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Abstract
Infaunal invertebrate communities are structured by various factors, including predation, resource availability, and envi-
ronmental conditions. Given that these invertebrates live within sediment, it is not surprising that sediment properties play 
a critical role in many infaunal behaviours. When models explaining spatial and temporal variation in infaunal community 
composition are constructed using physical, biophysical, environmental, and sediment properties (salinity, detrital cover, 
elevation, particle size distribution, organic and water content, redox conditions, and penetrability), a considerable portion 
of the variation in the data is typically unaccounted for. This suggests that we do not fully understand all the variables that 
influence infaunal invertebrate communities. One suite of under-explored variables is the elemental composition/concen-
tration of the sediments themselves. As such, we evaluated if sediment geochemistry improved model performance of the 
spatial variation in infaunal invertebrate communities on three intertidal mudflats in northern British Columbia, Canada. 
We observed that models including geochemistry data outperformed models that only included physical, biophysical, and 
environmental properties. Our results, therefore, suggest that some of the observed, and previously unaccounted for spatial 
variation in infaunal community composition may be a product of variation in sediment geochemistry. As such, sediment 
geochemistry should be accounted for when studying infaunal communities and assessing human impacts upon intertidal 
systems.
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Introduction

Located at the interface between the land and the sea, inter-
tidal ecosystems exist within a world of extremes. Oscillat-
ing between exposure and inundation, hot and cold, safety 

and danger, the intertidal is home to resilient and dynamic 
biological communities (Ferraro and Cole 2012; Musetta-
Lambert et al. 2015; Delgado et al. 2018). Far from a uni-
form ecosystem, the intertidal is a mosaic of marshes (Virgin 
et al. 2020), rocky shores (Menge et al. 1997), and expanses 
of soft sediment, such as sandy beaches and mudflats (Bar-
beau et al. 2009). In coastal ecosystems, infaunal (animals 
that live within the sediment) are often used to study or iden-
tify disturbances (Fukuyama et al. 2014; Drylie et al. 2020; 
Gerwing et al. 2022a). For instance, biodiversity and total 
abundance of infauna (Sherman and Coull 1980; Campbell 
et al. 2019b) can be used to identify and study disturbances; 
however, infauna can respond to a disturbance in a variety of 
ways. For instance, amphipods, cumacea, and small bivalves 
are sensitive to disturbances, decreasing in abundances 
with disturbances (Sánchez-Moyano and García-Gómez 
1998; Gerwing et  al. 2022b). Conversely, Oligochaeta 
(Cowie et al. 2000), Nematoda (Mazzola et al. 2000), and 
Capitella species complex (Pearson and Rosenberg 1978; 
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Gerwing et al. 2022b) are tolerant of disturbances, and can 
survive, or thrive in disturbed systems. Therefore, studying 
the population and community dynamics of these intertidal 
invertebrates is useful to advance the development of gen-
eral ecological theories (Underwood and Fairweather 1989; 
Hamilton et al. 2006) and to undertake applied research, 
such as elucidating human impacts or the effectiveness of 
restoration strategies (Pearson and Rosenberg 1978; Borja 
et al. 2008).

Various factors influence the structure of infaunal inver-
tebrate communities, including predation (Floyd and Wil-
liams 2004), resource availability (Hamilton et al. 2006), 
and environmental factors such as salinity, weather, and cli-
mate (Ghasemi et al. 2014; Gerwing et al. 2015b). While all 
of these variables are important, given the intimate nature 
of the relationship between infauna and the sediment they 
inhabit, it is not surprising that sediment properties have 
been observed to play a critical role in most infauna behav-
iours, including locomotion, foraging, reproduction, and 
larval settlement (Ólafsson et al. 1994; Lu and Grant 2008; 
Gerwing et al. 2020a). More specifically, sediment proper-
ties such as particle size distribution, water content, organic 
matter content, redox state, and sediment penetrability/con-
sistency have all been observed to play important roles in 
shaping the composition of infaunal communities, by influ-
encing infauna behaviour, survival, and physiology (Diaz 
and Trefry 2006; Valdemarsen et al. 2010; Pilditch et al. 
2015a; Gerwing et al. 2018b, 2020a). These relationships are 
far from unidirectional, as infauna can greatly modify their 
sedimentary environment (De Backer et al. 2011; Quintana 
et al. 2013; Sizmur et al. 2013; Gerwing et al. 2017b).

Despite a wealth of information on the relationships 
between sediment properties/environmental conditions and 
infaunal communities, models constructed from the vari-
ables listed in the previous paragraph that predict the spati-
otemporal variation in an infaunal community often leave a 
portion of the variation in the data (20–97%) unaccounted 
for (Chapman et al. 1987; Thrush et al. 2003; Dashtgard 
et al. 2014; Gerwing et al. 2015b, 2016, 2020a; Campbell 
et al. 2020). While no model is perfectly representative of 
the process it is simulating, this unaccounted variation sug-
gests that we do not fully understand all the factors that influ-
ence the structure of infaunal invertebrate communities. One 
suite of potentially important, but under-explored, variables 
are those related to sediment geochemistry (concentration 
of elements such as Hg, Mn, Ti, etc.). Especially, since the 
abundance/concentration of some elements in intertidal sedi-
ments have been observed to influence infaunal invertebrate 
community composition and population size (Chapman et al. 
1987; Waldock et al. 1999; Sizmur et al. 2019).

Elements that can negatively affect intertidal inverte-
brate communities are referred to as potentially toxic ele-
ments (PTEs). While PTEs are naturally occurring, human 

activities may elevate concentrations to levels that can 
induce deleterious impacts upon the physiology, behav-
iour, and survival of flora and fauna (Martinez-Colon et al. 
2009; Pourret and Bollinger 2018; Sizmur et al. 2019). The 
concentration and availability of PTEs have generated sub-
stantial ecological insight in theoretical and applied settings 
(Chapman et al. 1987; Mermillod-Blondin and Rosenberg 
2006; Spencer and Harvey 2012). However, interactions 
between invertebrates and sediment geochemistry are often 
studied in the context of contamination or pollution when 
the concentrations present are many times greater than ambi-
ent background values (Chapman et al. 1987; Yunker et al. 
2011; Amoozadeh et al. 2014).

Another important group of elements found in intertidal 
sediments (which overlap with PTEs) are essential elements. 
Essential elements are those that are required in specific sto-
chiometric ratios for organisms to complete their life cycle 
(Karimi and Folt 2006; Bradshaw et al. 2012). Previous 
investigations have focused upon the interaction between 
specific infaunal species and the presence or availability of a 
few, albeit important, elements (Christensen et al. 2000; Teal 
et al. 2013; Kalman et al. 2014). What is currently lacking 
is a holistic understanding of how sediment geochemistry, 
influences entire infaunal communities (Sizmur et al. 2019; 
Eccles et al. 2020), and if the geochemical composition of 
sediments plays a greater role than other sediment param-
eters in structuring infaunal communities.

To better understand how sediment geochemistry influ-
ences infaunal communities, we quantified whether adding 
sediment geochemistry data (elemental concentrations) to 
models containing traditionally studied sediment and envi-
ronmental variables (salinity, detritus cover, distance from 
shore, particle size distribution, organic and water content, 
redox conditions, and penetrability) improved their perfor-
mance when modelling infaunal community composition 
and population abundances. We then explored in more detail 
how specific elements were associated with the observed 
variation in specific members of an infaunal invertebrate 
community. A better understanding of how sediment geo-
chemistry influences infaunal community species compo-
sition and abundances will expand our theoretical knowl-
edge of the processes that structure these communities. 
Such information will also inform interpretations of human 
impacts on intertidal systems.

Methods

Study sites

Our study focused on three intertidal mudflats surrounding 
the Skeena River estuary in northern British Columbia, 
Canada (Fig. 1; ~ 3 m tidal amplitude): Cassiar Cannery 
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(CC), Wolfe Cove (WC), and Tyee Banks (TB). Cassiar 
Cannery (N54° 10′ 40.4, W130° 10′ 40.4) is a mudflat 
adjacent to a former salmon cannery that closed in 1983 
and is now an ecotourism lodge. Wolfe Cove (N54° 14′ 
33.0, W130° 17′ 34.5) is a mudflat located approximately 
1 km from a decommissioned papermill. The papermill 
was closed in 2001, ceasing all operations and discharge 
(Yunker et  al. 2011; Sizmur et  al. 2019). Tyee Banks 
(N54° 11′ 59.1, W129° 57′ 36.7) is a large intertidal mud-
flat 20 km upstream of the mouth of the Skeena River, 
that previously had a small-scale sawmill operating and 
accumulations of sawdust and woodchips are still present 
in the upper intertidal sediment. All three sites have a 
diverse and abundant infaunal community (Campbell et al. 
2020), with the infaunal community dominated by Cuma-
cea (primarily Nippoleucon hinumensis with Cumella 
vulgaris observed less frequently), Polychaetes (Families 
Phyllodocidae [Eteone californica], Capitellidae [Capi-
tella species complex], and Spionidae [Pygospio elegans]), 
Oligochaetes (Paranais litoralis), Nematodes, Copepods 
(order Harpacticoida), Amphipods (Americorophium sal-
monis), and the bivalve Macoma balthica (Gerwing et al. 
2017a; Campbell et al. 2020) (Supplemental Table S1). 
Average volume-weighted sediment particle size varied 
from 60 to 180 µm, organic matter content varied from 
2.5 to 4.5%, and sediment water content from 28 to 37% 
(Campbell et al. 2020). No evidence of PTE concentra-
tions above naturally occurring levels was observed in the 
top 20 cm of sediment (Sizmur et al. 2019). Observed 
elemental concentrations and all abiotic variables are 
detailed in Supplemental Table S2. More details on these 

sites are available in Sizmur et al. (2019) and Campbell 
et al. (2020).

Sampling scheme

At each mudflat, transects were established running from the 
landward start of the mudflat to the low water line (five tran-
sects per site, separated by ~ 25 m and 60–200 m long). Tran-
sects were stratified into zones based on distance from shore 
(near, middle, and far). Within each zone, one sampling 
location was randomly selected from which all data types, 
detailed below, were collected (n = 3 per transect, 15 per 
site; 45 overall). Samples were collected July 13–25, 2017, 
on one of the lowest low tides of the year. More details of 
the sampling scheme can be found in Campbell et al. (2020).

Infauna, sediment, and environmental parameter 
sampling

At each sampling location, a 1 m2 plot was established 
and infauna were collected with a corer 10 cm in length, 
and 7 cm in diameter. (Campbell et al. 2020). A pit (20 cm 
long, by 20 cm wide, by 20 cm deep) was also dug in 
the plot where the core was taken to sample and identify 
larger or more mobile specimens in situ (Campbell et al. 
2019b) that may have been missed by the infaunal core. 
Sediment from the core was passed through a 250 µm 
sieve, and the infauna retained by the sieve were stored in 
vials of 95% ethanol (Campbell et al. 2020). Specimens 
were identified to the lowest possible taxonomic unit, as 
follows: cumaceans, amphipods, tanaids, polychaetes, 

Fig. 1   Location of three 
intertidal mudflat study sites in 
the Skeena Estuary, northern 
British Columbia, Canada. WC 
Wolfe Cove (N54° 14′ 33.0, 
W130° 17′ 34.5). CC Cassiar 
Cannery (N54° 10′ 40.4, W130° 
10′ 40.4). TB Tyee Banks (N54° 
11′ 59.1, W129° 57′ 36.7)
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nemerteans and bivalves were identified to species; chi-
ronomids (larvae) to family; copepods to order; ostracods 
to class; and nematodes to phylum (Campbell et al. 2020; 
Gerwing et al. 2020b). Observed abundances from the pit 
and cores were combined, making note of the processed 
sediment from each method (Gerwing et al. 2022a), and 
converted to density per m2.

At each sampling location, sediment penetrability 
was assessed by dropping a metal weight (15 cm long, 
1.9 cm diameter, 330 g) from a height of 0.75 m above 
the sediment and measuring how far it penetrated into the 
sediment (Meadows et al. 1998; Gerwing et al. 2020a). 
Penetrability is an integrative variable that reflects the 
overall in situ conditions experienced by biota. Increased 
penetrability indicates finer grained sediment with high 
water content, and fewer rocks or shell hash present in or 
on the sediment. Sediment characterised by low penetra-
bility is indicative of larger-grained sediment with low 
water content and with more rocks or shell hash present 
(Gerwing et al. 2020a). A sediment core (4.5 cm diameter, 
5 cm depth) was collected from each sampling location. 
From this core, the top 1 cm was processed to determine 
sediment water content (mass lost by drying at 110 °C 
for 12 h), organic matter content (mass lost by ashing at 
550 °C for 4 h) and volume-weighted average particle size 
(Malvern Mastersizer). More details of these processes 
can be found in Campbell et al. (2020). While in the field, 
the void created in the sediment from the collection of the 
infaunal core was used to determine the depth to the appar-
ent redox potential discontinuity, aRPD (Gerwing et al. 
2013). aRPD depth is a relative measure of sediment pore-
water dissolved oxygen and redox conditions. Sediment 
with a deeper aRPD has more available dissolved oxygen, 
and the sediment is more oxidized, or less reduced, than 
sediment with a shallower aRPD depth (Gerwing et al. 
2015a, 2018b). We refer to these variables as physical 
variables.

The proportion of each 1 m2 plots covered in woody 
debris, as well as deposited algae and eelgrass (Zostera spp.) 
debris was also quantified visually, as this debris can create 
hypoxic conditions and smother infauna. Such debris are 
commonly observed in the area. No eelgrass detritus was 
observed at these sites during this period; therefore, eel-
grass cover was not used in any analyses. These variables are 
referred to as biophysical variables. Salinity was measured 
at each transect in each tidal flat on each sampling trip with 
a YSI multimeter in the water approximately 1 cm above the 
sediment surface at high tide (n = 5). Finally, relative dis-
tance of each plot from the start of the mudflat (transition of 
saltmarsh, bedrock, or sandy beaches to mud (see Gerwing 
et al. (2016)) was included for each plot, as a proxy for inter-
tidal elevation or duration of inundation. These variables are 
referred to as environmental variables.

Sediment geochemistry sampling

At each sample location, sediment samples of the top 5 cm 
were collected from each site using polycarbonate cores (5 cm 
diameter, 20 cm length). Samples were dried at 40 °C, digested 
in reverse aqua regia following US EPA Method 3051A, and 
the concentration of elements (Al, As, Ca, Cd, Co, Cr, Cu, Fe, 
K, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sr, Ti, and Zn; a mixture 
of elements that are broadly representative of the lithophile, 
siderophile, and chalcophile geochemical groups (Gold-
schmidt 1937) determined by ICP-OES (Inductively Coupled 
Plasma Optical Emission Spectroscopy) or ICP-MS (Induc-
tively Coupled Plasma Mass Spectrometry). The total concen-
tration of Hg in sediments was determined using thermal deg-
radation–gold amalgamation atomic absorbance spectroscopy 
as outlined in EPA Method 7473 using a Nippon MA-3000 
analyser (Sizmur et al. 2019). These elemental variables are 
then referred to as geochemical variables.

Data analysis

Prior to analysis, we assessed possible correlations between 
all pairs of covariates by calculating univariate Pearson’s 
correlation coefficients. We used a threshold of 0.95 (Clarke 
and Ainsworth 1993) for variables too correlated to be con-
sidered independent. Since the highest correlation coeffi-
cient observed was 0.76, all variables were included in our 
models.

Data visualization

Statistical analyses (sequential analysis procedures are 
detailed in Supplemental Figure S1) were conducted in 
PRIMER with the PERMANOVA add-on (Anderson et al. 
2008; Clarke and Gorley 2015). First, non-metric multi-
dimensional scaling (nMDS) plots were used to visualize 
variation in infaunal communities (Supplemental Table S1) 
and sediment geochemistry as well as environmental param-
eters (Supplemental Table S2) between sites (100 restarts; 
infaunal community resemblance matrix calculated using 
Brays-Curtis similarities on fourth root transformed den-
sity data, and geochemical or environmental resemblance 
matrix calculated using Euclidean distances after square root 
transforming Sr to correct for a skewed distribution). Vector 
overlays were used to identify which infauna and elements 
had a Pearson’s univariate correlation coefficient of 0.2 or 
greater (Clarke 1993).

Assessing model performance with inclusion of sediment 
geochemistry

To determine if models of the infaunal community (all 
species) that included sediment geochemistry performed 
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better than models that included other traditionally meas-
ured physical, biophysical, and environmental parameters 
(distance from shore, salinity, algae, eelgrass, and woody 
debris cover, sediment water content, organic matter con-
tent, mean particle size, aRPD depth, and penetrability) a 
distance based linear model (DISTLM) was created using 
the BEST routine (9999 permutations) was used. Infaunal 
data were fourth root transformed, while Sr was square root 
transformed, and aRPD depth, water content, and mean par-
ticle size were fourth root transformed to correct for skewed 
distributions. All physical, biophysical, and environmental 
variables were normalized; however, variation exists in the 
precision of our variables. For instance, the precision of 
visual estimates of detrital cover or organic matter content 
analyzed via combustion is lower than that obtained from the 
spectrometry used to elucidate elemental concentrations. We 
evaluated candidate models using the Information Theoretic 
Model Selection Approach (Burnham and Anderson 2001, 
2002). This approach utilizes multiple lines of evidence to 
select the “top” performing or “best” model from amongst 
a series of candidate models designed a priori. All possible 
permutations of physical, biophysical, and environmental 
variables were assessed. Candidate top-ranked models were 
selected by calculating Akaike Information Criterion, cor-
rected for small sample sizes (AICc) values. Models within 
2 AICc units of each other were considered to be equivalent 
(Burnham and Anderson 2001, 2002). Model performance 
was further assessed using the R2 value, which denotes the 
proportion of explained variation for the model (Anderson 
et al. 2008). R2 values were contrasted between models 
only containing traditional physical, biophysical, and envi-
ronmental parameters, those only containing elements, and 
those containing all variables.

Exploring relationships between elements and the infaunal 
community

While DISTLMs are effective at comparing models, they 
are not able to determine the relative importance of vari-
ables included in a model (Supplemental Figure S1). As 
such, a permutational multivariate analysis of covariance 
(PERMANCOVA; 9999 permutations) was also used to 
quantify the relationship between the infaunal community 
and physical, biophysical, environmental, and geochemical 
variables (Gerwing et al. 2016). The multivariate response 
was a resemblance matrix of the densities of the infaunal 
community, calculated using Bray–Curtis similarity. Taxa 
densities were fourth root transformed to better equalize the 
influence of abundant and rare species on the outcome of 
the analysis. Within the PERMANCOVA, site (three levels; 
fixed factor), and transect nested within site (transect (site); 
five per site; random factor) were included. Geochemical, as 
well as physical, biophysical, and environmental variables 

were included as covariates. As part of the PERMANCOVA, 
we quantified components of variation, the proportion of the 
multivariate variation accounted for by each independent 
variable (Searle et al. 1992; Anderson et al. 2008; Gerwing 
et al. 2016). An α of 0.05 was used to determine statistical 
significance for all analyses (Beninger et al. 2012). Elements 
identified as accounting for a statistically significant propor-
tion of the variation in the infaunal community were retained 
for downstream analysis (Pearson’s univariate correlation 
assessment).

As we were primarily interested in differences between 
sites, to reduce the number of taxa included in downstream 
analyses (Supplemental Figure S1), Similarity Percentages 
Analyses (SIMPER) were then used to determine which 
infaunal species were responsible for the observed variation 
between sites (Clarke 1993). Only species that accounted 
for ≥ 5% of the dissimilarity between sites were retained 
for the next analytical step, as these taxa are the drivers of 
the observed variation in the infaunal community between 
sites. Finally, Pearson’s univariate correlation coefficient was 
used to assess if the elements and infaunal species identified 
above had a positive or negative relationship (Gerwing et al. 
2016; Campbell et al. 2020).

Results

Infaunal community composition and sediment parameters 
varied between sites, with all variables tending to cluster 
by site (Figs. 2, 3; Supplemental Tables S1, 2 and 3). More 
details on the biotic and abiotic parameters can be found in 
Sizmur et al. (2019) and Campbell et al. (2020).

Assessing model performance with inclusion 
of sediment geochemistry data

Models containing only physical (penetrability, aRPD 
depth, water/organic matter content, and mean particle 
size), environmental variables (distance from shore, salin-
ity), or biophysical variables (detrital cover), performed the 
worst, explaining only 0.01–0.50 (Supplemental Table S4) 
of the variation in the model (R2). Models that included 
only sediment geochemistry performed moderately well 
(R2: 0.38–0.55), while models including all variables (R2: 
0.40–0.60) performed the best (Supplemental Table S4).

Exploring relationships between sediment 
properties and the infaunal community

The PERMANCOVA (Table 1) identified that a mixture of 
environmental variables (distance from shore, and salinity) 
and elements (K, Mn, P, SR, and Ti) were significantly cor-
related to the observed variation in the infaunal community 
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composition. No physical or biophysical variables were 
statistically significant in this model. Environmental vari-
ables accounted for 5% of this variation, while geochemistry 
accounted for 65%. The strongest relationship was observed 
with Ti, with this single element accounting for 33% of the 
variation in the infaunal community composition. Differ-
ences in the infaunal community between sites and transects 
were not statistically significant, but the infaunal community 
varied between plots (6%).

With regards to differences between sites, taxa that 
accounted for ≥ 5% of the dissimilarity in the SIMPER 
analysis (Supplemental Table S3), and were thus retained 
for downstream analyses, included: Americorophium 
salmonis, Cumella vulgaris, Nippoleucon hinumensis, 

Eteone californica, Capitella Species Complex, Fabricia 
stellaris, Pygospio elegans, Macoma balthica, Harpac-
ticoida, Ostracoda, and Nematoda. Table 2 summarizes 
the Pearson’s correlation coefficients between the con-
centrations of individual elements measured in sediments 
and the infaunal community composition. In general, the 
infaunal community had a complex relationship with 
sediment geochemistry, with some taxa having a positive 
correlation (increasing population density with increas-
ing element concentration) with some elements, and a 
negative correlation with others (decreasing population 
density with increasing element concentration). However, 
Ti and K had a strong negative correlation with most taxa.

Fig. 2   Non-metric multidimensional scaling (nMDS) plots explor-
ing the variation in the infaunal community (a) and sediment geo-
chemistry (b) at three intertidal mudflats near the Skeena Estuary 
in northern British Columbia, Canada. Vector overlays are overlain, 

and longer lines indicate greater values associated with that species 
or element along that axis. CC Cassiar Cannery, TB Tyee Banks, WC 
Wolfe Cove

Fig. 3   Non-metric multidi-
mensional scaling (nMDS) 
plots exploring the variation in 
environmental parameters at 
three intertidal mudflats near 
the Skeena Estuary in northern 
British Columbia, Canada. 
Vector overlays are overlain, 
and longer lines indicate 
greater values associated with 
that parameter along that axis. 
CC Cassiar Cannery, TB Tyee 
Banks, WC Wolfe Cove
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Table 1   Permutational 
multivariate analysis of 
covariance (PERMANCOVA) 
results assessing the relative 
importance of sediment 
parameters and geochemical 
elements in shaping infaunal 
communities on tidal flats in 
northern British Columbia in 
2017

Significant sources of variation are in bold (α = 0.05)

Source df MS Pseudo-F Unique per-
mutations

p Variance 
components 
(%)

Salinity 1 13,469.00 10.20 9929 0.0001 4.27
Wood cover 1 81.75 0.18 9955 0.86 0.00
Macrophyte cover 1 1556.60 2.01 9944 0.10 0.40
Distance from shore 1 2027.00 5.13 9963 0.008 0.82
Sediment particle size 1 537.19 1.06 9951 0.39 0.00
Penetrability 1 183.13 0.37 9946 0.76 0.00
aRPD depth 1 417.68 0.88 9962 0.47 0.00
Water content 1 811.70 1.60 9941 0.22 0.23
Organic matter content 1 915.77 1.92 9967 0.15 1.67
Hg 1 1470.70 1.58 9952 0.16 0.32
Pa 1 537.19 1.06 9951 0.39 0.03
Al 1 331.95 0.66 9958 0.62 0.00
Ca 1 525.00 1.11 9951 0.36 0.25
Co 1 996.50 1.97 9959 0.15 1.77
Cr 1 126.83 0.26 9966 0.81 0.00
Cu 1 797.60 1.34 9954 0.27 6.33
Fe 1 256.00 0.52 9953 0.71 0.00
K 1 1367.10 2.08 9952 0.05 17.06
Mg 1 405.57 0.95 9946 0.44 0.00
Mn 1 1417.40 2.90 9958 0.05 2.19
Na 1 708.75 1.59 9966 0.21 1.24
Ni 1 927.92 1.76 9947 0.17 9.73
P 1 1250.00 2.64 9955 0.04 4.20
S 1 393.54 0.79 9953 0.49 0.00
Sr 1 773.23 1.63 9953 0.04 5.96
Ti 1 790.51 1.77 9947 0.0001 35.75
Zn 1 406.68 0.92 9961 0.43 0.00
Site 1 555.12 1.01 9951 0.44 0.25
Transect (site) 11 512.45 1.36 9926 0.22 1.85
Residual (A.K.A Plot) 6 376.48 5.68
Total 44

Table 2   Pearson’s univariate 
correlation coefficient between 
key infaunal species and 
sediment geochemical elements 
at three intertidal mudflats near 
the Skeena Estuary in northern 
British Columbia, Canada

Category Species K Mn P Sr Ti

Errant arthropods Americorophium salmonis − 0.21 0.21 0.26 0.29 − 0.24
Cumella vulgaris − 0.10 0.31 0.50 0.52 − 0.11
Nippoleucon hinumensis − 0.41 0.16 − 0.14 − 0.09 − 0.33

Errant polychaete Eteone californica − 0.45 0.31 0.21 0.32 − 0.46
Capitella species complex 0.38 − 0.33 0.03 − 0.10 0.31

Sessile polychaetes Fabricia stellaris − 0.38 − 0.12 − 0.31 − 0.31 − 0.31
Pygospio elegans − 0.35 0.16 0.14 0.21 − 0.37

Bivalve Macoma balthica − 0.59 0.25 − 0.13 − 0.07 − 0.52
Harpacticoida Harpacticoida − 0.33 − 0.19 − 0.23 − 0.23 − 0.29
Ostracoda Ostracoda − 0.38 0.38 0.11 0.16 − 0.37
Nematoda Nematoda − 0.15 0.25 0.12 0.22 − 0.19
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Discussion

To create models explaining infaunal community compo-
sition, the relationship between the intertidal invertebrate 
communities of three intertidal mudflats in the Skeena 
River estuary and sediment/environmental properties was 
explored.

Assessing model performance with inclusion 
of sediment geochemistry

Inclusion of sediment geochemistry into models explain-
ing the infaunal community composition produced models 
that preformed the best. These models were either com-
prised exclusively of geochemical data, or a combination 
of geochemistry, physical, biophysical, and environmental 
variables. Previous studies reporting models to explain the 
observed spatiotemporal variation in the infaunal com-
munity using physical, biophysical, and environmental 
variables, often leave a portion of the variation (20–97%) 
unaccounted for (Thrush et al. 2003; Gerwing et al. 2016, 
2020a; Campbell et al. 2020; Norris et al. 2022). However, 
our results indicate that including sediment geochemistry 
into such models, alongside sediment and environmental 
variables, will produce better preforming models. Further 
research exploring these relationships, as well as the inter-
action between sediment geochemistry and other physical/
environmental properties, will offer greater insight into how 
the elemental composition of sediments influences infaunal 
community composition and dynamics. Note, R2 values can 
be sensitive to overfitting, with models with a higher number 
of terms performing better, in some situations (Anderson 
et al. 2008). However, this does not seem to be the case in 
our data, as models with more terms do not consistently per-
form better than more parsimonious models (Supplemental 
Table S4). Further, AICc values were also used to evalu-
ate model performance, and AICc values penalize for every 
term included. As such, AICc values also suggest that our 
models do not suffer from overfitting.

Exploring relationships between individual 
variables and the infaunal community

The infaunal community composition was statistically cor-
related (Table 1) with environmental variables (5%; distance 
from shore, and salinity) as well as sediment geochemistry 
(65%). Physical, and biophysical variables were not statisti-
cally correlated to observed variation within the infaunal 
community. Interestingly, when similar analyses, exclud-
ing sediment geochemistry, were conducted upon similar 
communities along Canada’s Pacific and Atlantic coasts 

(Gerwing et al. 2016; Campbell et al. 2020; Gerwing et al. 
Submitted), physical, and biophysical parameters were sig-
nificantly related to the infaunal community and accounted 
for 9–11% of the observed variation. As discussed above, 
our findings here may suggest that when sediment geochem-
istry is included in models, traditionally studied physical 
and biophysical parameters (particle size, organic matter and 
water content penetrability, and aRPD depth) may not be as 
important in explaining the structure of an infaunal com-
munity. However, sediment variables exert a known influ-
ence upon infaunal communities, (Diaz and Trefry 2006; 
Valdemarsen et al. 2010; Pilditch et al. 2015a; Gerwing et al. 
2018b, 2020a), and it seems likely that sediment biophysical 
and geochemical properties both influence infaunal commu-
nity composition and population dynamics. More research 
is required to better understand the relative importance of 
each variable, as well as how and why this varies spatially 
and temporally.

In our analysis, the site term was non-significant and 
accounted for none of the infaunal community variation, 
while the transect term was also not significant, and the 
plot term only accounted for 8% of the variation (Table 1). 
The plot and transect terms are likely a product of local 
hydrology and delivery of larvae, intra and interspecific 
interactions, as well as post-settlement dispersal and mor-
tality (Flach and Beukema 1995; Bringloe et  al. 2013; 
Drolet et al. 2013; Pilditch et al. 2015b; Gerwing et al. 
2016; Sizmur et al. 2019; Norris et al. 2022). The lack of 
statistical differences observed between sites, is in stark 
contrast to the apparent site level clustering of infaunal 
communities observed between sites in Fig. 2 (nMDS plot). 
The results of similar investigations, that did not include 
elemental data, reported that the site term accounted for 
32–35% of the infaunal community variation, and the plot 
term 33–37% (Gerwing et al. 2016; Campbell et al. 2020; 
Gerwing et al. Submitted). These authors hypothesized that 
the observed variation in the infaunal community associ-
ated with this site term was likely a product of processes 
such as larval supply (Weersing and Toonen 2009; Einfeldt 
and Addison 2013), post-settlement dispersal and mortality 
(Pilditch et al. 2015b), unmeasured site variables such as 
hydrology, elemental concentrations (Sizmur et al. 2019), 
and exposure to waves/tides (Williams et al. 2013; Gerwing 
et al. 2015b; Rubin et al. 2017), or disturbance and human 
development history (Gerwing et al. 2017c, 2018a; Camp-
bell et al. 2019a; Cox et al. 2019). However, in our study, 
when sediment geochemistry was included in models of the 
infaunal community, the variation attributed to the site and 
plot terms decreased and in the case of our site term, became 
statistically insignificant. When taken together, these results 
suggest that some, or even most, of the previously observed 
variation between sites and plots in infaunal communities 
(as seen in Fig. 2) may not be purely spatial in nature, nor 
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the product of unmeasured or unknown variables that vary 
at these spatial scales. Instead, this infaunal community 
variation previously accounted for by spatial terms such as 
site or plot, may be the product of variation in sediment 
geochemistry.

Of the elements identified as of interest in the PERMAN-
COVA (Table 1), only K (17%), Mn (2%), P (4%), Sr (6%), 
and Ti (36%) accounted for a significant portion of the vari-
ation in the infaunal community. Of these elements, K, Mn, 
and P are essential elements for life whereas Sr and Ti are 
not known to play any biological role. While K and P are 
elements that are essential for survival, excess concentra-
tions can have deleterious effects (Yool et al. 1986; Tyrrell 
1999; Nath et al. 2011; Chiarelli and Roccheri 2014). Mn 
and Sr are common contaminants in marine ecosystems, 
with known deleterious effects on many species (Mejía‐
Saavedra et al. 2005; Blaise et al. 2008; Pinsino et al. 2012; 
Whiteway et al. 2014).

Sediment geochemistry can also be used to identify the 
provenance of sediments (Zhang et al. 2014) and may indi-
cate that the provenance of the sediment in an intertidal mud-
flat influences the composition of the infaunal community. 
Whereas K, P, and to a certain extent Mn, may be applied 
as fertilisers within the Skeena watershed and their enrich-
ment representative of sediments eroded from farmland, Ti 
(the element responsible for the greatest variation in infau-
nal community composition) is a lithogenic element that 
has previously been found to correlate positively with grain 
size (Bábek et al. 2015). It may, therefore, be the case that 
Ti concentrations are a sensitive indicator of sediment grain 
size, which is already known to be a property that shapes 
the composition of benthic infaunal communities (Coblentz 
et al. 2015). Interestingly, when Ti and particle size were 
included in our analyses (Table 1) Ti was significantly cor-
related with the infaunal community, while particle size was 
not. Nor was Ti correlated with sediment particle size in 
our dataset (Pearson univariate correlation; n = 45, p = 0.13). 
Conversely, Ti can also have acute and chronic deleterious 
effects upon invertebrates (Das et al. 2013). Finally, all of 
our measured elements and environmental variables could 
be correlated with another, unmeasured variable, that is 
driving the observed infaunal change. For instance, TB was 
characterized by lower infaunal abundances and higher con-
centrations of Ti, K and S, lower concentrations of Mn, as 
well as lower salinity than the other sites. It is possible that 
an unmeasured variable resulted in this variation, and more 
research is required to better understand these relationships. 
Specifically, future studies should not only include more 
study sites, spanning a broader range of environmental con-
ditions, but also include more samples per site to increase 
analytical resolution.

At the level of the infaunal invertebrate populations and 
individual elements, a complex relationship was detected 

between sediment geochemistry and infaunal species, with 
a mixture of positive and negative correlations observed 
(Table 2). Many of these elements are known to have posi-
tive and negative impacts upon infaunal species (Smith 
1984; Vitousek and Howarth 1991; Tyrrell 1999; Little 
et al. 2017), but these impacts can vary between species 
and at different concentrations (Pourret and Bollinger 2018; 
Sizmur et al. 2019; Eccles et al. 2020). Given the correla-
tional nature of the data presented in Table 2, we will not 
attempt to postulate causal mechanisms. Especially as in situ 
context, such as information regarding nuanced ecological 
interactions between species and covariates, is lacking. For 
instance, an observed positive correlation could suggest that 
increasing concentrations of a given element induces immi-
gration into an area, enhances reproductive output, or has 
positive impacts upon survival and physiological processes. 
Conversely, the element itself may have negative impacts 
upon a species, however, it may have greater effects on a 
competitor, leading to competitive release. As such, instead 
of postulating causal relationships, we suggest that more 
research incorporating more study sites and more samples 
per site is required to untangle the complicated positive 
and negative relationships observed in our study, between 
infaunal invertebrate community composition and sediment 
geochemistry.

Conclusions

Focusing on three intertidal mudflats in the Skeena estuary, 
we observed complex relationships between sediment geo-
chemistry and the infaunal community composition. Despite 
these complicated relationships, combining sediment geo-
chemistry data with traditionally studied physical, biophysi-
cal and environmental variables (salinity, distance from 
shore, detrital cover, penetrability, aRPD depth, organic 
matter/water content, mean particle size) produced models 
that outperformed models that contained only traditional 
sediment and environmental parameters. Our results sug-
gest that some of the observed, and previously unaccounted 
for, spatial variation (between sites and plots) in infaunal 
community composition may be a product of variation in 
sediment geochemistry. As such, in situ sediment chemical 
composition should be integrated into how we study infaunal 
communities, as well as how we interpret human impacts 
upon intertidal systems, and assess the success of restoration 
and conservation projects.
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