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Abstract
Copepods serve as a major link in marine food webs, bridging the energy transfer from primary producers to higher trophic 
levels. Oceanic warming is linked to reduced concentrations of essential fatty acids (FA) in phytoplankton, namely eicosap-
entaenoic acid (EPA, 20:5ω3) and docosahexaenoic acid (DHA, 22:6ω3), and it remains largely unknown if copepods have 
the capacity to endure. The calanoid Temora longicornis and the harpacticoid Platychelipus littoralis were chosen to analyse 
their FA and biosynthesis activity in response to a long-chain polyunsaturated FA (LC-PUFA) deficient diet (Dunaliella 
tertiolecta) along a temperature gradient. Copepods were fed D. tertiolecta labelled with the stable isotope carbon-13 (13C) 
to quantify carbon assimilation into their total FA and de novo EPA and DHA biosynthesis after 6 days incubated at 11, 14, 
17, 20 and 23 °C. The calanoid had increased mortality with warming, whereas the harpacticoid exhibited high survival 
across the thermal gradient. After the incubation, P. littoralis assimilated minimal amounts of dietary carbon into its total 
FA in comparison to T. longicornis. T. longicornis depleted their field EPA and DHA stores more rapidly, whereas P. litto-
ralis maintained its relative storage of EPA and DHA and absolute concentrations of DHA. T. longicornis displayed higher 
fractions of de novo EPA and DHA biosynthesis than P. littoralis at all temperatures, with the exception of DHA at 23 °C. 
Within our experimental incubation period both species were unable to meaningfully upgrade the LC-PUFA deficient algae 
to biosynthesize de novo EPA and DHA as a relevant source for higher trophic levels.
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Introduction

Record temperature increases and large fluctuations are 
undisputedly becoming more ordinary and frequent in 
marine ecosystems (Stenseth et al. 2002) pressuring the 
adaptive and acclimatization limits of organisms who 
have limited motility. These temperature changes can 

restructure the base of complex marine food webs nota-
bly through range-shifts (Beaugrand et al. 2002; McGinty 
et al. 2021), changes in reproductive timing (Daase et al. 
2013), abundances and size (Garzke et al. 2015), and via 
the modification of individuals’ fatty acids (FA) (Garzke 
et al. 2016). This adjustment of primary producer food 
quality, specifically the predicted reduction of omega(ω)-3 
FA with warming, can have major implications on the 
availability of these important essential FA (EFA) (Hixson 
and Arts 2016; Colombo et al. 2020). EFA (e.g. eicosa-
pentaenoic acid (EPA): 20:5ω3, docosahexaenoic acid 
(DHA): 22:6ω3) are critical for growth and survival and 
cannot be produced de novo by marine invertebrates in the 
considerable amounts required (Bell et al. 2007). How-
ever, through the recent development of detailed molecular 
and isotope tracing methods many metazoans have been 
shown to contain the critical enzymes with the capac-
ity to perform biosynthetic pathways producing ω-3 FA 
(Kabeya et al. 2018, 2021). Calanoids were often believed 
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to have poor biosynthesis capacities (Moreno et al. 1979; 
Bell et al. 2007), more recent research suggest that at least 
some species have the ability to produce long-chain poly-
unsaturated FA (LC-PUFA) from precursors in ecologi-
cally relevant quantities (Nielsen et al. 2019). Cyclopoid, 
calanoid, and harpacticoid copepod species were shown 
to possess these biosynthesis capabilities (De Troch et al. 
2012; Nielsen et al. 2020), that intensified under warming 
pressures (Werbrouck et al. 2017; Helenius et al. 2020). 
LC-PUFA are defined by a FA chain length of 20 or more 
carbon units (Ratnayake and Galli 2009). LC-PUFA bio-
synthesis is enabled by a series of enzymes including fatty 
acyl desaturases, which introduce a double bond in the FA 
carbon chain, and elongases, that elongate very long-chain 
FA by introducing two additional carbon atoms (Bell and 
Tocher 2009; Monroig and Kabeya 2018). While front-end 
desaturases and elongases are present throughout copepod 
orders (Nielsen et al. 2019; Lee et al. 2020; Kabeya et al. 
2021), methyl-end desaturases—enabling biosynthesis of 
monounsaturated FA (MUFA) towards LC-PUFA—have 
recently been detected in at least harpacticoid, cyclopoid 
and siphonostomatoid copepods, completely revising the 
current assumptions on global de novo LC-PUFA pro-
duction within aquatic food webs (Kabeya et al. 2018). 
This ability for biosynthesis has been proposed to be a 
potential adaptive mechanism to overcome reduced dietary 
LC-PUFA availability (Nielsen et al. 2020); however, the 
triggers/circumstances for biosynthesis and the extent to 
which individuals can offset these deficiencies remains 
unknown.

Copepods are a dominant group of zooplankton and 
play an important role due to their high lipid concentra-
tions in comparison to primary producers (Kattner and 
Hagen 2009), providing higher trophic levels with an 
energetic food source. In marine intertidal sediments the 
order Harpacticoida dominates, due to high inputs of detri-
tus and nutrients stimulating microphytobenthos growth, 
and availability of benthic microbial communities (Meyer 
1994; Cnudde et al. 2015). Harpacticoids are a lipid-rich 
dietary item for demersal and juvenile fish species (Gee 
1987; Coull 1990), and can enrich sediment with organic 
matter, promoting biogeochemical cycling processes 
(Stock et al. 2014). Comparatively, in the pelagic envi-
ronment the order Calanoida is the major group within 
the zooplankton community, serving as prey-items for 
(larval) fish (Beaugrand et al. 2003; Turner 2004), sea-
birds (Frederiksen et al. 2013; Bertram et al. 2017), and 
whales (Cronin et al. 2017). Apart from direct consump-
tion, they also contribute to the detrital food web through 
the microbial remineralization (Lampitt et al. 1990), and 
to the biological carbon pump (Jónasdóttir et al. 2015). 
Although morphologically distinct, these two orders fill 

a similarly critical niche in energy transfer, within their 
respective oceanic realms, and will face analogous warm-
ing pressures.

Global sea surface temperatures (SSTs) are expected to 
rise between 1.2 and 3.47 °C by 2100 as per Shared Socio-
economic Pathway (SSP) scenarios 2.6 and 8.5, respectively 
(Kwiatkowski et al. 2020). Since zooplankton have a rela-
tively short generational time (< 1 year) and are poikilo-
thermic, the population dynamics and energetics tied to 
environmental warming are meaningful (Hays et al. 2005; 
Richardson 2008). This environmental pressure can have an 
effect on both the organism itself and the algae they con-
sume. Hence, assessing the effects of dietary LC-PUFA 
provision along a temperature gradient in these important 
primary consumers is relevant to understand future climate 
effects on the marine food web. Both temperature and food 
quality have been shown to be the stressors with the larg-
est impact on individual FA composition (Deschutter et al. 
2019), thereby impacting energy flow changes for higher 
trophic levels. A methodology being used to quantify the 
transfer of FA incorporation and biosynthesis in a consumer 
is compound-specific stable isotope analysis (CSIA). By 
labelling the food source with the stable isotope carbon-13 
(13C), we are able to track the percent of algae-derived FA 
under experimental conditions, and understand differen-
tial incorporation or modification/biosynthesis processes 
for each FA (Twining et al. 2020). These data are resolved 
via gas chromatography combustion-isotope ratio mass 
spectrometry (GC-c-IRMS), allowing us to ascertain the 
13C/12C ratio of individual FA found within the copepod 
consumer. Accordingly, the amount of FA in the consumer, 
derived from the isotopically labelled food source can be 
determined. As LC-PUFA are absent in the chlorophyte 
Dunaliella tertiolecta, this alga was selected. As such, the 
LC-PUFA with D. tertiolecta derived carbon in the copepod 
consumer can be used to assess LC-PUFA biosynthesis dur-
ing the lab incubation (de novo). This method is a proposed 
alternative FA tracer method to liposomes (Bell et al. 2007).

The objective of this study was to measure the effects of a 
LC-PUFA deficient diet on the FA composition, incorpora-
tion and de novo biosynthesis in two copepod species of dif-
ferent orders along a temperature gradient. Using 7-day lab 
treatments, we evaluated the temperature-specific response 
of carbon incorporation in consumer FA under LC-PUFA 
deficient conditions between Platychelipus littoralis, a ben-
thic harpacticoid species with known temperature-dependent 
biosynthesis capabilities (Werbrouck et al. 2017), and the 
calanoid Temora longicornis, the dominant zooplankton spe-
cies in the southern North Sea (Semmouri et al. 2021), with 
as of yet unknown biosynthesis capabilities.
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Materials and methods

Sampling and experimental design

The calanoid copepod T. longicornis (Müller 1785) were 
collected from the Belgian part of the North Sea (BPNS), 
on the research vessel (RV) Simon Stevin on 15th February 
2021 at sampling station 330 (51°25′ 995″ N, 2°48′41.5″ 
E) in the coastal waters near Ostend. Copepods were col-
lected using a vertically towed WP2 net (57 cm diameter, 
200 µm mesh size), towed from bottom to surface (SST: 
4.8 °C, 32.997 PSU, 0 µg  L−1 chlorophyll a). Individu-
als were transported and held in 35 L vessels, contain-
ing natural seawater obtained from the sampling station. 
The harpacticoid copepod P. littoralis (Brady, 1880) were 
obtained during low tide from the Paulina intertidal mud-
flat, Westerscheldt estuary, Netherlands (51°21′ 24″ N, 3° 
42′ 51″E) on 9 March 2021. The top sediment layer was 
sampled (5.45 °C, 21.55 PSU), and individuals were iso-
lated by sieving through a 250 µm mesh. Copepods (CV/
CVI) were randomly selected under a Wild Heerbrugg M5 
stereomicroscope (length P. littoralis: ~ 0.9 mm (Werb-
rouck et al. 2017), T. longicornis: 1.39 ± 0.27 mm (Sem-
mouri 2022)). To characterize the FA profile of individuals 
in the field, quadruplicates of 50 copepods were sampled 
and stored at  – 80 °C after allowing gut clearance for 12 h 
in autoclaved filtered natural seawater (FNSW). Follow-
ing identification to species level, individuals (n = 60: T. 
longicornis, n = 70: P. littoralis) were placed directly in 1 
L glass jars of autoclaved FNSW with aeration for 12 h at 
11 °C to allow gut clearance before addition of the food. 
Based on previous laboratory experiments (e.g., Werb-
rouck et al. 2017), no aeration was added to the P. littoralis 
jars to not disturb their benthic lifestyle as they could not 
hide in any sediment in the experimental unit.

The chlorophyte, D. tertiolecta (Butcher 1959), was 
obtained from the Laboratory of Aquaculture & Arte-
mia Reference Center at Ghent University, and cultured 
at 15 °C in autoclaved FNSW with NutriBloom Plus. D. 
tertiolecta cultures were isotopically labelled with 16.8 mg 
 NaH13CO3 stock solution per 100 mL of growth medium 
(De Troch et al. 2012; Werbrouck et al. 2017), and grown 
in climate rooms (15 °C, 12:12 h light:dark, 17–46 µmol 
photons  m−2  s−1) for 10 days. Cell concentrations were 
monitored with a Beckman Coulter counter Multisizer 
3. Prior to addition in experimental units, D. tertiolecta 
cultures were centrifuged, the supernatant containing the 
13C label and nutrients was removed, then D. tertiolecta 
was resuspended in autoclaved FNSW. This was repeated 
twice to inhibit further algal growth (De Troch et al. 2012; 
Werbrouck et al. 2017). Quadruplicate 10 mL samples of 
D. tertiolecta were taken for FA analysis in pre-combusted 

glass vials, and for total carbon analysis by filtering 25 mL 
onto Whatman GF/F filter, both stored at  – 80 °C. Algae 
concentrations were measured approximately 12 h after 
addition to the experimental units and after 6 days.

Four replicates of glass jars filled with 1 L of auto-
claved FNSW per species (P. littoralis, 70 ind.  unit−1; T. 
longicornis, 60 ind.  unit−1) were placed at each of the five 
temperature treatments (11, 14, 17, 20, 23 °C), controlled 
Lovibond TC-175 incubators (temperature control ± 1 °C). 
Experimental units (total n = 40) were fed ad libitum (20 
000–45 000 cells  mL−1, 0.248–1.098 mg carbon  L−1) with 
the prepared 13C-labelled D. tertiolecta (above) for 6 days 
under a 12:12 h light:dark regime. These units were accli-
mated from 11 °C to their treatment temperature at a rate of 
2 °C  h−1. To assess potential algae growth throughout the 
experiments, quadruplicate experimental units containing 
only D. tertiolecta were placed in the 14 °C incubator for the 
duration of the experiment. No increase in cell concentra-
tion was reported in these samples (Fig. S1), hereafter we 
assume algae growth was successfully inhibited. On day 6 
individuals were sieved on a 38 µm mesh and living indi-
viduals were transferred to autoclaved FNSW to allow gut 
clearance for 24 h. After this period, surviving individuals 
were transferred to glass vials and stored at  – 80 °C prior to 
FA analysis.

Total fatty acid extraction, quantification and CSIA

An internal standard (FA 19:0, 5 µg) was added to the 
freeze-dried samples, then FA methyl esters (FAME) were 
prepared via a direct transesterification procedure with 
2.5% (v:v) sulfuric acid in methanol as described by De 
Troch et al. (2012) to achieve total FA analysis. FAME 
were extracted twice with hexane. Composition analysis of 
FA was carried out using a gas chromatograph (GC) (HP 
7890B, Agilent Technologies, Diegem, Belgium) equipped 
with a flame ionization detector (FID) and connected to 
an Agilent 5977A Mass Selective (MS) Detector (Agilent 
Technologies). The GC was further equipped with a PTV 
injector (CIS-4, Gerstel, Mülheim an der Ruhr, Germany). A 
60 m × 0.25 mm × 0.20 μm film thickness HP88 fused-silica 
capillary column (Agilent Technologies) was used for the 
GC analysis, at a constant Helium flow rate (2 mL  min−1). 
The injection sample volume was 2 μL, and the oven tem-
perature program was set as described in Boyen et al. (2020). 
FAME were analysed with the GC–MS prior to CSIA due to 
the higher total FA profile resolution and detection capabili-
ties. The signal obtained with the FID detector was used to 
generate quantitative data of all compounds (MassHunter 
Quantitative Analysis Software, Agilent Technologies). 
Chromatogram peaks were identified based on their retention 
times, the external standards (Supelco 37 Component FAME 
Mix, Sigma-Aldrich) and the mass spectra. Quantification 
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of FAME was based on the FID area of the internal standard 
(19:0), and the conversion of peak areas to the amount of the 
FA by a theoretical response factor for each FA (Ackman 
and Sipos 1964; Wolff et al. 1995).

To assess the 13C within the FA, FAME from all treat-
ments and field samples were analysed by capillary gas 
chromatography combustion-isotope ratio mass spectrom-
etry (GC-c-IRMS) at the Isotope Bioscience Laboratory 
(ISOFYS), Ghent University. The GC-c-IRMS system 
consisted of a Trace GC 1310 equipped with a PTV injec-
tor and a VF23-MS column (length = 60 m, ID = 0.25 mm, 
film = 0.25 µm), connected to combustion/pyrolysis unit 
(GC-ISOLINK) where the FAME are converted to  CO2. 
The FAME is let by an automated open split system (Conflo 
IV) to an IRMS detector (DeltaV advantage, Thermo Sci-
entific, Bremen Germany). 13C abundance was calibrated 
using the F8-3 mix of Arndt Schimmelman. Typical preci-
sion of 13C abundance is within 0.0005%. The GC-c-IRMS 
was not able to determine the position of the unsaturation in 
the carbon-20 chain (20:1), therefore its full notation is not 
indicated in the figures and tables reported in the results and 
supplementary information.

CSIA calculations

During GC-c-IRMS analysis the analytes are converted to 
 CO2 to be analysed by the IRMS detector where m/z 44, 45 
and 46 are recorded simultaneously by three detectors. From 
the ratio of these three traces the a13C can be determined 
with high precision. The peak area (PA) of the individual FA 
can be used to also assess the FA content ([FA]). Commonly, 
in not artificially 13C enriched material this is done using the 
combined peak area of the three mass traces. However, due 
to the high 13C enrichments and the different amplifications 
of the detectors, the [FA] per copepod was determined as 
follows:

with  PAX,FAME and  PAX,IS being the peak area at m/z = x 
of the FAME of interest and of the internal standard (IS), 
respectively, a13CIS the 13C abundance in the IS (1.08%), 
mIS the mass of the C19:0-FAME added (50 µg), MFA and 
MIS the molar mass of the FA of interest and of the IS 
(312.54 g∙mol−1), respectively, nCFA and nCIS indicating 
the number of carbons in the FA of interest and in IS (20), 
and N being the number of copepods in the extracted sample.

The GC-c-IRMS measurements delivers the 13C abun-
dance of the individual FAME (a13CFAME). To obtain the 

(1)
FAt=

(

PA44,FAME × (1 − a13CIS)
PA44,IS

+
PA45,FAME × (a13CIS)

PA45,IS

)

×
mIS × (nCIS) ×MFA

MIS × (nCFA + 1) × N

a13C of the corresponding FA (a13CFA), the measured 
a13CFAME must be corrected for the contribution of the 
methyl  (a13CMeOH), added during derivatization to FAME:

The fraction of carbon assimilated (fC assi) in consumer 
FA derived from the 13C-labelled D. tertiolecta can be com-
puted as:

with a13CFA-exp. and a13CFA-control representing the a13CFA 
of the specific FA in copepods fed with 13C-labelled D. 
tertiolecta and control copepod (directly collected on field 
site), respectively, a13Clabelled DUNA and a13Cfield food (1.08%) 
indicating the bulk a13C of the 13C-labelled D. tertiolecta 
and of the food prior to incubation, respectively (adapted 
from Werbrouck et al. 2017). The bulk 13C of the labelled 
D. tertiolecta, was not measured due to instrumental limi-
tations to measure very high enrichments, therefore the 
a13Clabelled DUNA was estimated using the a13CFA of 18:3ω3 
(46.45%) found in the calanoid copepod samples. This value 
was used as a proxy due to the high concentration of 18:3ω3 
in D. tertiolecta (Thor et al. 2007), and high uptake by T. 
longicornis. Finally, the absolute amount of FA derived from 
the carbon assimilated of the 13C-labelled D. tertiolecta 
 ([FA]C assi) could be computed as follows:

For FA already present in D. tertiolecta (SFA, MUFA 
and PUFA < 20 carbon units), we assume that FA derived 
from the labelled feed in the copepods are a combination of 
direct unaltered incorporation, biosynthesis and conversion. 
LC-PUFA (ARA, EPA and DHA) are not present in D. ter-
tiolecta, therefore LC-PUFA derived from the labelled feed 
in the copepod are the result of biosynthesis from dietary 
obtained FA precursors (see Supplementary Information, 
Table S1). The carbon assimilation from the algae into the 
total sum of all measured FA (TFA) relative to the absolute 
concentrations was additionally calculated.

Statistical analysis

All statistical analyses and visualizations were conducted in 
R, version 4.1.1 (R Core Team 2021). Intra-specific cell con-
centrations of D. tertiolecta between day 1 and 6 were com-
pared using a Bonferroni corrected multiple pairwise t-test. 
No increase of algae concentrations during the experimen-
tal treatment was detected, therefore algae growth inhibition 
was considered successful (Fig. S1). Relative percent FA 

(2)a13CFA =

[

a13CFAME ×
(

nCFA + 1
)

− a13CMeOH

]

nCFA

(3)fCassi =
a13CFA - exp. − a13CFA - control

a13Clabelled DUNA − a13Cfield food

(4)[FA]Cassi = [FA] × fCassi



Marine Biology (2022) 169:133 

1 3

Page 5 of 12 133

composition data were analysed using non-parametric mul-
tidimensional scaling (nMDS), Bray–Curtis dissimilarity, on 
cube-root transformed data. A permutational analysis of vari-
ance (PERMANOVA) was conducted based on groups deter-
mined by hierarchical clustering. To discriminate which FA 
were contributing the most to these differences, a similarity 
percentages test (SIMPER) was conducted.

A quasi-binomial logistic generalized linear model (GLM) 
was used to model proportional copepod survival along tem-
perature, considering species identity as a factor and weighted 
by the number of copepods in each sample, to account for an 
overdispersion of the data estimated by the ratio of the residu-
als deviance and the degrees of freedom (Haman 2020). Mul-
tiple comparisons of type Tukey were applied to the survival 
GLM, using the package ‘multcomp’ to determine significant 
differences considering species and temperature (Hothorn 
et al. 2008) (Table S2). Generalized additive models (GAM) 
were used to evaluate the significance of the non-linear rela-
tionship of the relative carbon assimilation into the TFA (Cassi 
 TFA−1) and the fraction of carbon assimilation into specific 
FA along a temperature gradient between species using the 
package ‘mgcv’ (Wood 2011). Non-parametric smoothers (s) 
by restricted maximum likelihood were applied to the tem-
perature effects (T) by species identity (S), considering spe-
cies as a factor:  Cassi  TFA−1 ~ f(S) + s(T, by = S). If these data 
violated homogeneity assumptions evaluated by the dispersion 
of the residuals versus fitted values, due to zero-inflation, a 
gamma distribution family was assumed with a log-link func-
tion (Zuur et al. 2009) (Table S3). Due to high mortality the 
FA data from two T. longicornis replicates at 23 °C have been 
omitted. Model selection was done on the basis of the Akaike 
Information Criterion (AIC) and ANOVA. The significance of 
the smooth terms are reported, and explained deviance is listed 
on the GAM as it is considered as a generalized measurement 
of goodness of fit, rather than R2-values (Wood 2011). Carbon 
assimilation per FA is listed in the supplementary informa-
tion (Fig. S2, Table S4, Table S5), note some models could 
not be reliably interpreted for FA with numerous undetected 
values and were omitted from this analysis (i.e., 15:0, 16:2ω4, 
18:1ω9, 20:1). Due to size differences between species, the 
fraction of de novo FA was modelled rather than the absolute 
amount.

Results

Survival and diet characterization

The proportional survival could be predicted from the 
interaction between temperature (T) exposure and species 
(S) identity (GLM, P = 0.003) (Fig. 1). Accordingly, the 
effect of temperature on survival was species specific. The 
harpacticoid, P. littoralis, survival was not significantly 

different (94.8 ± 4.1%) across all temperature treatments 
(GLM Tukey, 11:23 °C, P = 0.999) (Table S2). In contrast, 
the survival of the calanoid, T. longicornis, decreased with 
at higher temperature treatments, ranging from 83.8 ± 8.3% 
at 11 °C to 22.5 ± 14.7% at 23 °C (GLM Tukey, P < 0.01) 
(Table S2).

Interspecific comparison of FA composition

In T. longicornis FA 16:0, 20:5ω3 (EPA), and 22:6ω3 
(DHA) were the most abundant, comprising of > 70% of 
the total FA composition (Table S6). Comparatively, in P. 
littoralis FA 16:0, 16:1ω5, 16:1ω7, EPA, and DHA were 
the most abundant, corresponding to > 70% of the total FA 
composition (Table S6). There were significant differences 
in FA composition between all temperature treatments and 
field samples among species (PERMANOVA, P = 0.012). 
However, hierarchical clustering and nMDS visualization of 
the data showed these did not fall into natural groups, there-
fore only significant differences (PERMANOVA, P = 0.001) 
between broad field and experimental species groups were 
considered (Fig. S3). Looking only at field samples between 
species, the FA that contributed the most to the differences 
are EPA, 14:0, 16:1ω5, DHA, and 16:1ω7 (Table S7). FA 
EPA, 14:0 and DHA were present in higher relative con-
centrations in field T. longicornis than in field P. littoralis 
(Table S6). Notably in field samples, P. littoralis contained 
7.7% DHA whereas T. longicornis contained 29% DHA. 
Accordingly, these same FA also contributed largely to the 

Fig. 1  Generalized linear model of proportional survival (ranging 
from 0 to 1, indicating complete mortality or survival of individuals 
within experimental units, respectively) for Platychelipus littoralis 
and Temora longicornis along a temperature gradient (11, 14, 17, 20, 
23 °C). The shaded lines around the mean (dashed) per species, rep-
resent the 95% confidence interval



 Marine Biology (2022) 169:133

1 3

133 Page 6 of 12

differences between the temperature incubation treatments 
per species, in addition to 18:3ω3, which was the dominant 
FA in the algal feed (D. tertiolecta, Table S1), 24:1ω9 and 
18:1ω7 (Table S7).

Interestingly, there was no significant difference 
between the relative amounts of EPA in P. littoralis in 
the field and experimental samples, regardless of tempera-
ture treatment (Kruskal–Wallis, P = 0.96), whereas they 
decrease in T. longicornis (Kruskal–Wallis, P = 0.031) 
(Table  S6). Between field and the incubated samples 
absolute EPA concentrations (ng ind.−1) were significantly 
lower for both P. littoralis (Kruskal–Wallis, P < 0.001) 
(Fig. 2a) and T. longicornis (ANOVA, P = 0.002) (Fig. 2b, 
Table S8). There was no difference between the relative 
amount of DHA in P. littoralis’ field and experimental 
incubation samples, with the exception of treatments at 
17 (Pairwise t-test, P = 0.042) and 23 °C (Pairwise t-test, 
P = 0.018), similarly when considering the absolute DHA 

values, with an exception at 20 °C (Pairwise Wilcox test, 
P = 0.024) (Fig. 2c). In T. longicornis, relative DHA val-
ues increased between field and experimental samples for 
temperatures 11 (Pairwise t-test, P = 0.042), 14 (Pairwise 
t-test, P = 0.004), 17 (Pairwise t-test, P = 0.012), and 20 °C 
(Pairwise t-test, P = 0.013) with the exception of the treat-
ment at 23 °C (Pairwise t-test, P = 0.22). However, when 
considering T. longicornis absolute DHA values, they were 
significantly lower in temperature treatments 14, 17, 20 °C 
than the field samples and the 11 °C treatment (ANOVA, 
P = 0.007) (Fig. 2d). Therefore, with the exception of DHA 
in P. littoralis, EPA and DHA concentrations decrease in 
incubated samples fed D. tertiolecta after 6 days in com-
parison to the field (Fig. 2).

Fig. 2  Mean absolute a–b EPA (20:5ω3) and (c-d) DHA (22:6ω3) 
amounts (ng) per individual ± standard error in P. littoralis and T. 
longicornis samples from the field and in the incubated tempera-
ture treatments (11, 14, 17, 20 and 23 °C) after day 6. Visualization 
is divided per FA and species, note the differences of scale between 
panels. Pairwise post-hoc tests were performed for all temperature 

treatments against natural reference (‘Field’) group (n = 4) per FA and 
species after finding significant difference of global means, means 
sharing a letter are not significantly different (P > 0.05). Note, T. lon-
gicornis 23 °C treatment significance should be interpreted with cau-
tion due to high mortality (low number of individuals per sample), 
and low sample size (n = 2)
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Carbon assimilated into total fatty acids

The total carbon assimilated by P. littoralis during the 
experimental incubation, indicated by carbon assimila-
tion derived from 13C-labelled D. tertiolecta, into the TFA 
 (Cassi  TFA−1) varied with increasing temperature (Fig. 3a). 
Carbon assimilated into the total consumer FA decreased 
from 0.45 ± 0.21% at 11 °C to 0.28 ± 0.07% at 20 °C, then 
increased to 1.29 ± 0.32% at 23 °C (GAM, P < 0.001). Com-
paratively, T. longicornis displayed a significantly higher 
relative carbon assimilation than P. littoralis with a mean 
value of 12.08 ± 4.62%, with no significant effect of tem-
perature (GAM, P = 0.34) (Fig. 3b). Overall, T. longicornis 
displayed higher carbon assimilation into it’s FA pool than 
P. littoralis per individual, derived from D. tertiolecta in 
6 days. Similar patterns were observed in carbon assimila-
tion per SFA (14:0, 16:0, 18:0), MUFA (16:1ω9, 18:1ω11), 
and short-chain PUFA (18:3ω3) (Fig. S2, Table S4).

Comparison of de novo production of EPA and DHA 
between species

T. longicornis displayed higher de novo production of both 
EPA and DHA than P. littoralis with an exception at 23 °C 
(Table S4). T. longicornis EPA production ranged from 
0.226 ± 0.117 to 0.030 ± 0.060 ng ind.−1 at 11 to 23 °C, 
respectively (Table S5). In comparison, EPA production in 
P. littoralis ranged from 0.015 ± 0.011 to 0.033 ± 0.008 ng 
ind.−1 at 11 to 23 °C, respectively. Lower DHA than EPA 
production was observed ranging from 0.161 ± 0.043 to 
0.012 ± 0.025 and from 0.009 ± 0.001 to 0.030 ± 0.019 ng 
ind.−1 in the temperature range from 11 to 23 °C in T. longi-
cornis and P. littoralis, respectively.

There is a significant effect of temperature on the frac-
tion of de novo EPA in T. longicornis derived from the D. 
tertiolecta after 6 days (GAM, P < 0.001, explained devi-
ance = 91.6%) (Fig. 4a, Table S3). Comparatively, there is no 
relationship between temperature and fraction of EPA pro-
duced by P. littoralis with a mean value of 0.023 ± 0.007 ng 
ind.−1 (no significant difference between treatments) (GAM, 
P = 0.935, explained deviance = 91.6%). Despite showing 
significant relationships for both species for the fraction 
of de novo DHA with temperature, due to the numerous 
undetected values resulting from low concentrations, this 
model output should be interpreted with caution (Fig. 4b, 
Table S3). This is reflected in a low proportion of the vari-
ance and deviance explained (R2 = 0.219, 68.0%).

Discussion

The aim of this study was to discern the effects of a poor 
quality diet on the FA composition, and evaluate the poten-
tial for LC-PUFA biosynthesis after 6 days in two copepod 
species along a temperature gradient. To compensate for 
poor quality food, organisms can increase ingestion rates 
(Malzahn and Boersma 2012), and their carbon incorpo-
ration efficiency (Gulati and Demott 1997). By choosing 
a labelled algal diet absent of LC-PUFA, we were able to 
discern the effect of poor food quality on assimilation and 
thereby what was retained by the individuals. Furthermore, 
we could evaluate the potential of LC-PUFA biosynthesis 
from labelled precursor compounds consumed within the 
duration of the experiment. T. longicornis displayed higher 
overall carbon assimilation than P. littoralis, and maintained 
this across all temperature treatments, likely to compensate 

Fig. 3  Fraction of the total fatty acid carbon derived from the labelled 
D. tertiolecta  (Cassi  TFA−1) after 6 days in a P. littoralis and b T. lon-
gicornis along an experimental temperature gradient. Data displayed 
are untransformed and separated by species factor. The shaded lines 

around the mean (dashed line), coloured per species, represent the 
95% confidence interval. Note the difference of scale between the two 
panels
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for the high metabolic costs associated with the LC-PUFA 
deficient diet and warming pressure. Since the calanoid car-
bon assimilation did not significantly vary across the tem-
perature range, this indicates that either this process is not 
regulated (i.e., independent of temperature), or the experi-
mental stress was heightened enough at 11 °C to induce 
maximum ingestion rates, assumed from carbon assimila-
tion, to compensate for the temperature and diet stressors. 
In comparison, P. littoralis has relatively low assimilation 
rates, only increasing at the highest temperature treatment 
(23 °C). This—in conjunction with the retention of the rela-
tive field LC-PUFA concentrations—may indicate that P. 
littoralis does not require to increase assimilation to meet 
their metabolic demands until the extreme of 23 °C. The 
carbon assimilation rate in P. littoralis ranges from 0.075 
to 0.214%  day−1 at 11 and 23 °C, respectively, whereas it is 
on average 2.014%  day−1 for T. longicornis. This suggests 
that P. littoralis increased assimilation of the labelled D. 
tertiolecta as temperatures increased, whereas T. longicornis 
maintained the same uptake throughout. The variation of 
T. longicornis carbon assimilation per TFA increased with 
temperature, whereas for P. littoralis replicates were quite 
similar. This increased variability between replicates is rec-
ognized as a biochemical indicator of environmental stress 
(Werbrouck et al. 2017).

Higher observed assimilation rates have been recorded in 
Antarctic calanoid species Calanoides acutus and Calanus 
propinquus of 3.1 and 3.9%  day−1, respectively, when fed on 
a diatom diet under natural temperature conditions (Graeve 
et al. 2020). The small herbivorous arctic calanoid Pseudo-
calanus minutus has demonstrated a more similar carbon 
assimilation rate to T. longicornis of 2.6%  day−1, while the 
cyclopoid Oithona similis has a carbon assimilation rate 
more similar to P. littoralis at 0.5%  day−1, when fed on a 
diatom dinoflagellate mixture at 4 °C (Boissonnot et al. 

2016). These studies reporting the assimilation efficiency 
have been conducted under ambient sampling temperature 
and with higher food quality (presence of LC-PUFA), there-
fore individuals may have increased their uptake in response 
to these favourable conditions. Reduced ingestion of carbon 
in T. longicornis fed on D. tertiolecta has been previously 
recorded (Arendt et al. 2005). We suggest that the combined 
stress of a LC-PUFA deficient diet and temperature resulted 
in reduced rates of carbon assimilation for the two species 
investigated in this study in comparison to those reported in 
the literature. The low assimilation rates recorded in P. lit-
toralis may be due to the preferential use or ability to retain 
its own relative lipid content rather than utilization of the 
poor external food source.

Although T. longicornis exhibits higher carbon incorpo-
ration into its TFA than P. littoralis, this does not restore 
the absolute FA concentrations to the levels observed in the 
field samples. There was a considerable reduction of EPA 
concentrations between field and experimental samples for 
both T. longicornis (~ 60% reduced) and P. littoralis (~ 32% 
reduced) (Fig. 2). A similar reduction of 33% was observed 
in T. longicornis DHA concentrations between field and 
experimental samples. For T. longicornis DHA concentra-
tions have been shown to be an important factor contributing 
to reproductive success (Arendt et al. 2005). Comparatively, 
P. littoralis was able to retain the same DHA concentra-
tions between the field and the temperature exposed samples 
after 6 days. This retention of DHA in P. littoralis fed a LC-
PUFA deficient diet was similarly recorded by Boyen et al. 
(2020), where this species was exposed to + 3 °C warming 
conditions for four additional days to this study. Consider-
ing the low fractions of EPA and DHA derived from D. 
tertiolecta in both T. longicornis (< 0.001–0.002) and P. lit-
toralis (< 0.001–0.001) (Fig. 4, Table S4), under the experi-
mental conditions described T. longicornis was not able to 

Fig. 4  De novo synthesized fraction of a EPA (20:5ω3) and b DHA (22:6ω3) derived from D. tertiolecta in P. littoralis ‘•’ and T. longicornis ‘ ◦ ’ 
along a temperature gradient after 6 days. The shaded lines around the mean (dashed) per species represent the 95% confidence interval
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biosynthesize EPA and DHA to restore their ω3-stores. This 
is in accordance with the observed poor ability of calanoids 
to biosynthesize LC-PUFA (Bell et al. 2007). The minor 
amounts of biosynthesized EPA and DHA by T. longicornis 
are presumed to be derived from FA precursors modified 
via front-end desaturases and elongase genes present in 
calanoids (Monroig and Kabeya 2018). Monitoring the 
differential gene expression of these aforementioned bio-
synthesis genes can help elucidate the specific pathways 
utilized (Nielsen et al. 2019). Previously, under LC-PUFA 
deficient conditions P. littoralis has been shown to have high 
assimilation of carbon into their EPA and DHA, thus dem-
onstrating strong biosynthesis capabilities (0.088 ng DHA 
ind.−1) (Werbrouck et al. 2017). However, this was still not 
sufficient to recover the individuals DHA stores (Werbrouck 
et al. 2017). Under our experimental conditions we observed 
the opposite, rather P. littoralis was able to retain its DHA 
stores while at the same time exhibited poor biosynthesis 
abilities (0.023 ng DHA ind.−1), and lower than T. longi-
cornis. Both species exhibited a lower fraction of EPA and 
DHA (Fig. 4) derived from the labelled food in comparison 
to tropical cyclopoid Apocyclops royi (EPA: 1.64%, DHA: 
2.35%) and calanoid Pseudodiaptomus annandalei (EPA: 
0.55%, DHA: 3.09%) fed D. tertiolecta after 48 h (Nielsen 
et al. 2020). Nielsen et al. (2020) proposes that the biosyn-
thesis pathways are more active in these two brackish spe-
cies since they naturally inhabit a PUFA-poor environment. 
Thus, the life-history feeding conditions and field PUFA 
availability may contribute to the copepods ability to uti-
lize these pathways. We suggest that since DHA levels were 
maintained, the need for additional de novo biosynthesis 
was not necessary for P. littoralis. Alternatively, P. littoralis 
could maintain its DHA concentrations through the conver-
sion of EPA, previously obtained in the field, to DHA (Mon-
roig and Kabeya 2018), rather than utilizing FA obtained 
from the labelled experimental feed. However, as we cannot 
trace the modification of the FA acquired in the field with 
CSIA, we suggest monitoring via a gene-specific approach, 
once it is confirmed that biosynthesis pathways are being 
employed, or over multiple generations.

The species-specific response may be attributed to the 
difference of functional traits resulting from the unique 
stressors in their respective natural environments. Our 
results indicate that the harpacticoid, P. littoralis, appears 
to be more suited to more variable conditions than the cala-
noid T. longicornis. The differing lifestyles of pelagic cala-
noids and benthic harpacticoids can be linked to the abiotic 
stressors faced, energy demands throughout their lifespan, 
prey types encountered, and frequency of feeding periods. 
Since P. littoralis occupies the benthos, this species is more 
sedentary and expends less energy in comparison to T. lon-
gicornis’ vertical movement throughout the water column 
(Hays et al. 2001). In the harsher intertidal conditions that 

the harpacticoids inhabit, the temperature change can be 
more stochastic, ranging between 4 and 22 °C throughout 
the year (Sahan et al. 2007). Comparatively, calanoids in 
the pelagic environment experience temperature buffering 
effects from the water column, with short-term temperature 
change occurring at a slower rate than in the exposed mud-
flats. Large-scale poleward calanoid population displace-
ments have also been noted, linked closely to temperature 
changes (Beaugrand et al. 2002), in relation to their plank-
tonic nature. This justifies P. littoralis’ short-term euryther-
mic survival response, i.e., ability to tolerate a wide temper-
ature range, compared to T. longicornis’ more stenothermic 
survival response.

Field T. longicornis contained higher amounts of both 
DHA and EPA than P. littoralis, the ratios of 16:1ω7/16:0 < 1 
and EPA/DHA < 1 indicated a non-diatom dominated diet, 
and the higher amounts of 18:4ω3 suggested a dinoflagellate 
abundant diet (Kelly and Scheibling 2012). Harpacticoids 
exhibit differences in the way they take up food, due to their 
contact with the sediment, they are able to ingest microphy-
tobenthos indirectly through the consumption of bacteria 
or ciliates (Cnudde et al. 2015). As such, P. littoralis from 
the field contained higher relative amounts of 16:1ω7 and 
16:1ω5, suggesting herbivorous feeding on microphytoben-
thos (Graeve et al. 1994), and bacterial markers (18:1ω7, 
17:1) (Conway and McDowell Capuzzo 1991; Kelly and 
Scheibling 2012). Therefore, the energy stores in which 
these individuals entered the experiment are contrasting as 
are their FA requirements for optimal functioning, which 
may be attributed to the differences in their available prey 
field and life histories. The overall outcome of this study 
suggests that based on their FA dynamics, P. littoralis has 
a greater potential for resilience than T. longicornis under 
more extreme conditions due to the higher variability in their 
natural environment.

As 18:3ω3 (ALA) is present in high quantities in D. 
tertiolecta, this implies we are unable to quantify cope-
pod biosynthesis of MUFA (i.e., 18:1ω9) into short-chain 
PUFA (i.e., linoleic acid (LA, 18:2ω6), ALA) by methyl-end 
desaturases (Kabeya et al. 2021). Therefore, if you wish to 
follow this specific pathway, baker’s yeast could be used as 
an alternative to D. tertiolecta, as it contains no or very little 
ALA and no other LC-PUFA (Payne and Rippingale 2000; 
Nielsen et al. 2020). Additionally, synthesis of FA from 
acetyl coenzyme A (2C) is possible and can be monitored 
via the gene expression of specific enzymes in the FA syn-
thase pathway (Tarrant et al. 2016). In future harpacticoid 
studies we suggest monitoring the triggers resulting in high 
assimilation prior to investigating biosynthesis regulation. 
Potentially seasonality and field FA composition may play 
a role in regulating P. littoralis biosynthesis pathways, as 
these were the primary difference between our study and 
Werbrouck et al. (2017). Separation of the lipid classes into 
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non-polar and polar fractions prior to CSIA may be interest-
ing to understand how individuals regulate their membrane 
versus storage lipids during the experimental treatment (Par-
rish 2013; Werbrouck et al. 2017). Measures of fitness, such 
as reproductive success, should be considered to quantify the 
significance of EPA and DHA loss and production.

Conclusions

This study fills the gap of the knowledge of the FA response 
and biosynthesis capabilities in two species of copepods 
under the same experimental temperature conditions. P. lit-
toralis did not assimilate dietary carbon readily, and thus 
had a LC-PUFA biosynthesis rate that is lower than what 
is found in other copepods (Boissonnot et al. 2016; Graeve 
et al. 2020). T. longicornis displayed higher fractions of de 
novo biosynthesis of EPA and DHA than P. littoralis at all 
temperatures, with the exception of DHA at 23 °C. This 
temperature was the most stressful for the calanoid display-
ing a higher mortality with warming. Comparatively, the 
harpacticoid was eurythermal, with survival independent of 
temperature.

Although there may be a reduction in absolute ω3 LC-
PUFA availability in primary producers (Hixson and Arts 
2016; Colombo et al. 2020; Holm et al. 2022), it is important 
to consider that complete absence, as in our experiment, is 
not a realistic scenario. Despite the fact that T. longicornis 
demonstrated higher de novo production, albeit not in suffi-
cient amounts, individuals depleted their field EPA and DHA 
stores more rapidly. This indicates that T. longicornis is not 
able to biosynthesize EPA and DHA at a rate necessary for 
basic metabolic functioning. Conversely, P. littoralis has 
maintained its relative storage of EPA and DHA and abso-
lute concentrations of DHA, suggesting these extremes are 
within their coping capacity. Under the stressors imposed, 
P. littoralis has a greater potential for resilience when faced 
with extreme temperature conditions than T. longicornis. 
Within our experimental incubation both species were una-
ble to meaningfully upgrade the LC-PUFA deficient algae 
to biosynthesize de novo EPA and DHA as a relevant source 
for higher trophic levels.
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