but the difference in 
sample sizes did not strongly affect the result of inter-species 
comparison of CV in this study.

Body lipid stores

We calculated body lipid stores (body lipid mass ratio to 
body mass) in rhinoceros auklets during each breeding stage 
by dividing the mean body lipid mass by mean body mass 
(as described by Niizuma et al. 2002) and those reported for 
six other species of seabirds. The methods for measuring 
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body lipid masses were Soxhlet extraction in ethyl ether 
from carcasses (three species, n = 7–30 for each species/
stage, Taylor 1994; Niizuma et al. 2001b, 2002), folch rea-
gent (chloroform and methanol) extraction from carcasses 
(three species, n = 9–32 for each species/stage, Jacobs et al. 
2011), or body water content measurement by isotope dilu-
tion from living individuals (one species, n = 67 for combin-
ing two stages because of no significant stage-difference in 
body lipid stores, Chappell et al. 1993). The accuracy of 
measured lipid mass by the latter one method, estimating 
from living individuals indirectly, might be lower than by 
the former two methods, measuring from carcasses directly. 
The focus of our study, however, is not intra- or inter- indi-
vidual variation but inter-species variation. Therefore, we 
believe that there is not large concern for comparing the 
average body lipid stores estimated by different methods in 
this study.

Results

Adult mass on Teuri Island

The mean of annual mean adult mass (± standard deviation 
SD) during incubation was 598 ± 15 g (range = 572–616 g, 

n = 14 years, Fig. 3a, Table S1) for males and 555 ± 12 g 
(range = 533–578 g, n = 14 years, Fig. 3b, Table S1) for 
females. CV across years was 2.5 for males and 2.2 for 
females and, but note these values are only for reference 
as we did not examine body mass throughout the incuba-
tion stage, furthermore, the sample size for each year was 
different.

The mean of annual mean adult mass (± stand-
ard deviation SD) during chick-rearing was 576 ± 8  g 
(range = 562–593 g, n = 27 years, Fig. 3a, Table S1) for 
males and  538 ± 8  g (range = 527–553  g, n = 27  years, 
Fig. 3b, Table S1) for females. CV across years was 1.4 for 
males and 1.4 for females (Table 1).

Combining 14  years of data when both data for the 
incubation and chick-rearing stage were available (Fig. 3, 
Table S1), females were 15 g heavier during the incubation 
than the chick-rearing stage whereas males were 20 g heavier 
(Table 2a). In 13 out of 14 years, adults of both sexes were 
heavier on average during the incubation than the chick-
rearing stage (Fig. 3, Table S1).

In addition, we found a decrease in body mass in females 
(-0.26 ± 0.06 g  day−1) and males (-0.33 ± 0.04 g  day−1) dur-
ing chick rearing at Teuri Island by LMMs (See Fig. S4 and 
Table S5 for summary of LMMs). This might suggest that 
adults become exhausted by chick rearing. Such seasonal 

Fig. 3  Interannual change in 
body mass of rhinoceros auklets 
Cerorhinca monocerata breed-
ing on Teuri Island (1994–2020) 
(a adult male; b adult female). 
Each plot and error bars indicate 
the mean and standard deviation 
on Teuri Island (black circles) 
and Daikoku Island (grey trian-
gles). Solid symbols represent 
body mass during chick rearing 
and open symbols represent the 
incubation stage



 Marine Biology (2023) 170:122

1 3

122 Page 8 of 15

trends in adult body mass are of interest, but our aim is an 
inter-species comparison of the variability of annual mean 
body mass; therefore, we have indicated these results, but 
have not discussed them further.

Provisioning metrics on Teuri Island

Meal mass (Fig. 4a), fledging success (number of fledglings 
per nest with chicks) (Fig. 4b), chick growth rate (Fig. 4c) 
and fledgling mass (Fig. 4d) varied greatly between years 
(Watanuki et al. 2022). Inter-annual variability of meal 
mass (CV = 20.3, n = 27 years), fledging success (CV = 47.8, 
n = 27 years), chick growth rate (CV = 36.4, n = 27 years) 
and fledgling mass (CV = 20.3, n = 24 years) were all much 
greater than those of body mass of females and males dur-
ing the chick rearing and incubation stages. There were 
no significant correlations between adult mass and the 
four provisioning metrics in either females (r = 0.03–0.18, 
P = 0.36–0.88, n = 24–27 years) or males (r = -0.18–0.12, 
P = 0.40–0.73, n = 24–27 years).

Environmental variability index and provisioning 
metrics/adult mass

Testing correlation between the annual mean PDO and the 
four provisioning metrics or annual mean adult mass dur-
ing chick rearing at Teuri Island, we confirmed the nega-
tive correlation for chick growth rate (r = − 0.48, P = 0.01, 
n = 27, Fig. S7a), weak negative correlations for meal mass 
(r = − 0.34, P = 0.09, n = 27, Fig. S7b) and fledging success 
(r = − 0.35, P = 0.08, n = 27, Fig. S7c), while no correlation 

for fledgling mass (r = 0.01, P = 0.96, n = 24, Fig. S7d) and 
adult masses (females r = 0.18, P = 0.36, n = 27, Fig. S7e; 
males r = − 0.11, P = 0.58, n = 27, Fig. S7f).

Inter‑colony comparison of adult mass

Adult mass on Daikoku Island during chick-rearing did 
not differ significantly from that on Teuri Island in either 
females or males (Table 2b). In contrast, adult mass on 
Daikoku Island during incubation differs significantly from 
that on Teuri Island in females, but not in males (Table 2b). 
Despite the small sample size (3 years), the interannual vari-
ability shown by the CV of adult mass (1.4 for females and 
1.3 for males) was similar to that on Teuri Island (1.4 for 
both females and males). On Daikoku Island, adult females 
were 41 g heavier during incubation than during chick-rear-
ing (Table 2a, Table S1) and adult males were 4 g heavier, 
though the difference for males was not statistically signifi-
cant (Table 2a, Table S1).

Species comparison of adult mass and provisioning 
metrics

The CV of rhinoceros auklet adult mass during the chick-
rearing stage (1.4) was smaller than in 10 other species 
(1.7‒7.5, Table 1), including four alcids (crested auklet 
Aethia cristatella, Atlantic puffin Fratercula arctica, thick-
billed murre, common murre U. aalge), three procellariids 
(Wilson’s storm-petrel Oceanites oceanicus, yellow-nosed 
albatross, short-tailed shearwater), cape gannet, black-legged 
kittiwake Rissa tridactyla, and Adélie penguin. In addition, 

Table 2  Comparison of adult body mass of rhinoceros auklets Cerorhinca monocerata between (a) breeding stages and (b) colonies

Mean and standard deviation (SD) of adult body mass are indicated with the number of individuals (n) and the number of sampling years in 
parentheses. Body mass was compared between breeding stages using individuals in years when we sampled both incubation and chick rearing 
(Fig. 3, Table S1). ANOVA statistics are also indicated

(a) Incubation Chick rearing ANOVA

Colony Sex Mean SD n Mean SD n df F P

Teuri Island Female 553 40 261 (14) 539 32 696 (14) 1, 955 32.224  < 0.001
Male 597 42 229 (14) 576 32 414 (14) 1, 641 48.806  < 0.001

Daikoku Island Female 569 29 10 (1) 532 30 14 (1) 1, 22 9.0888  < 0.001
Male 584 45 14 (1) 587 37 8 (1) 1, 20 0.0308 0.86

Total Female 554 40 271 (15) 539 32 710 (15) 1, 979 36.872  < 0.001
Male 596 42 243 (15) 577 32 422 (15) 1, 663 45.719  < 0.001

(b) Teuri Island Daikoku Island ANOVA

Breeding stage Sex Mean SD n Mean SD n df F P

Incubation Female 553 40 261 (14) 582 28 24 (2) 1, 283 11.774  < 0.001
Male 597 42 229 (14) 585 39 21 (2) 1, 248 1.6803 0.20

Chick rearing Female 538 32 1520 (27) 541 30 41 (3) 1, 1557 0.2748 0.60
Male 577 31 880 (27) 581 29 29 (3) 1, 907 0.5575 0.46
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we found that CVs for five alcids (1.4‒3.8) and one procel-
lariid (2.3‒2.8) were relatively smaller than those of other 
seabirds (4.0‒7.5). In contrast, the CV of provisioning met-
rics for rhinoceros auklet was the largest (chick growth rate, 
fledgling mass) or second largest (meal mass, fledging suc-
cess) among these species (Table 1).

Body lipid stores

During the incubation stage, the body lipid stores of female 
rhinoceros auklets were 8.3% and those of males were 
8.9%, and are comparable to those of incubating parents in 

other species (6.8–15.4%; Table 3). During the chick-rear-
ing stage, however, the body lipid stores of females were 
4.0% and those of males were 3.8%, and were smaller than 
those of chick-rearing parents in other species (5.7–9.5%; 
Table 3). The body lipid masses of incubating and chick-
rearing male and female rhinoceros auklets at Teuri Island 
were 54 g in males (n = 8, 611 g of mean body mass) and 
48 g in females (n = 12, 579 g) during the incubation stage, 
then 22 g in males (n = 11, 578 g) and 22 g in females (n = 9, 
547 g) during the chick-rearing stage (Niizuma et al. 2002). 
The mean of annual mean body mass during chick rear-
ing across 27 years (females: 538 ± 8 g, males: 576 ± 8 g) 

Fig. 4  Interannual changes in 
(a–d) provisioning metrics of 
rhinoceros auklets Cerorhinca 
monocerata. (a) meal mass; 
(b) fledging success (number 
of fledglings per nest with 
chicks); (c) chick growth rate; 
(d) fledgling mass. Data is from 
Watanuki et al. (2022). Each 
plot and error bars (indicated in 
(a), (c), and (d)) indicate means 
and standard deviation
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was comparable to the mean body mass used for Niizuma 
et al. (2002), indicated body lipid stores reported by Nii-
zuma et al. (2002) were general in this species. Further, the 
lowest annual mean body mass of females was 527 g and 
that of males was 562 g (Fig. 3, Table S1), and were close 
to the body masses excluding body lipid masses during the 
chick-rearing stage (females 525 g; males 556 g; Niizuma 
et al. 2002).

Discussion

In this study, we examined the variation in the body mass 
of adult rhinoceros auklets between breeding stages and 
between years, using a 27-year data set at Teuri Island and 
a 4-year data set at Daikoku Island (as reference for con-
firming consistent trends across colonies). (1) Body mass 
during chick rearing was 15‒20 g (2.7–3.4% of body mass) 
less than that during incubation (Fig. 3; Table 2). (2) We 
found no correlation between provisioning metrics and body 
mass. (3) For Teuri Island birds, the annual variation in the 
PDO, indexed as anchovy availability, was negatively cor-
related with the provisioning metrics in each year, except 
for fledgling mass, but not with adult mass during chick 
rearing (Fig. S7). (4) Interannual variability in body mass 
during chick rearing was small (Fig. 3; Table 1) but in pro-
visioning metrics, it was large (Fig. 4). (5) Comparing the 
interannual variability (CV) in body mass during chick rear-
ing among 11 seabird species including five alcids, the CVs 
were the smallest for the rhinoceros auklet (Table 1). (6) 

We also found the body lipid stores of rhinoceros auklets 
was smaller than in six other species (Table 3). Hereafter, 
we discuss about body mass variation in rhinoceros auklets 
briefly (results 1‒4 above), then about main hypotheses of 
this study given inter-species comparisons of body mass 
variability and body lipid stores (results 5‒6 above).

Body mass and provisioning metrics of rhinoceros 
auklets

Combining data from Teuri Island and Daikoku Island, the 
mean body mass of females was 15 g heavier during incu-
bation than during chick rearing and for males, it was 20 g 
(Table 2). Such mass loss during the chick rearing stage was 
previously described from one year's data on Teuri Island 
(Niizuma et al. 2002), and we suggest that it is general 
across years and probably between colonies with contrast-
ing marine environments (but there was no difference among 
males on Daikoku Island; Table 2). The reduction in parental 
body mass from the incubation to the chick-rearing stages is 
hypothesized to allow them to fly more economically during 
extensive foraging journeys while bringing heavy meals for 
their chicks (Nordberg 1981; Moreno 1989; Jones 1994); 
this is known as “adaptive mass loss”. Rhinoceros auklet 
parents can reduce their flight costs by 9–10% by losing 30 g 
of their body mass (Niizuma et al. 2002), given 15‒20 g 
mass loss on average, they would save 5‒7% of their flight 
costs. We observed a reduction in body mass between the 
incubation and chick rearing stages in 13 year-colony out of 
15 for females and 14 out of 15 for males, but the extents 

Table 3  Seabird body lipid stores and body lipid mass ratio to body mass (%), during the incubating and chick-rearing stages

Female (F) and male (M) values are shown for studies in which they were reported, with sample sizes in parentheses. The methods for measur-
ing body lipid masses are Soxhlet extraction in ethyl ether from carcasses (A), folch reagent (chloroform and methanol) extraction from car-
casses (B), or body water content measurement by isotope dilution from living individuals (C)
a  Lipid mass is calculated as 0.904 (depot fat mass, g) according to Chappell et al. (1993). Body lipid stores did not differ significantly between 
two breeding stages in Adélie penguins, so the average of the breeding stages combined is shown

Family Species Body lipid stores (% body mass) Method References

Incubation stage Chick-rearing stage

Alcidae Rhinoceros auklet
Cerorhinca monocerata

F 8.3 (12)
M 8.9 (8)

F 4.0 (9)
M 3.8 (11)

A Niizuma et al. (2002)

Little auk
Alle alle

F 11.5 (14)
M 10.1 (16)

F 6.6 (11)
M 6.8 (16)

A Taylor (1994)

Thick-billed murre
Uria lomvia

7.3 (32) 5.7 (9) B Jacobs et al. (2011)

Laridae Black-legged kittiwake
Rissa tridactyla

7.7 (12) 6.4 (19) B Jacobs et al. (2011)

Procellariidae Northern fulmar
Fulmarus glacialis

15.4 (20) 8.4 (11) B Jacobs et al. (2011)

Leach’s storm-petrel
Hydrobates leucorhous

12.2 (7) 7.2 (12) A Niizuma et al. (2001b)

Spheniscidae Adélie penguin
Pygoscelis adeliae

F 6.8 a (37)
M 9.5a (30)

C Chappell et al. (1993)
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varied among year-colony (mean ± SD (min‒max): 18 ± 11 
(− 4‒37) g for females, 21 ± 15 (− 5‒45) g for males, 
n = 15 year-colony, Table S1). Such year-colony variation 
has been reported also in thick-billed murres (Gaston and 
Hipfner 2006b) and little auks Alle alle (combined results 
from Taylor 1994; Wojczulanis-Jakubas et al. 2012, 2014, 
2015); this might reflect nutritional stress resulting from the 
difference in prey availability between year-colonies (Gaston 
and Hipfner 2006b). The main objective of our study was an 
inter-specific comparison of the variability in annual mean 
body mass, therefore, we do not discuss the relationship 
between the extent of mass loss and environment in rhinoc-
eros auklets. In addition, individual variation in body mass 
through the breeding seasons and between years provides 
further material for testing the adaptive mass hypothesis.

The PDO was negatively correlated with the provisioning 
metrics except for fledgling mass, but not with adult mass 
during chick rearing (Fig. S7). The stock size of Japanese 
anchovy, one of the most profitable prey species for rhi-
noceros auklets, tends to increase in negative PDO phase 
(i.e. warm years in North Western Pacific, 1998‒2013) 
(Takasuka et al. 2008, but see Kuroda et al. 2020). Indeed, 
on Teuri Island, the mass proportion of Japanese anchovy 
in the diet for rhinoceros auklet chicks was high during the 
negative PDO phase (84 ± 10%, mean ± standard devia-
tion, in 1998‒2013), but medium or almost zero during the 
positive PDO phase (53 ± 31% in 1994‒1997, 2 ± 3% in 
2014‒2020); the provisioning metrics showed the decadal 
variation roughly coinciding with the proportion of anchovy 
in the diet (Watanuki et al. 2022). Thus, the negative correla-
tion between the PDO and the provisioning metrics would be 
occurred via the interannual change in availability of Japa-
nese anchovy. The complete breeding failures in 2014–2016 
(Fig. 4b) would be due to abrupt decrease in anchovy availa-
bility (Watanuki et al. 2022), although fledging success have 
recovered somewhat since 2017, probably due to feeding the 
alternative prey species more, sand lances Ammodytes spp. 
or greenlings Pleurogrammus azonus. Though we did not 
analyze in this study, as well as the environmental variability 
index across the North Pacific (i.e. the PDO), the interannual 
variation in local ocean current expansion or air temperature 
during breeding season also could affect the provisioning 
metrics via change of availability of Japanese anchovy or 
breeding phenology (Watanuki et al. 2009). The results from 
Teuri Island so far suggest that parents of rhinoceros auklets 
vary the investment to their chicks largely with the interan-
nual environment variation as well as the previous studies in 
California, Canada (Hedd et al. 2006; Thayer and Sydeman 
2007). The large interannual variability shown by the CV of 
the provisioning metrics (20.3–47.8) at Teuri Island found 
in this study supports this. The CV of meal mass at Daikoku 
Island (20.4) was also large (22.0 g in 2014, 21.5 g in 2015, 
18.8 g in 2016, and 29.7 g in 2017; Okado et al. 2020, 2021). 

Despite the large interannual variability in provisioning 
metrics, we found that interannual variability in adult body 
mass, as indicated by the CV at Teuri Island (1.4 for females 
and males) and at Daikoku Island (1.4 for females and 1.3 
for males), was small and there was no interannual correla-
tion between body mass and either the PDO or provisioning 
metrics. This indicates that rhinoceros auklets maintain their 
body mass within a certain range during chick rearing even 
in a variable environment.

Inter‑species comparison

In comparing differences in interannual variability of adult 
mass between species, it is important to note that we sam-
pled adults raising chicks whereas some other studies sam-
pled both breeders and non-breeders (Table 1). Because of 
the small number of studies that have examined interannual 
variation in body mass, we were forced to include stud-
ies that did not exclude non-breeding individuals. In both 
Atlantic puffin and least auklet Aethia pusilla, the body mass 
of non-breeders is relatively smaller than that of breeders 
(Harris 1979; Jones 1994). Additionally, some studies have 
shown that the proportion of non-breeders increases in years 
with poor environmental conditions (Cubaynes et al. 2011; 
Jean-Gagnon et al. 2017). We were unable to rule out the 
possibility that the interannual variability (CV) in body mass 
during the chick-rearing stage could be large in those studies 
that included non-breeders. However, the CV of rhinoceros 
auklet body mass (1.4) in our study is lower than that of five 
other studies where only breeders were sampled (Table 1). 
Therefore, we are still confident that the interannual vari-
ability in body mass of chick-rearing rhinoceros auklets is 
the smallest among 11 seabird species (Table 1).

The interannual variability in rhinoceros auklet body 
mass during chick rearing was the smallest among sea-
birds including four alcids (Table 1). The minimum level 
of body lipid stores in chick-rearing rhinoceros auklets, 
which is only 40–70% of stores carried by five other seabirds 
(Table 3), may force them to maintain body mass within a 
narrow range. The wing loading of adult rhinoceros auklets 
is 12.7 kg  m−2 for 560 g body mass on average (Spear and 
Ainley 1997, mean body mass of chick-rearing adult males 
and females on Teuri Island: 557 g), it is within 95% con-
fidence interval of the predicted value based on the body 
mass to wing load relationship in alcids (Fig. 1). However, 
rhinoceros auklets, confined to delivering at most one meal 
per parent daily, carry the unusually large meals relative to 
their body size (the heaviest meals among alcids despite 
being medium-sized species, Gaston and Jones 1998), there-
fore, reducing body lipid stores and saving flight costs may 
be essential for them to rear chicks. While, they are also 
at risk of reduced survival if they lower their body lipid 
stores further. It is well known that seabird parents use up 
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their body lipids first, then consume body proteins once their 
body lipid stores approach a minimum level during star-
vation (Cherel et al. 1988) and are thus likely to abandon 
breeding to increase their possibility of surviving (Groscolas 
et al. 2000, 2008). Chick-rearing rhinoceros auklets, there-
fore, may be forced to maintain a body mass as close as 
possible to the minimum level for survival. Therefore, they 
may not have the flexibility to adjust their body mass, even 
when environment changes between years.

This inflexibility regarding body mass regulation may 
explain the rhinoceros auklet’s large interannual variation 
in provisioning metrics (i.e. investment in their chicks, 
Table 1, Fig. 4). Seabird parents are long lived with mul-
tiple opportunities to breed, thus may prioritize their own 
survival over reproduction so as to maximize their life-time 
fitness (Clutton-Brock 1991; Stearns 1992). Therefore, they 
might choose to abandon current reproduction if their body 
mass (body lipid stores) falls below a threshold that reduces 
their survival under poor environment (Groscolas et al. 
2000; 2008). Such a threshold, related to parental decisions 
on reproduction, may differ between species or breeding 
stage (Monaghan et al. 1992; Gaston and Hipfner 2006a). 
Although we could not confirm the actual threshold at which 
rhinoceros auklets abandon breeding in this study, we found 
that they have only limited body lipid stores during chick 
rearing and, surprisingly, they were expected to show little 
body lipid stores in some years (e.g. 1998, 2008, and 2009 
for females; 2010 and 2015 for males; Fig. 3; Table S1). 
These results suggest that body mass is maintained close to 
the theoretical threshold which may reduce survival during 
chick rearing. Adult rhinoceros auklets are unable to reduce 
their body mass during chick rearing even under conditions 
of changing environment, instead they change their invest-
ment in their chicks as shown provisioning metrics (Table 1). 
Such flexibility in provisioning metrics could allow parents 
which cannot compromise their own energetic require-
ments to buffer suboptimal foraging condition but it would 
result relatively large interannual variability in provision-
ing metrics, including total breeding failure in some years 
(2014–2016; Fig. 4b).

Conclusion

To conclude, this study demonstrates that chick-rearing rhi-
noceros auklets maintain their body mass within a narrow 
range. Our inter-species comparison highlights the impor-
tance of flight costs in relation to wing loading and meal 
mass in the regulation of body lipid stores, which may con-
strain the allocation of resources between parents and off-
spring under conditions of high interannual environmental 
variability.
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