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Abstract
Effective marine ecosystem monitoring is critical for sustainable management. Monitoring seabird diets can convey important 
information on ecosystem health and seabird–fishery interactions. The diet of breeding black-browed albatross (Thalassarche 
melanophris) has previously been assessed using stomach content analysis (SCA) or stable isotope analysis (SIA), but not 
both methods together. Combining dietary sampling approaches reduces biases associated with using single methods. This 
study combines SCA and SIA to study the diet of black-browed albatross chicks, with a specific focus on fishery discard 
consumption, at two Falkland Islands colonies (New Island 51°43′S, 61°18′W and Steeple Jason Island 51°01′S, 61°13′W) 
during two consecutive breeding seasons (2019 and 2020). SCA provided high taxonomic resolution of short-term diet and 
priors for stable isotope mixing models, with multiple measures of dietary items (e.g. numeric frequency N%, frequency of 
occurrence FO%). By contrast, SIA of down feathers provided a single and more integrated dietary signal from throughout 
chick development. Although the two methods disagreed on the dominant prey group (SCA—crustacean; SIA—pelagic 
fish), the complementary information suggested a chick diet dominated by natural prey (SCA: 74%–93% [FO], 44%–98% 
[N]; SIA: minimum 87%–95% contribution). Nonetheless, SCA revealed that a high proportion of breeding adults do take 
discards. We detected consistent colony-specific diets in relation to prey species, but not in relation to higher discard use. 
Overall, discard consumption was highest in 2020, the year characterised by the poorest foraging conditions. Our results 
have implications for fisheries management and future dietary studies assessing discard use.

Keywords Fishery discards · Seabird diet · Stomach content analysis · Stable isotope analysis · Thalassarche melanophris

Introduction

In an era of rapid marine ecosystem change, monitoring is 
critical for the sustainable management of our oceans. Top 
predators, such as seabirds, are often regarded as useful 
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indicators of marine ecosystem health (Velarde et al. 2019; 
Bestley et al. 2020), but indices require careful considera-
tion (Durant et al. 2009). For example, changes in seabird 
demography, distribution, or breeding biology can reflect 
environmental change (e.g. Votier et al. 2005; Cury et al. 
2011; Sydeman et al. 2021), or impacts of anthropogenic 
activities such as fishing (e.g. Einoder 2009; Pardo et al. 
2017; Sherley et al. 2017). However, seabird populations 
and distributions alter relatively slowly with time (Nevoux 
et al. 2010) and non-breeders may buffer the effects of envi-
ronmental or anthropogenic change (Votier et al. 2008a), 
making it challenging to detect such impacts (e.g. Sherley 
et al. 2018). By contrast, dietary variation may be a more 
sensitive indicator of change.

Seabird diets reflect an individual’s foraging behaviour, 
including prey preference, foraging distribution and dietary 
flexibility (e.g. Gaglio et al. 2018; Church et al. 2019), 
and indicate the quantity, quality and accessibility of prey 
at the species and population level (Buren et  al. 2012; 
Velarde et al. 2019). In addition, seabird diets may provide 
information on fishery interactions, including variation 
in discard use (Votier et al. 2004, 2008b), or bycatch risk 
(Einoder 2009; Phillips et al. 2016). Methods to accurately 
study seabird diets can therefore form an integral part of 
monitoring strategies and ecosystem-based approaches to 
fisheries management, such as in the Commission for the 
Conservation of Marine Living Resources (CCAMLR) 
Ecosystem Monitoring Programme (CEMP) (also see e.g. 
Scopel et al. 2019).

A range of morphological and biochemical methods exist 
for assessing diet, and each provide different information 
and biases (Votier et al. 2003; Barrett et al. 2007). Stomach 
content analysis (SCA) and stable isotope analysis (SIA) are 
common approaches for assessing seabird diet (Duffy and 
Jackson 1986; Barrett et al. 2007; McInnes et al. 2016). SCA 
provides high taxonomic resolution, but this tends to reflect 
short time scales (days to weeks), and can underestimate 
soft-bodied prey (Votier et al. 2003; Inger and Bearhop 2008; 
McInnes et al. 2017b). Conversely, SIA typically provides 
dietary information integrated over longer time scales during 
tissue growth (weeks to months; Inger and Bearhop 2008; 
Phillips et al. 2014). However, stable isotope mixing models, 
which are used to quantify prey source contribution to a 
diet mixture, rely on prior knowledge of diet and are only 
informative if key prey differ in their isotopic composition 
(Inger and Bearhop 2008; Phillips et al. 2014). Combining 
morphological and biochemical analyses can address the 
pitfalls of individual methods (Karnovsky et al. 2012; Bonin 
et al. 2020), and a complementary approach is therefore 
recommended when using seabird diet for monitoring (Bot 
et al. 2018; Ceia et al. 2022).

The black-browed albatross Thalassarche melanophris 
(hereafter BBA) is the world’s most abundant species of 

albatross, and its diet has been well-studied (see McInnes 
et al. 2017a). It is used as a bio-indicator in the CEMP, as 
well as a sentinel of the Patagonian Shelf Large Marine 
Ecosystem (Ventura et al. 2021). The population breeding 
in the Falkland Islands is of particular interest, because it is 
the world’s largest (> 70% of breeding populations), and, in 
contrast to several other populations, is increasing in size 
(BirdLife International 2018).

BBA breeding in the Falkland Islands forage over the 
Patagonian Shelf, where large numbers scavenge at fishing 
vessels for discards, consequently falling victim to bycatch 
(Granadeiro et al. 2011, 2014; Kuepfer et al. 2022a, b). 
Dietary studies, however, suggest that they predominantly 
consume natural prey (Thompson 1992; Kuepfer et  al. 
2022a (SCA); Granadeiro et al. 2014 (SIA); McInnes et al. 
2017a (DNA)), although discards appear important when 
natural foraging conditions are unfavourable (Kuepfer 
et al. 2022a). Discard consumption also varies amongst 
colonies, with larger colonies thought to consume more 
discards (Thompson 1992; McInnes et al. 2017a). However, 
the previous diet studies all applied different individual 
methods (SCA: Thompson 1992; Kuepfer et  al. 2022a; 
DNA: McInnes et  al. 2017a, b; SIA: Granadeiro et  al. 
2014), and (apart from McInnes et al. 2017a) focussed on 
either individual years or individual colonies. It is therefore 
difficult to distinguish methodological biases from temporal 
and spatial variation in diets when comparing results. At a 
time when discard management in the Falkland Islands is 
changing (through the introduction of batch discarding by 
trawlers; Kuepfer and Barton 2018; Kuepfer et al. 2022b), 
and the climate warming across BBAs’ range (Franco et al. 
2022), it is important to gain a more comprehensive dietary 
understanding for this globally significant population.

Here, we use SCA and SIA to study BBA chick diet at two 
Falkland Islands colonies from two consecutive breeding 
seasons. Specifically, we (1) quantify diet, (2) assess the 
importance of discards and natural prey and (3) determine 
how diet varies between colonies and years. Considering 
previous findings, we hypothesise that (1) natural prey will 
dominate across years and colonies but that (2) discard 
consumption will be higher at the larger colony.

Materials and methods

Study area and fleet characteristics

Fieldwork took place in the austral summer of 2018/2019 
and 2019/2020 (hereafter 2019 and 2020) during mid-chick 
rearing (~ 6–12 weeks of age) at New Island (NWI, 51°43′S, 
61°18′W) and Steeple Jason Island (SJI, 51°01′ S, 61°13′W), 
located in the west and north-west of the Falkland Islands 
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(Fig. 1). NWI and SJI, respectively, support approximately 
16,000 and 210,000 breeding pairs of BBA (Crofts 2020).

Chick-rearing adults from NWI and SJI concentrate 
their foraging on the southern Patagonian Shelf, although 
they generally segregate by colony whilst at sea (NWI: 
south-west/west; SJI: north-west/north; Catry et al. 2013). 
The area is extensively fished, predominantly by bottom 
trawlers for finfish and jiggers for Argentine shortfin squid 
(Illex argentinus, hereafter Illex) (Seco Pon et al. 2015; 
Falkland Islands Government 2021). There is also some 
longlining (2–4 vessels within the Falklands Conservation 
Zones (FCZs) and the Argentine Exclusive Economic Zone 
(AEEZ) combined at < 40° S latitude; Seco Pon et al. 2015; 
Falkland Islands Government 2021). Discards of demersal 
and benthopelagic fish are available to seabirds from bottom-
trawl vessels throughout the year, including during chick 
rearing (Fig. S1). Squid discards are limited, as Illex and 
Patagonian long-finned squid (Doryteuthis gahi, hereafter 
Loligo) are generally packed whole, and discarding of the 
latter is prohibited in Falkland Islands waters (Laptikhovsky 
et al. 2006; Arkhipkin et al. 2015).

Sampling

Stomach content analysis

Stomach contents were collected from chicks using induced 
regurgitation (after Phillips 2006) during late January 
through to mid-February at NWI, and in mid-March at 
SJI (NWI 2019: 29 January–17 February; NWI 2020: 25 
January–23 February; SJI 2019 and 2020: 12–16 March). 
For logistical reasons, it was not possible to sample both 
colonies simultaneously. Only freshly fed chicks were 

sampled, and each chick was only sampled once. To obtain 
a measurement of meal size and stomach oil content, 
individual stomach samples were weighed whole (total 
mass, g), and again after stomach oils had been drained (wet 
mass, g).

Prey were first separated into key prey groups (fish, 
cephalopod, crustacean, jellyfish and carrion), and 
subsequently identified to the lowest possible taxonomic 
level using reference collections (Falkland Islands Fisheries 
Department (FIFD), unpubl. data; Xavier and Cherel 2009) 
and with assistance from specialists (B. Lee, Z. Shcherbich). 
Minimum number of individuals (MNI) was determined 
through assemblage of whole animals and fresh loose 
hard structures. MNI for carrion (penguin feathers) and 
jellyfish within individual samples was always 1, as it was 
impossible to determine whether parts originated from a 
single or multiple individuals. Eroded or brittle structures 
were excluded from all analyses, as these were assumed to 
have originated from previous meals.

Prey that were identified to species level were further cat-
egorised as fishery discards or natural prey based on numer-
ous criteria relating to natural accessibility of prey to alba-
trosses, fishing and discard practices, and reconstructed prey 
size (see Kuepfer et al. 2022a for further details; Table S1). 
Large fish heads in the absence of the bodies were catego-
rised as discards because at-sea catch processing gener-
ally involves heading and gutting of fish (see Kuepfer et al. 
2022a). For species where reconstructed size was used to 
assist with classification (hoki Macruronus magellanicus 
and southern blue whiting Micromesistius australis), maxi-
mum sagittal length (mm) was measured from intact oto-
liths (one from each otolith pair as well as unpaired otoliths) 
using a binocular microscope equipped with a graticule to 

Fig. 1  Location of New Island 
(NWI) and Steeple Jason Island 
(SJI) in the Falkland Islands on 
the Patagonian Shelf, east of the 
South American continent. The 
200-m and 1000-m depth con-
tours are shown as grey lines. 
AEEZ Argentine Exclusive Eco-
nomic Zone, FCZs Falklands 
Conservation Zones
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reconstruct the original size of the prey from allometric for-
mulae (Table S2). Finally, prey were quantified using four 
different metrics (see below, Table 1).

Stable isotope analysis

Multiple down feathers from across the body were collected 
from a random sample of 55–73 chicks at NWI (mid-
February, chick age 62 days Catry et al. 2011; Ventura et al. 
2021) and at SJI (mid-March, chick age approximately 
84 ± 7 days). At this age, given the large increase in body 
surface area since hatching, the stable isotope composition of 
down feathers is no longer expected to reflect egg nutrients. 
Rather, they provide dietary information from the first 
2 months of chick development and are therefore directly 
comparable between NWI and SJI, despite the discrepancy 
in sampling months.

To characterise stable isotopes of potential prey, we 
sampled muscle tissue of specimens collected during the 
FIFD ground-fish surveys in February 2019 and 2020. 
Sampling focussed south, west and north of the FCZs, where 
GPS tracked BBA breeding on NWI and SJI forage during 
chick rearing (Granadeiro et al. 2011; Ventura et al. 2021). 
Prey species were chosen based on available knowledge of 
BBA diet in the Falkland Islands (McInnes et al. 2017a, b; 
Kuepfer et al. 2022a; current study), and included demersal, 
pelagic and benthopelagic species of fish, cephalopods, 
crustaceans and jellyfish.

Prey muscle and albatross chick feathers were processed 
following Meier et al. (2017). To avoid biases in analyses 
of δ13C related to the presence of lipids in muscle samples 
(see e.g. Bearhop et al. 2002; Post et al. 2007), a-priori lipid 

extraction was conducted on lipid-rich samples, defined as 
species with a C:N > 3.5 (Post et al. 2007). The effervescent 
test (after e.g. Carabel et al. 2006) confirmed the absence 
of carbonates from all crustacean samples. Samples were 
weighed into tin capsules (approx. 0.7 mg) and analysed 
for δ13C and δ15N values by continuous-flow isotope ratio 
mass spectrometry at the National Environmental Isotope 
Facility Stable Isotope Ecology Laboratory, East Kilbride. 
Samples were analysed using a Elementar vario Pyrocube 
elemental analyser (2013), coupled with a Thermo Fisher 
Delta XP Plus Isotope Ratio Mass Spectrometer (IRMS). 
Ratios were corrected for instrument drift and linearity 
using interspersed samples of internal laboratory standards 
(gelatine, glycine and alanine mixtures) with known stable 
isotope values (for details see Jones et al. 2020). Stable 
isotope ratios were expressed in δ notation in parts per 
thousand (‰) relative to Vienna Pee Dee Belemnite (δ13C) 
or air (δ15N). Precision of the measurements was 0.09‰ for 
δ13C and 0.17‰ for δ15N, based on the standard deviation of 
the most common lab standard used (gelatine).

Statistical analysis

All statistical analyses were conducted in R version 4.0.0 
(R Core Team 2021). The significance value of frequentist 
statistical tests was set at α = 0.05, unless stated otherwise.

Stomach content analysis

To assess whether the number of stomach content 
samples obtained from chicks was sufficient to describe 
dietary species diversity, samples from individual colony/
year combinations were randomised 100 times, and an 
accumulation curve was constructed as a function of sample 
size (package vegan::accumcomp, Oksanen et al. 2019). 
Sample sizes would be considered sufficient to describe the 
full diversity of the diet if the fitted cumulative prey curves 
reached an asymptote.

Prey were subsequently described using a range of 
metrics, after Barrett et al. (2007), and following the method 
of Kuepfer et al. (2022a) (Table 1). First, key prey groups 
(fish, crustacean, cephalopod, jellyfish and carrion) were 
quantified as a percentage index of relative importance 
(IRI%) as:

where FO% is the percentage of stomach samples (i) in 
which a particular prey type (p) was present; N% is the 
number of individuals of a particular prey type present 

(1)
IRI% =

(

IRIp∕

n
∑

i=1

IRIp,i

)

× 100,

IRIp = FO% × (N% +M%)

Table 1  Metrics used to quantify prey at different taxonomic levels

M% percentage drained mass, FO% percentage frequency of 
occurrence, N% percentage numeric frequency, IRI% percentage 
index of relative importance

M% N% FO% IRI%

Main prey groups
 Fish ✓ ✓ ✓ ✓
 Cephalopod ✓ ✓ ✓ ✓
 Crustacean ✓ ✓ ✓ ✓
 Carrion (penguin 

feathers)
✓ ✓ ✓ ✓

 Jellyfish ✓ ✓ ✓ ✓
Individual species of…
 Fish ✓ ✓
 Cephalopod ✓ ✓
 Crustacean ✓ ✓

Origin
 Discards ✓ ✓
 Natural prey ✓ ✓
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expressed as a percentage of the total prey number at that 
taxonomic level and M% is the percentage of the total 
drained sample mass represented by a particular prey type.

Next, individual prey species and categories constructed 
from identified species (i.e. fish subgroups and prey origin 
[discards and natural]) were quantified by FO% and N%. 
We did not obtain M% (and hence IRI%) at these levels, 
because it was impractical to separate out, and identify, 
every individual fish bone or loose flesh to obtain species-
specific mass (see also Kuepfer et al. 2022a).

Different methods of prey quantification provide 
complementary dietary information: M% informs on 
meal size and can indicate approximate nutritional 
contribution of similar prey; FO% indicates the variability 
of prey abundance, and N% measures the frequency of prey 
encounter (Duffy and Jackson 1986; Barrett et al. 2007). 
The IRI% is considered the most comprehensive approach, 
as it integrates information from numerous metrics, thereby 
reducing biases associated with any one measure (Duffy 
and Jackson 1986; Liao et al. 2001; Mills et al. 2020). The 
absence of IRI% of prey origin (as explained above) is 
therefore unfortunate; however, given that crustaceans and 
cephalopods were categorised as natural prey, and most fish 
as discards (Table S1), the IRI% of key prey groups can 
serve as a proxy for prey origin.

Wilcoxon rank sum tests were used to assess (1) 
differences in meal size, and (2) differences in prey species 
composition between years and colonies. Year or colony 
were used as our explanatory variables in individual tests, 
whilst our dependent variables were either (1) the different 
meal fractions (total/ liquid/drained); (2) counts or presence/
absence of prey species from either discards or natural 
prey. To minimise Type 1 errors, the significance level was 
adjusted using the Bonferroni correction to α = 0.025. As 
stomach content samples were not collected simultaneously 
at the two colonies, inter-colony comparison warrants some 
caution due to possible seasonal effects (see Discussion).

Stable isotope analysis

To compare isotopic values (δ13C and δ15N) of chicks 
between colonies, we conducted multivariate analysis 
of variance (MANOVA) with post hoc ANOVAs, and 
compared isotopic niche using SIBER (Stable Isotope 
Bayesian Ellipses in R; Jackson et al. 2011). We did not 
compare niche space between years due to insufficient 
certainty around the isotopic baseline for the two years, 
which makes it difficult to discern potential differences 
resulting from baseline shifts or diet shifts.

To assess the percentage contribution of different prey, 
a series of Bayesian mixing models with a multiplicative 
error structure of residual × process error and uninformative 
Dirichlet priors were applied using the MixSIAR package 

(Stock and Semmens 2016). Individual mixing models were 
run for each colony/year combination (NWI 2019, SJI 2019, 
NWI 2020, and SJI 2020). Mixing model convergence was 
assessed using the Gelman–Rubin and Geweke’s diagnostics 
(Stock and Semmens 2016).

Uncertainty in SIA can be related to isotopic similarity 
amongst prey types (Phillips and Gregg 2001; Phillips 
et al. 2014). Further, the discriminatory power of mixing 
models rapidly deteriorates when more than six prey sources 
are included, so aggregating isotopically and biologically 
similar sources is recommended (Phillips et  al. 2014). 
We therefore tested the isotopic differences between prey 
species using MANOVAs, and based on ecological and 
isotopic similarities, aggregated them into four a-priori 
groups: (1) pelagic fish; (2) demersal fish; (3) benthopelagic 
fish + squid; (4) crustacean + jellyfish.

The decision to include or exclude a particular species 
as a prey source was informed by our colony/year-specific 
SCA results (see below, Table  2)—only prey species 
that comprised > 10% (FO) of the stomach contents 
in any colony/year were included, as the exclusion of 
uncommon prey tends to improve mixing model accuracy 
(Phillips et al. 2014). In all models, we further included 
potentially important prey which may easily be missed or 
underestimated in SCA due to soft body parts (i.e. jellyfish 
and Fuegian sprat (Sprattus fuegensis); McInnes et  al. 
2017a, b). Where the isotopic values of individual species 
did not differ significantly between years (MANOVAs), 
species were pooled from both years to increase sample size 
(Table S4, Fig. S2). In the absence of stable isotope values 
for a particular prey species in one year, we used the values 
available from the other year (Table S4).

Diet-tissue trophic discrimination factors (TDFs) have 
not been published for Procellariidae, and we therefore 
used values estimated using Stable Isotope Discrimination 
Estimation in R (SIDER, Healy et al. 2018): Feathers: δ15N 
4.09 ± 1.19, δ13C 2.21 ± 1.25. SIDER is designed to predict 
TDFs of consumers based on their ecology and phylogenetic 
relatedness (Healy et al. 2018), and the values determined 
by SIDER therefore provide for the most up-to-date and 
biologically justified models (also see e.g. Swan et al. 2020).

Results

Stomach content analysis

Stomach contents were collected from 143 chicks across 
the 2 years and colonies (NWI 2019 & 2020: n = 40; SJI 
2019: n = 32; SJI 2020: n = 31). Meals were significantly 
heavier in 2020 at NWI due to the higher liquid portion 
(Mann–Whitney U tests; Total: W = 392, P = 0.004; Liquid: 
W = 325, P = 0.001; Drained: W = 770, P = 0.924; Fig. 2). 
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At SJI, although the total meal size did not vary between 
years, liquids were significantly heavier (before Bonferroni 
correction), and drained samples significantly lighter in 2020 
(Mann–Whitney U tests; Total: W = 290, P = 0.138; Liquid: 
W = 234, P = 0.036; Drained: W = 534, P = 0.019; Fig. 2).

We extracted 9092 prey items from 143 drained regur-
gitates. The three dominant prey categories were crusta-
cean, fish and cephalopods (Fig. 3a). Jellyfish and carrion 

(penguin species) were only found in 2020, but their 
relative importance remained negligible at both colonies 
(Fig. 3a, Table S3). Crustaceans had the highest relative 
importance across colonies/years (IRI% = 49–67%), except 
at NWI 2019, where fish dominated with 80% (IRI). At 
both colonies, the IRI% of fish was approximately dou-
ble in 2020 compared to in 2019 (Fig.  3a). Cephalo-
pods, dominated by squid, consistently showed smaller 

Table 2  Prey species found in regurgitate samples from black-browed albatross chicks at New Island (NWI) and Steeple Jason Island (SJI) in 
2019 and 2020

Only species which occurred at minimum 5% frequency of occurrence (FO%) or numeric frequency (N%) in any given year/colony are 
presented. Values in brackets represent N% as calculated excluding crustaceans from the total prey count, as very high counts of crustaceans 
resulted in negligible N% of other species
‡ Fishery target species available as discards
§ Bycatch species available as discards
^ Prey naturally accessible to black-browed albatross during at least part of their life history

Species FO% N%

NWI SJI NWI SJI

2019 2020 2019 2020 2019 2020 2019 2020

Fish
 Demersal Fish
  Banded whiptail grenadier Coelorinchus fasciatus§ 10.0 55.0 6.5 (19.6)
  Common hake Merluccius hubbsi‡ 37.5 29.0 (11.0) (20.1)
  Dwarf codling Notophycis marginata§ 20.0
  Red cod Salilota australis‡ 12.5
  Kingclip Genypterus blacodes‡ 6.5

 Benthopelagic Fish
  Hoki Macruronus magellanicus‡^ 32.5 70.0 34.4 22.6 (13.2) (28.9) (10.2) (9.1)
  Southern blue whiting Micromesistius australis‡^ 10.0
  Butterfish Stromateus brasiliensis§ 5.0 9.7

 Pelagic Fish
  Fuegian sprat Sprattus fuegensis^ 35.0 17.5 12.9 (29.7) (9.0) (10.8)

 Unidentified Fish
  Fish spp. 5.0 7.5

Crustacean
  Lobster krill Munida gregaria^ 65.0 60.0 84.4 64.5 66.3 22.7 80.9 97.2
  Themisto gaudichaudii^ 5.0 7.5 6.2 12.9 (17.0) (10.2)
  Amphipod sp. 17.5 (6.0)

Cephalopods
  Argentine shortfin squid (Illex) Illex argentinus‡^ 10.0 5.0 59.4 38.7 (25.0) (20.4)
  Patagonian short-finned squid (Loligo) Doryteuthis gahi‡^ 40.0 25.0 28.1 19.4 (41.2) (16.4) (24.1) (8.6)
  Squid spp. 5.0 5.0
  Octopus spp. 9.7

Jellyfish
  Medusa spp.^ 5.0 22.6

Carrion
  Spheniscidae spp.^ 5.0 12.9
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IRI% than fish and crustaceans across colonies and years 
(IRI% = 4–15%, Fig. 3a).

The asymptotes of species accumulation curves were not 
fully reached; however, the flattening of the species accumu-
lation curves provides confidence that the most important 
identifiable prey had been captured (Fig. 4). Species richness 
was higher at SJI than at NWI in 2019, but higher at NWI 
than SJI in 2020, and was considerably higher in 2020 than 
in 2019 at both colonies (Fig. 4).

The composition of dominant species differed between 
colonies but was broadly consistent across years (Table 2). 
The most frequent and most numerous species encountered 
at both colonies was lobster krill (Munida gregaria) 
(Table 2). Individual lobster krill consisted exclusively of 
adults at NWI, whereas at SJI, both adults and juveniles 
were present at a ratio of approximately 2:5 in 2019 and 
1:50 in 2020. In terms of cephalopods, Loligo squid was the 
most numerous and abundant species at NWI, whilst Illex 
squid dominated at SJI (Table 2). In terms of fish, demersal 
common hake (Merluccius hubbsi) was the most frequent 
and numerous fish species at SJI in both years, followed 
by benthopelagic hoki (Fig. 3b; Table 2). At NWI, pelagic 
Fuegian sprat dominated in 2019, whilst hoki dominated in 
2020 (Fig. 3b; Table 2). Ninety-nine percent (n = 134) of all 
measurable hoki, and one hundred percent of measureable 
southern blue whiting (n = 6) fell within the size classes 
caught in the Falkland Islands fishery in 2019 and 2020 
during comparable months, and we therefore classified all 
hoki and southern blue whiting as discards.

Prey origin varied between years at NWI, but not at SJI. 
Discard consumption at NWI was significantly higher in 
2020 compared to in 2019 (Wilcoxon rank sum test; FO%: 
W = 360, P < 0.001; N%: W = 257, P < 0.001), whilst natural 
prey declined in terms of N% (Wilcoxon rank sum test; N%: 
W = 1143, P < 0.001; Fig. 3c). Discards also varied between 
colonies, being significantly higher at SJI in 2019 (Wilcoxon 

rank sum test; FO%: W = 366, P < 0.001; N%: W = 66, 
P < 0.001) but higher at NWI in 2020 (Wilcoxon rank sum 
test; FO%: W = 772, P = 0.024; N%: W = 825, P = 0.016; 
Fig. 3c). Natural prey consumption did not differ between 
colonies regardless of year (Fig. 3c).

Stable isotope analysis

Based on chick down feathers (Table 3), we found a significant 
difference in the isotopic niche of chicks from NWI and SJI in 
2020, but not in 2019 (MANOVA; 2019: Pillai’s Trace = 0.016, 
F (1, 137) = 1.087, P = 0.340; 2020: Pillai’s Trace = 0.125 F (1, 
108) = 7.675, P < 0.001; Fig. 5), with, respectively, 88% and 
75% point-estimate of overlap based on the maximum likeli-
hood SEAc (standard ellipse area corrected for small sample 
size). Post hoc ANOVAs showed that the difference was due to 
significantly higher δ15N at SJI in 2020 (δ15N: P < 0.001; δ13C: 
P = 0.049). As the difference of 0.29‰ in δ15N is relatively 
close to the limit of the machine reading precision of 0.17‰, 
some caution is warranted for interpretation. The ratio of C/N 
in down feathers was significantly lower in 2019 compared to 
in 2020 at both colonies (Mann–Whitney U tests; W = 1700, 
P < 0.001), but no difference was found between colonies 
(Mann–Whitney U tests; W = 7493, P = 0.656).

Mixing models estimated pelagic fish as the largest 
contributor to chick diet across both colonies and years 
(mean = 69–79%; Fig. 6, Fig. 7). Crustacean + jellyfish were 
the second most important diet source: 14–19% across years 
and colonies (Fig. 7). Demersal fish, as well as benthope-
lagic fish + squid, were estimated to contribute relatively lit-
tle to the diet (Fig. 7; Table S5), although note that for SJI 
2020, the model struggled to discern between the groups of 
benthopelagic fish + squid and crustacean + jellyfish (Fig. 6). 
By summing the percentage estimates of prey groups that 
are categorised as entirely natural prey (pelagic fish; crusta-
cean + jellyfish), we found that natural prey was the dominant 

Fig. 2  Meal sizes (g) as sam-
pled through regurgitation from 
black-browed albatross chicks at 
New Island (NWI) and Steeple 
Jason Island (SJI) in 2019 and 
2020. The box shows the inter-
quartile range, with the thick 
horizontal line representing the 
median. The whiskers represent 
the 95% percentiles
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Fig. 3  Black-browed albatross 
chick diet based on regurgita-
tion from New Island (NWI) 
and Steeple Jason Island (SJI) 
in 2019 and 2020, quantified as 
a percentage index of relative 
importance (IRI%) of main prey 
groups; b percentage frequency 
of occurrence (FO%) and 
percentage numeric frequency 
(N%) of fish subgroups; and c 
percentage frequency of occur-
rence (FO%) and percentage 
numeric frequency (N%) of dis-
cards and natural prey. Note that 
the negligible IRI% of jellyfish 
and carrion renders these practi-
cally invisible on the plot. The 
various symbols indicate which 
groups are significantly different 
from one another within each 
metric
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diet for all colony/year combinations (mean minimum estimate 
91.4–94.6%, excluding squid). Although the differences were 
relatively small, consumption of fishery discards was higher 
in 2020 than in 2019 at both colonies, and was higher at SJI 
than at NWI in both years (Table 4).

Discussion

A complementary approach to diet analyses can help 
minimise methodological bias, and therefore enable more 
robust inference (Bot et al. 2018). Using SCA and SIA to 
assess inter-colony and inter-annual variation in BBA diet, 
we found that chicks were primarily fed natural prey during 
mid-chick rearing, although dominant prey sources and 
species identified varied between methods and colonies. 
Whilst discards contributed less to the diet than natural 
prey regardless of sampling method, SCA provided higher 
discard use estimates compared with SIA. Our results have 
implications for fisheries management and future dietary 
studies assessing discard use.

Diet composition

Based on SCA, crustaceans, demersal fish and benthopelagic 
fish were the dominant prey, whilst SIA suggested that 
pelagic fish were most important. These results are consistent 
with SIA studies during early chick rearing at NWI in 2011 
(Granadeiro et al. 2014), and DNA metabarcoding of adults 
and chicks at NWI and SJI in 2014 and 2015 (McInnes et al. 
2017a, b). Both SCA and SIA indicate that cephalopods play 
a relatively minor role in chick diet, as found previously at 
these colonies (Granadeiro et al. 2014 (SIA); McInnes et al. 
2017b (DNA); Kuepfer et al. 2022a (SCA)), as well as at 
other BBA colonies (McInnes et al. 2017b).

Fig. 4  Accumulation curves with 95% confidence intervals (shaded 
area) of prey species extracted from black-browed albatross chick 
regurgitate samples collected at New Island (NWI) and Steeple Jason 
Island (SJI) in 2019 and 2020

Table 3  Isotopic values 
(mean ± sd) of black-browed 
albatross chick down feathers 
from New Island (NWI) and 
Steeple Jason Island (SJI) in 
2019 and 2020

Year Colony δ13C δ15N C/N N (samples)

2019 NWI − 17.25 ± 0.34 15.53 ± 0.33 3.16 ± 0.03 73
2019 SJI − 17.22 ± 0.31 15.61 ± 0.31 3.16 ± 0.02 66
2020 NWI − 17.13 ± 0.27 15.51 ± 0.38 3.67 ± 0.16 55
2020 SJI − 17.04 ± 0.22 15.80 ± 0.38 3.63 ± 0.29 55

Fig. 5  Isotopic niche of black-
browed albatross chicks from 
New Island (NWI) and Steeple 
Jason Island (SJI) based on 
down feathers in 2019 and 
2020 showing SIBER ellipses 
containing 95% of the data
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Jellyfish were scarce in SCA but stable isotope mixing 
models suggest that jellyfish are more common than this 
(on average 14–19% across colonies/years). Nevertheless, 
this should be treated with caution given their isotopic simi-
larity to crustaceans. However, previous work using DNA 
metabarcoding suggests that they are much more prevalent 
than crustaceans (SJI: up to 80% FO, 50% relative abun-
dance (RA); NWI: up to 20% FO, 8% RA; McInnes et al. 
2017b), further highlighting the importance of combining 
techniques.

SCA identified Fuegian sprat as the dominant pelagic 
fish, whilst, historically, southern blue whiting was more 
common in the diet of BBA (Thompson 1992). Increased 
Fuegian sprat consumption was also found in 2014 and 
2015 (McInnes et al. 2017a) and likely reflects a shift in 
the ecosystem following the collapse of the southern blue 
whiting stock in 2004–2007 (Laptikhovsky et al. 2013). 
Unlike southern blue whiting, Fuegian sprat is not targeted 

by fisheries within the foraging range of NWI and SJI 
breeding albatross, and discards of this species are rare and 
patchy (Falkland Islands Government 2021).

Despite the close proximity of NWI and SJI (~ 75 km), 
SCA revealed inter-colony diet differences, which appear 
to be stable over time (Thompson 1992; McInnes et al. 
2017a). In particular, the dominant fish and squid were 
hoki and Loligo at NWI, but common hake and Illex at 
SJI. We cannot entirely exclude an influence of differences 
in timing between colony visits (NWI: January/February; 
SJI: March); for example, whilst hoki catches in 2019 
and 2020 peaked in January and February, hake catches 
peaked in March (Ramos and Winter 2019, 2020; Winter 
and Ramos 2020). However, Thompson (1992) also found 
increased hake (and Illex) at SJI when sampled in Janu-
ary, compared to at NWI sampled in February/March. Our 
results may therefore also reflect differences in prey avail-
ability at colony-specific foraging sites (see Granadeiro 

Fig. 6  Isotopic values of black-browed albatross chick feathers (blue 
dots) from New Island (NWI) and Steeple Jason Island (SJI) in rela-
tion to four prey groups (pelagic fish, demersal fish, benthopelagic 

prey (fish + squid), crustacean + jellyfish (Crust_Jell)). Chick feather 
values are presented after correction for diet-tissue isotopic discrimi-
nation
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et al. 2011). Indeed, hoki is most abundant in the south-
west of the FCZ where NWI birds forage, whereas hake 
is the dominant catch in the north-west, where SJI birds 
feed (Catry et al. 2013; Ramos and Winter 2019; Winter 
and Ramos 2020; Ventura et al. 2021).

Finally, there were differences in trophic niche between 
colonies. The δ15N values were higher at SJI, although this 

was only apparent in 2020. This result is suggestive of rela-
tively increased consumption of higher trophic prey (e.g. 
hake or grenadier).

Fig. 7  Posterior density esti-
mates from MixSIAR models 
for the contribution of prey 
sources to the diet of black-
browed albatross chicks for 
2019 and 2020 at New Island 
(NWI) and Steeple Jason Island 
(SJI)

Table 4  Percentage contribution 
of discards and natural prey as 
estimated from stomach content 
analysis (SCA) and stable 
isotope analysis (SIA)

Estimates from SIA for discards are the summed mean values of [demersal prey]–[demersal + (squid + be
nthopelagic prey)]; for natural prey, this represents the summed mean values for [pelagic fish + (crustacea
n + jellyfish)]—[pelagic fish + (crustacean + jellyfish) + (benthopelagic fish + squid)], as shown in Table S5

Discards Natural prey

SCA (FO%; N%) SIA (% contribution) SCA (FO%; N%) SIA (% contribution)

NWI 2019 27.5%; 4.2% 0.0–5.3% 92.5%; 95.8% 94.6–99.9%
SJI 2019 65.6%; 8.3% 3.3–8.6% 84.4%; 91.7% 91.4–96.7%
NWI 2020 82.5%; 55.7% 3.4–7.7% 77.5%; 44.3% 92.4–96.7%
SJI 2020 64.5%; 1.8% 4.6–13.2% 74.2%; 98.2% 86.7–95.3%
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Relevance of fishery discards

As predicted, albatross chicks were overall fed primarily 
natural prey; nonetheless, chicks regularly received discards 
(based on FO%; Table 4). Previous studies have shown 
limited fishery interactions during early BBA chick rearing 
(December–early January; Granadeiro et al. 2014)—a period 
of low fishing effort in Falkland Islands and Argentine 
waters (see also McInnes et al. 2017a). Some studies suggest 
discard consumption is more frequent during later chick 
rearing (from February, McInnes et al. 2017a). Our study 
supports the high proportion of birds taking discards, but 
found natural prey to generally remain the main prey source.

Previous multi-colony research suggests higher discard 
consumption at SJI compared to NWI (Thompson 1992; 
McInnes et al. 2017a). However, based on SCA, we found 
that whilst discard consumption was higher at SJI in 2019, 
the reverse was the case in 2020. Stable isotope mixing 
model results, which are temporally more comparable, 
were inconclusive in this regard, because the models 
cannot distinguish between benthopelagic squid (natural 
prey) and benthopelagic fish (discards). However, 
excluding the confounding prey source, discards were 
higher at SJI, particularly in 2020, which agrees with the 
increased trophic niche discussed above.

Discard consumption was higher in 2020, although 
the extent of this varied between methods. Breeding 
BBA from the Falkland Islands appear to increase dis-
card consumption during periods of poor natural forag-
ing conditions (Kuepfer et al. 2022a). Indeed, the present 
study provides some indication of potentially increased 
nutritional stress in 2020: Prey diversity was higher in 
2020, which could result from birds compensating for the 
scarcity of preferred prey by targeting alternative species 
(Quillfeldt et al. 2010; van Donk et al. 2017). Signifi-
cantly higher C/N ratios in 2020 could suggest prey being 
of inferior protein quality (Robbins et al. 2005). Further, 
meals contained more stomach oil in 2020, which could 

be an effect of prolonged foraging trips (supported also 
by GPS tracking from P. Catry, unpubl. data; also see 
Warham et al. 1976; Chaurand and Weimerskirch 1994; 
Connan et al. 2005). The season 2020 also saw reduced 
chick weight at NWI (on average − 7.3%), and reduced 
breeding success at both NWI (− 22%) and SJI (− 25%) 
(P. Catry, unpubl. data; Crofts and Stanworth 2021; Kue-
pfer et al. 2022a). Combined, these indicators support 
the argument of increased discard consumption during 
periods of increased nutritional stress in Falkland Islands 
BBA.

SCA and SIA—a critical evaluation

Our key objectives were to quantify diet (particularly in the 
context of fisheries), and test for inter-annual and colony-
specific differences. Combining SCA with SIA provided 
us with complementary information and helped with 
interpretation of results in several aspects (Table 5).

In contrast to SIA, SCA supplied high taxonomic and 
morphological details, including information on prey size 
(age class) and visual confirmation of processed waste from 
fisheries. This assisted with categorisation and quantification 
of prey as discards or natural prey. It also enabled us to 
distinguish between isotopically similar (but from a 
management perspective, very different) prey (here squid 
vs benthopelagic fish; crustacean vs jellyfish—although see 
below). This can be important to complement SIA; if our 
main prey source was found to be benthopelagic prey, SCA 
could have helped us determine whether this was dominated 
by discards (benthopelagic fish) or natural prey (squid). In 
our case, this confounding prey source only contributed a 
small amount to the overall diet source of BBA chicks, and 
therefore bears little influence on the overall result regarding 
the dominant prey origin.

SCA was also important for selecting mixing model 
inputs, although our results emphasise that using informative 
priors from conventional methods in stable isotope mixing 

Table 5  Advantages and caveats of stomach content analysis (SCA) and stable isotope analysis (SIA) for assessing seabird diet and discard use

Advantages SCA SIA Caveats

High taxonomic resolution ✔
Information on meal size ✔
Information on prey size/age class ✔
Visual cues of processing waste ✔
Distinguish isotopically similar prey ✔ Only necessary in ecosystems where key prey are isotopically similar
Informs stable isotope mixing models ✔ Information is biased by differential digestion rate
Provides a single, integrated dietary signal ✔
Larger temporal window ✔ Different tissues provide different temporal windows (see e.g., Inger 

and Bearhop 2008; Phillips et al. 2014)
Independent of digestion rate ✔
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models can transfer methodological biases leading to erro-
neous results (Swan et al. 2020). For example, compared 
to SCA, SIA suggests the importance of pelagic fish, but 
more moderate contribution from crustaceans. This differ-
ence may reflect differential digestion of prey. Whilst frag-
ile prey like sprat or jellyfish are more easily digested, and 
hence likely underestimated in SCA, the opposite is true for 
large or rigid organisms like demersal fish or crustaceans.

We note that differences between methods may in parts 
also be related to short-term differences in the temporal 
window they represent, particularly for SJI where down 
growth and stomach content sampling did not overlap 
(see also e.g. McCluskey et al. 2021). However, this does 
not appear to be the case at NWI, where pelagic prey also 
dominated in both years based on SIA of plasma (reflective 
of the diet from the previous few days (Phillips et al. 2014)) 
collected in February 2019 and 2020 (A. Kuepfer unpubl. 
data).

A further potential issue of using SCA in the absence of a 
complementary method is the large number of ways this type 
of diet information can be quantified (e.g. FO%, N%, IRI%). 
These each have their own biases (see Barrett et al. 2007) 
and care must be taken when selecting a suitable metric to 
use based on the study objectives. In our case, a multitude 
of SCA metrics allowed us to draw more comprehensive 
conclusions in relation to discard consumption, and also 
gain insight into the proportion of breeders that interact 
with vessels (although see e.g. Granadeiro et  al. 2011; 
2014). Meanwhile, SIA provided a sense check for prey 
source quantification by providing a single, integrated signal 
representing multiple meals.

Finally, our SCA was subject to confounding temporal 
effects due to non-simultaneous sampling. Previous SCA 
and DNA studies at these colonies suffered from the same 
limitation (Thompson 1992; McInnes et al. 2017a). The 
complementary use of feather SIA in the present study 
assisted with inter-colony comparison due to its more long-
term dietary signal. This aspect also makes SIA a suitable 
candidate for studying diet during the non-breeding period 
(see e.g. Bugoni et al. 2010; Mariano-Jelicich et al. 2013; 
Granadeiro et al. 2014), although care must be taken to 
obtain a meaningful prey field in time and space (Quillfeldt 
et al. 2015).

Seabird diet in the context of fisheries management

Our dietary results highlight important aspects in terms of 
fisheries management. First, natural prey are important for 
BBA chicks, underlining the importance of understanding 
pelagic fish distribution and abundance in the Falkland 
Islands (Kuepfer et al. 2022a) and elsewhere (Barrett et al. 
2007; Boldt et al. 2022). Second, whilst discards do not 

contribute substantially to chick diets, a high proportion of 
adults deliver discards to their young, thus incurring a risk 
of bycatch. Therefore, we echo previous authors that any 
management actions aiming to reduce discard availabiliy, 
and therefore bycatch risk (e.g. batch discharging as 
currently implemented in the Falkland Islands trawl fleet), 
will be of conservation benefit (e.g. Granadeiro et al. 2011, 
2014; Kuepfer et al. 2022b).

Going forward, seabird diet provides a helpful fishery 
and ecosystem monitoring tool but requires appropriate 
methodological consideration. Given climatic changes and 
continued fishery presence across the Patagonian Shelf 
(and elsewhere), we recommend the use of stable isotopes 
to capture broader time scales, but in combination with SCA 
to allow continued prey species identification in a potentally 
changing ecosystem. We also recommend multiple SCA 
metrics be considered (N%, FO%, M%, IRI%), as these can 
provide complementary information on important prey and 
the extent of seabird–fishery interaction.
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