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Abstract
Polychaete worms are rich sources of polyunsaturated fatty acids (PUFA) and are increasingly incorporated into aquaculture 
broodstock diets. Conventionally, the build-up of PUFA in polychaetes was considered passive, with direct accumulation 
along the food web, originating with microalgae and other primary producers. However, it has been argued that polychaetes 
(and other multicellular eukaryotes) are capable of PUFA biosynthesis through the elongation and desaturation of precur-
sor lipids. We further test this hypothesis in the ecologically and economically important nereid polychaete Alitta virens by 
adopting a stable isotope labelling approach. Worms were fed a 13C-1-palmitic acid (C16:0) enriched diet with the resulting 
isotopically enriched lipid products identified over a 7-day period. The data showed strong evidence of lipid elongation and 
desaturation, but with a high rate of PUFA turnover. A putative biosynthetic pathway is proposed, terminating with doco-
sahexaenoic acid (DHA) via arachidonic (AA) and eicosapentaenoic acids (EPA) and involving a Δ8 desaturase.

Introduction

Long-chain polyunsaturated fatty acids (PUFA) are essential 
components in human and animal nutrition. Marine eco-
systems have traditionally played prominent roles in PUFA 
supply; however, overfishing necessitates the development 
of alternative sources (Arts et al. 2009; Tocher et al. 2019). 
Aquaculture is a potential route, although this too is lim-
ited by supply side deficiency, e.g., for feeds formulation 
(Tocher 2015). Arachidonic (AA), eicosapentaenoic (EPA) 
and docosahexaenoic acids (DHA), predominantly produced 
by photosynthetic algae, are abundant in marine ecosys-
tems (Kelly and Scheibling 2012); however, their biogenic 
sources are diverse; for instance, they are synthesised by 

bacteria, protists and even by desaturation and chain elonga-
tion in many animals (Nichols 2003; Alhazzaa et al. 2011; 
Hughes et al. 2011; De Troch et al. 2012; Galloway et al. 
2013; Kabeya et al. 2018; Galloway and Budge 2020).

The role of marine animals in the de novo synthesis of 
PUFA is poorly understood. Whereas animals may synthe-
sise palmitate (C16:0) de novo from acetate or acetyl coen-
zyme A using fatty acid synthase (FAS) (Nelson 1992; Nel-
son and Cox 2008) to convert palmitic acid to stearic acid 
(C18:0), and also desaturate palmitic acid and stearic acid 
into palmitoleic acid (C16:1n7) and oleic acid (C18:1n9), 
the extent to which further chain elongation and desaturation 
occurs is variable. When chain elongation and desaturation 
does take place it creates even numbered fatty acids, which 
contrasts with the situation found in PUFA synthetic bacte-
ria, where the lipid biosynthesis pathways produce odd num-
bered and branched chain fatty acids (Kaneda 1991; Metz 
et al. 2001). Chain elongation of C16 or C18 fatty acids in 
animals is dependent on the presence of elongase enzymes 
facilitating chain elongation in the endoplasmic reticulum, 
by adding two carbon atoms at the carboxyl end of the fatty 
acid (Kabeya et al. 2018). Desaturation is dependent on 
desaturase activity. These enzymes are position specific, for 
example Δ9 desaturase catalyses the insertion of a double 
bond at the ninth carbon position from the carboxyl terminal.

The modification of fatty acids along the food web is 
termed ‘trophic repackaging’ or ‘trophic upgrading’ if the 
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modification is nutritionally beneficial (Arts et al. 2009). 
Polychaete annelids (which are ecologically and commer-
cially important) are implicated in this process and it has 
been suggested that the worms are directly responsible for 
the chain elongation and desaturation (Olive et al. 2009; 
Ashforth et al. 2011). Olive and co-workers (Olive et al. 
2009) proposed that chain elongation and desaturation to 
EPA is brought about via the less common Δ8 pathway—but 
direct evidence for this is lacking.

Alitta virens (formerly Nereis (Neanthes) virens), one 
of the dominant errant polychaetes found in the Northern 
Hemisphere and a useful developmental biology study 
organism (Kozin and Kostyuchenko 2015; Franz-Odendaal 
and Hockman 2019), is commonly found in intertidal eco-
systems (Kristensen 1984a) and is one of the most important 
intertidal bioturbators, especially in mudflat systems (Her-
ringshaw et al. 2010) where it plays vital roles in maintain-
ing biodiversity (Tita et al. 2000; McLenaghan et al. 2011; 
Lacoste et al. 2018), sediment structure (Du Clos et al. 
2013), nutrient cycling (Kristensen et al. 1985) and in the 
accumulation and transfer of pollutants through estuarine 
food webs (Pini et al. 2015; Watson et al. 2018). Many popu-
lations are under stress from bait collection activities (Olive 
1993; Watson et al. 2017) that has subsequently driven inter-
est in their aquaculture (Olive 1999). Here we investigate 
whether chain elongation and desaturation of fatty acids can 
be traced in A. virens by direct feeding with a labelled stable 
isotope (13C palmitic acid, C16:0) enriched diet. The occur-
rence of 13C enriched ion fragments and the consequent shift 
in the 13C/12C ratio in fatty acids with a greater chain length 
and more unsaturation than the administered 13C palmitic 
acid would provide supporting evidence that chain elonga-
tion and desaturation occurs in the worm tissues, thereby 
supporting the trophic repackaging hypothesis, providing 
new insight into polychaete nutrition, and potentially for the 
flow of PUFA in intertidal soft sediment systems.

Materials and methods

Animal origin and culture conditions for fatty acids 
net change

Alitta virens were collected from the estuary of the River 
Blyth, Northumberland, UK (grid reference: NZ 30985 
81139). All animals were immediately transported to the 
laboratory where they were depurated for 24 h in artificial 
seawater at 12 ± 0.1 °C. A wet weight to dry weight (freeze 
dried) conversion was determined for depurated whole 
worms (n = 20) covering a range of sizes.

Plastic tanks (30 × 20 × 15 cm) were pre-conditioned 
for 1 week by adding a layer of cleaned and sieved sand 
substrate from Cullercoats Bay, Northumberland, UK (grid 

reference: NZ 36340 71268). Twelve worms of mean indi-
vidual wet weight of 1 g were put into each of six tanks 
containing 9 cm of cleaned and sieved sand. Ten worms 
were immediately snap frozen in liquid nitrogen and stored 
at − 80 °C under nitrogen to provide a baseline tissue fatty 
acid profile (Fig. 1a). Polychaetes in three tanks were fed 
sterilised formulated feed pellets daily (fed: n = 3) while 
the polychaetes in the remaining three tanks were unfed 
(unfed: n = 3). The three worms were randomly sampled 
and their fatty acid contents profiled. The diets comprised 
fish meal, soya bean meal and cereals and were sufficient 
for normal development of the worms. The fatty acid pro-
file of the pellets is presented in Fig. 1b. Worms were fed 
a ration of 0.2% of body wet weight per day, adjusted on a 
weekly basis to a final ration of 0.045 g per day at the end 
of the experimental period. The feed ration was sufficient 
for growth without excess food waste (Islam 2001).

The trials were run for 60 days whereupon all worms 
were removed, depurated for 24 h, individually weighed 
and frozen at − 80 °C for subsequent FAME (fatty acid 
methyl ester) analysis. The remaining sand was homog-
enised and stored as per the worms.

Fig. 1   Fatty acid contents (mean ± 95% confidence interval, n = 10) of 
a the initial Alitta virens tissue samples, and b of the formulated pel-
let feed
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Stable isotope labelling experiment

Separate to the net gain experiment, labelled food was 
administered daily for 7 days. The food was prepared by add-
ing 125 mg of 13C-1-palmitic acid (C16:0) (Sigma Aldrich, 
UK) in methanol to 5 g of ground feed pellets (Pairohakul 
2013). These were re-pelletised and dried at 200 °C for 
3 h to make a stock of 13C palmitate enriched feed pellets 
(25 mg g−1). Worms with an average weight of 1 g were 
placed individually into separate glass crystallising dishes 
with a 2 cm depth of cleaned and sieved sand and acclimated 
for 7 days under the same animal husbandry conditions as 
described in the fatty acid net change trials.

Post-acclimation, the worms were grouped into two treat-
ments (labelled and unlabelled), with each worm remaining 
isolated within an individual crystallising dish, i.e., each 
worm is considered to be an independent replicate within 
a treatment. Each worm was fed daily with 0.02 g of feed 
pellets in two groups, one given 13C-labelled palmitate food 
pellets (labelled food group) and a second group was given 
normal unlabelled food pellets (unlabelled food group). Four 
worms from each treatment group were sampled on days 1, 
3, 5 and 7 to determine the between-worm error terms for 
subsequent statistical comparisons. Similarly, four worms 
were sampled at day 0. The fatty acid composition of the fish 
feed pellets was analysed to permit a comparison between 
the normal feed diets and the labelled feed following incor-
poration of 13C-labelled palmitate. All worm and feed pellet 
samples were kept at − 80 °C prior to analysis.

Lipid extraction and FAME conversion

Worm and diet samples were lyophilised for 48 h prior 
to lipid extraction. Twenty worm samples were individu-
ally weighed before and after lyophilisation to determine 
a regression analysis equation for fatty acid gain and loss. 
Lipids were extracted overnight using a modified Folch 
method (Folch et al. 1957). All glassware was acetone rinsed 
and dried overnight at 200 °C. Samples were homogenised 
with methanol for 1 min followed by chloroform addition 
(1:2 v/v) and vortexed for 1 min. Samples were kept refrig-
erated overnight (approximately 16 h) in Pyrex tubes fitted 
with PTFE liner caps under a nitrogen atmosphere. After 
overnight extraction the samples (dry masses of between 
0.2 and 0.5 g) were vacuum-filtered through Whatman 2E 
filter papers and 0.5 ml of C19:0 (0.5 mg ml−1 in hexane) 
was added as an internal standard for gas chromatography 
analysis (Islam 2001), followed by a 0.88% w/v KCl solution 
filled to 25% of the pre-filtering starting volume. The sam-
ples were vortexed and left to separate. The lower layer was 
collected and evaporated under a nitrogen stream at 37 °C 
until dry.

The extracted lipids were transesterified to FAME by 
acid-catalysis (Christie 1993). The dried lipids were re-
suspended in 1 ml toluene and 2 ml of 1% sulphuric acid 
in methanol, flushed with nitrogen gas to prevent oxida-
tion, vortexed and incubated at 80 °C for 1 h. After cooling, 
2 ml of 2% w/v KHCO3 with 5 ml of hexane: diethylether 
(1:1, v/v) were added and allowed to separate. The upper 
layer was transferred to a new clean tube. A further hexane: 
diethylether extraction was performed. The pooled upper 
layer was evaporated under nitrogen at 37 °C until dry. Dried 
FAME were resuspended in 1.5 ml hexane, transferred to GC 
vials, and kept frozen under nitrogen at − 20 °C prior to GC 
or GC/MS analysis.

Samples were analysed using an Agilent 7890A gas chro-
matograph (GC) fitted with an Agilent DB23 fused silica 
capillary column (30 m × 0.25 mm I.D. × 0.25 μm film 
thickness) and interfaced to an Agilent 5975C Mass Select 
Detector (MSD). Samples were injected on to the GC col-
umn in pulsed splitless mode (1 min splitless at 150 kPa 
inlet pressure, then 30 ml  min−1 split) using an Agilent 
7683B automatic injector. The GC inlet temperature was 
280 °C and the GCMS interface temperature was 220 °C. 
Helium was used as carrier gas at a constant flow rate of 
1 ml min−1. The GC oven was heated from 60 °C (initial 
hold time 1 min) to 140 °C (hold time 3 min) at 20 °C min−1, 
then at 10 °C min−1 to 190 °C (hold time 3 min), then at 
10 °C min−1 to 220 °C (final hold time 18 min). The MSD 
was operated in electron impact mode (electron voltage 
70 eV, source temperature 230 °C, quad temperature 150 °C, 
multiplier voltage ca. 1800 V). Data were acquired using 
Agilent ChemStation software, operating in full scan mode 
(range 50–600 amu sec−1) or selected ion monitoring mode 
(30 ions, 0.8 cps, 35 ms dwell time) after a solvent delay of 
5 min. Data processing was performed using ChemStation 
software and peaks were identified, where possible, by com-
parison of mass spectra with those in the NIST05 mass spec-
tra library or in the published literature. To trace the change 
in the 13C/12C ratio after administration of 13C labelled food, 
the ion peaks of interest in the mass spectra were extracted 
using the command ‘extract ion chromatography’ using an 
m/z range from 0.30 to 0.70 in the ChemStation program. 
The extracted peaks were integrated to determine their own 
peak area. The integration threshold was set at 7.5 mV to 
detect the small changes in all longer fragment peak area. 
The peak area of the characteristic ion peak with normal 12C 
and ion peak with labelled 13C of the same fragment was 
calculated to determine the 13C/12C isotope ratio.

Four external standards were used for retention time 
analysis of each fatty acid: (1) Sigma cod liver oil, (2) GLC-
538 Nu-Chek prep standard, (3) a single FAME of C18:3n6 
(γ-linolenic acid) and (4) a single FAME of C20:2n6 (eico-
sadienoic acid). All external standards were run in the same 
condition as the samples. The peak area of each fatty acid 
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was calculated using the Thermo Scientific Atlas Chroma-
tography Data System program. Fatty acid quantification 
was determined by comparing each individual peak with a 
known amount of internal standard (C19:0).

FAMEs were ionised using electron impact ionization 
(EI). The molecular fragments were then identified using 
mass-to-charge ratio (m/z) from the fragments derived from 
EI to compare the changes in fatty acid composition. The dif-
ferences in 13C/12C ratio in each molecular significant frag-
ment were determined. An increase of one in the number of 
neutrons in the stable isotope (13C) will lead to an increase 
in one unit of m/z ratio of the fragment (Burdge and Calder 
2005; Malcicka et al. 2017; Wilkinson 2018). Therefore, the 
signal strength of one more atomic mass for each fragment 
ion will be increased; consequently, an enhancement of the 
13C/12C ratio indicates the presence of 13C in the metabolites. 
The interpretation of the molecular fragments derived from 
the MS were adopted mainly from the lipid library AOCS 
(http://​lipid​libra​ry.​aocs.​org) and from Silverstein et al. 2005 
and Dass 2007 (Silverstein et al. 2005; Dass 2007).

Statistical analysis

Mortality rate, specific growth rate (SGR), percentage 
weight gain (PWG) and absolute growth rate (AGR) were 
calculated across treatments according to Lazo and Davis 
(Lazo and Davis 2000). Fatty acid gain or loss was com-
pared by converting the quantity of fatty acid (mg g−1 dry 
weight) to an estimated quantity relative to the wet weight 
as it was not possible to determine initial values in the exact 
worms added to the tanks. Accordingly, regression equa-
tions between wet weight and dry weight of 13 worms of 
each species were determined. Each fatty acid was then con-
verted from mg g−1 dry weight into the estimated equivalent 
mg g−1 wet weight to compare the net gain or loss of any 
fatty acid in relation to worm biomass (wet weight). The net 
change of each fatty acid was then calculated in terms of 
total worm wet weight biomass using Eq. (1). The ‘FEED’ 
term was determined by multiplying the quantity of food 
added and fatty acid content in terms of g dry weight. A 
principle component analysis (PCA) was conducted using 
the prcomp function in RStudio. The package ggbiplot was 
used to plot and scale these values into the PCA. PC1 and 
PC2 were used as they accounted for 98.47% of the total 
variability in the data.

Where: START = (fatty acids in g wet weight × number of 
surviving worms × mean worm biomass before the experi-
ment); END = (fatty acids in g wet weight × number of sur-
viving worms × mean worm biomass after the experiment); 

(1)
Fatty acid change = fatty acid of worm (END − START − FEED)

FEED = (fatty acids in g dry weight × quantity of added feed 
pellet over the period of the experiment).

The START term was calculated using the number of 
surviving worms after the experiment, multiplied by the 
average worm weight at the start of the experiment rather 
than the average weight at the start multiplied by the number 
of animals added at the start to allow for the fact that in a 
few tanks a small number of animals died over the course of 
the experiment. Failure to allow for mortality would tend to 
underestimate any net gain. In adopting this procedure, the 
assumption is made as if all mortalities occurred during the 
first day of the experiment. This assumption was met as most 
of the deaths occurred early in the experiment (within 48 h). 
The quantity of fatty acids in the sand prior to feed addition 
and in the homogenised sand after the completion of the 
experiment was below the detection limits of the GC pro-
cedures and was taken to be zero. The FEED term therefore 
was the only value used for calculating the exact net gain or 
loss of each fatty acid during the experiment.

SPSS version 17.0 was used for statistical analyses. 
Growth data were analysed by independent t tests. A one-
way analysis of variance (one-way ANOVA) was used to 
compare the changes between control and experimental sam-
ples on different time periods after intake of 13C-labelled 
palmitic acid. A Dunnett’s t test was used to determine the 
difference of each experimental group against the control 
group. The samples obtained from the beginning of the 
experiment were set as a control group in the Dunnett’s mul-
tiple comparison. A one-tailed test was also used to confirm 
any increase of fatty acid metabolites after 13C-labelled pre-
cursor uptake by the worms as any increase will indicate the 
production of fatty acid within the worms.

Results

Net change of fatty acids

Worms in the fed treatment more than tripled their body 
mass over the course of the experiment, whereas the unfed 
controls lost approximately 50% (Table 1), with an asso-
ciated greater mortality rate. The relationship between 
wet and dry weight for A. virens was described by a lin-
ear regression: dry weight = 0.2203 wet weight − 0.0269 
(r2 = 0.9953, n = 20, p < 0.001). There was a net gain in 
most fatty acids for the fed A. virens (Fig. 2 and Fig. S1). 
Cis-vaccenic acid (C18:1n7) increased the most, with 
marked gains in oleic acid (C18:1n9) and EPA (C20:5n3). 
There was a net gain in eicosadienoic acid (C20:2n6), with 
DHA (C22:6n3) also increased but to a lesser degree. 
There were also clear gains in palmitoleic acid (C16:1n7) 
and linoleic acid (C18:2n6). There was a net loss of 
myristic acid (C14:0), α-linolenic acid (C18:3n3) and 

http://lipidlibrary.aocs.org
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11-eicosenoic acid (C20:1n9). In the unfed groups, there 
was a net loss of all fatty acids (albeit minor), with EPA 
(C20:5n3) suffering the greatest loss.

The overall pattern in the 13C/12C ratio for the fragment 
peaks of interest for each fatty acid is shown in Fig. 3. Evi-
dence of changes in the ratios of some interesting FAME 
intermediates such as methyl α-linolenate (C18:3n3), γ–lino-
lenate (C18:3n6) and methyl dihomo-α-linolenate (C20:3n6) 
were indicated; however, these intermediaries were present 
only in trace amounts and could not be consistently distin-
guished from the background noise.

The statistical data for the characteristic ion peaks from 
the repeated feeding experiment are summarised in supple-
mentary materials (Tables S1–S8). There was a significant 
increase in the 13C/12C ratio for each of the three characteris-
tic fragment peak ions for methyl palmitate (C16:0) (one way 
ANOVA: McLafferty ion (m/z = 75:74), F(2, 27) = 12.426, 
p < 0.001; loss of the methoxy ion (m/z = 240:239), F(2, 
27) = 11.881, p < 0.001; molecular peak (m/z = 271:270), 
F(2, 27) = 12.751, p < 0.001) (Table S1). A Dunnett’s t 
multiple comparison of the molecular peaks in all samples 
groups indicated that all the samples in the labelled groups 

Table 1   Growth and mortality data for Alitta virens at the beginning and end of the 60-day fatty acid net change trial

Tanks 1–3: Treatments fed with a formulated pellet feed; tanks 4–6: unfed controls
Biomass was measured as wet weight, SGR specific growth rate, PWG percentage weight gain, AGR​ absolute growth rate
Initial and final weight data are in terms of mean ± 95% confidence intervals; differing letters following the numbers indicate statistical differ-
ences between groups (p < 0.05)

Fed tanks Unfed tanks

Tank 1 Tank 2 Tank 3 Tank 4 Tank 5 Tank 6

Initial wet weight (g) 1.059 ± 0.640a 1.090 ± 0.788a 0.921 ± 0.425a 1.014 ± 0.731a 0.829 ± 0.418a 0.842 ± 0.554a

Final wet weight (g) 3.678 ± 1.315b 3.493 ± 1.407b 3.907 ± 1.280b 0.633 ± 0.566a 0.623 ± 0.550a 0.608 ± 0.358a

Mortality (%) 16.67 16.67 8.33 8.33 41.67 25
SGR (% day−1) 2.074 1.942 2.408 − 0.783 − 0.482 − 0.542
SGR (% day−1 survived worm−1) 0.207 0.194 0.219 − 0.071 − 0.002 − 0.060
PWG (%) 247.186 220.578 324.077 − 37.475 − 25.127 − 27.753
AGR (mg day−1) 43.628 40.053 49.735 − 6.328 − 3.473 − 3.885
AGR (mg day−1 survived worm−1) 4.363 4.005 4.521 − 0.575 − 0.496 − 0.431

Fig. 2   The net gain or loss 
(mean ± 95% confidence inter-
val) of each selected fatty acid 
in Alitta virens after 60 days 
relative to the fatty acid content 
of the starting population less 
the fatty acid content from the 
formulated pellet feed
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had a significantly greater ratio compared with the control 
(p < 0.01). None of the isotope ratios in the unlabelled group 
differed significantly from the control group indicating that 
the labelled palmitate had been absorbed and was detectable 
in the worm tissues.

For the 13C/12C ratio of the three characteristic peaks for 
methyl stearate (C18:0), the molecular peak (m/z = 299:298) 
was significantly different (F (2, 27) = 7.812, p < 0.001). 
A Dunnett’s t comparison showed a significant difference 
compared with the day zero control for days 3, 5 and 7 in 
the labelled fed group (p < 0.05). However, there was no 
evidence to support a significant difference compared with 
the control for day 1 samples in the labelled group and all 
samples from the unlabelled feed group. Interestingly, the 
isotope ratio for the first hydrocarbon series (m/z = 88:87) 
changed in a similar way to that observed for the molecular 
peak and significant differences to the day zero control were 
observed for the samples at days 3, 5 and 7 (Table S2). How-
ever, differences between sample means for the McLafferty 
ion ratio (m/z = 75:74) compared with the control were not 
statistically significant (Dunnett’s t post hoc test p > 0.05). 
The data indicate that chain elongation from C16:0 to C18:0 
does occur within worm tissues.

For methyl oleate (C18:1n9), the loss of the methanol 
([M-32]+, m/z = 265:264) and McLafferty ion peaks ([M-
74]+, m/z = 223:222) were analysed as representative frag-
ment peak ions. In contrast to methyl palmitate and stea-
rate, there were no significant differences between means 
(Table S3). The molecular peak ratio (m/z = 297:297) could 
not be detected on the spectra due to background noise.

Only the molecular peak (m/z = 295:294) for methyl 
linoleate (C18:2n6) was detected other than in trace 

quantities. There were no significant differences between 
each groups (F(2, 27) = 2.335, p = 0.057) (Table S4). For 
methyl eicosadienoate (C20:2n6), neither the loss of the 
methoxy ion [M-31]+, m/z = 292:291) nor the molecular 
peak ([M]+, m/z = 323:322) showed any significant change 
(Table S5).

The 13C/12C ratio for the α-ion (m/z = 181:180) from 
methyl arachidonate (C20:4n6) was significantly increased 
on day 3 and day 5 (F(2, 27) = 3.145 and p = 0.013), also 
supported by a Dunnett’s t test (day 3, p = 0.001; day 5, 
p = 0.047) (Table S6).

The α-ion (m/z = 181:180) from methyl eicosapentaeno-
ate EPA (C20:5n3) increased significantly (F(2, 27) = 2.743, 
p = 0.024). The 13C/12C ratio increased to 0.252 ± 0.015 from 
a baseline of 0.225 ± 0.004 within only 1 day. However, the 
isotopic ratio was not significantly increased in samples 
taken after 24 h (Table S7). The data indicate that 13C is 
incorporated into EPA around 24 h after administration, but 
the signal is subsequently dissipated.

In contrast to methyl arachidonate and methyl eicosapen-
taenoate, there was no evidence of an increase of the 13C/12C 
ratio in the α-ion (m/z = 167:166) of methyl docosahexae-
noate, DHA (C22:6n3) over the experimental period (F(2, 
27) = 1.078, p = 0.407) (Table S8).

Discussion

Alitta virens has demonstrated the capacity to accumulate 
and produce some PUFA within a closed culture system, 
as has previously been shown for the polychaete Arenicola 
marina (Olive et al. 2009). These species are often the 

Fig. 3.   13C/12C ratios 
(means ± standard deviation) 
of selected fragment ions for 
some important FAME. The 
molecular peaks were adopted 
in palmitic acid (C16:0), stearic 
acid (C18:0) and linoleic acid 
(C18:2n6). The α-ions were 
selected for arachidonic acid 
(C20:4n6), eicosapentaenoic 
acid (C20:5n3) and docosahex-
aenoic acid (C22:6n3). The loss 
of the McLafferty ion was used 
for oleic acid (C18:1n9) while 
the loss of the methoxy ion is 
shown in the case of eicosadien-
oic acid (C20:2n6). An asterisk 
(*) is attached to bars with a p 
value less than 0.05 (p < 0.05) 
obtained from a Dunnett’s t post 
hoc test. L is abbreviated for 
labelled pellet fed tanks whereas 
C is abbreviated for normal pel-
let fed tanks
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dominant infauna over large areas of intertidal beaches and 
mudflats, therefore such production may be ecologically sig-
nificant and should be a target for further development for 
aquaculture. We sought to provide further clarity on PUFA 
bioaccumulation and biosynthesis by adopting a pulse-chase 
strategy using stable isotopes. Pulse-chase experiments have 
proven useful in understanding and quantifying numerous 
biochemical pathways (Levis and Penman 1977; Bostrom 
et al. 1986; Aberle and Witte 2003; Fuchs et al. 2010), 
including lipid metabolism (He et al. 1987; de Kroon 2017), 
and has been widely applied in marine trophodynamic stud-
ies (Bell et al. 2007; Pitt et al. 2009; Seemann et al. 2013; 
Miyatake et al. 2014; Oakes et al. 2016; Riekenberg et al. 
2018). The worms were fed a 13C-1-palmitic acid (C16:0) 
enriched diet, therefore lipids (other than palmitic acid) that 
were identified with a 13C label must have been synthesized 
from the labelled palmitic acid precursor. The label can also 
be used to study lipid accumulation. Overall net gains in 
several PUFA were observed, e.g., a 40–50 mg g−1 net gain 
of EPA, which agrees with Brown et al. (2011), and as a pro-
portion of this EPA was 13C labelled it must have originated 
from introduced C16:0. The proportion of labelled versus 
unlabelled EPA can be used to differentiate between EPA 
biosynthesis, turnover and bioaccumulation (Supplemen-
tary Table S7). EPA is a dominant fatty acid in the related 
nereidid species, Hediste diversicolor (Fidalgo e Costa 1999; 
Bischoff et al. 2009) suggesting that H. diversicolor in addi-
tion to A. virens and A. marina may also biosynthesise EPA 
de novo when fed low-EPA content diets. However, cau-
tion must be used given the limited period of the labelling 
study as the findings may represent short to medium term 
responses rather than a long-term response in EPA meta-
bolic flux. Further studies using pulse-chase experiments 
over longer periods are needed; however, these would need 
to be carefully designed to support extended worm cultiva-
tion while minimising contributions to fatty acid biosyn-
thesis from sediment-associated bacteria (supporting worm 
survival for 60 + days without sediment is a non-trivial task).

Brown et al. (2011) found that palmitic acid (C16:0), 
oleic acid (C18:1n9) and linoleic acid (C18:2n6) are pre-
sent in high concentrations in the worm tissues; the net gains 
of palmitic and oleic acids observed by us were also high. 
The gain in linoleic acid was however relatively small, pos-
sibly because sufficient linoleic acid for the worm’s growth 
was present in the feed. There was a small, but nonetheless 
noticeable gain of DHA (C22:6n3) and other C22 interme-
diates such as C22:5n3. These species were present in the 
initial samples in trace amounts. García-Alonso et al. (2008) 
also reported that DHA was present in H. diversicolor and 
its presence was independent of the presence of this fatty 
acid in the food source.

This evidence indicates that Nereididae may be capa-
ble of synthesising some key long-chain unsaturated fatty 

acids, implying some mechanism for chain elongation and 
desaturation occurs; however, for confirmation, further fol-
low up feeding trials using controlled delipidated diets are 
needed. Chain elongation and desaturation were observed 
when 13C enriched palmitic acid was administered, most 
notably through the appearance of enriched isotopic frac-
tions of EPA. The observed increase in the isotopic ratio of 
methyl stearate (C18:0) could only result from a conversion 
of the labelled C16:0 to C18:0, providing strong evidence 
that this chain elongation occurs within the worm tissues. 
The increase in the 13C/12C ratio for methyl EPA (C20:5n3) 
provides evidence consistent with the hypothesis that desatu-
ration also occurs within the worm tissues.

Most of the possible intermediate fatty acid metabolites 
were considered and analysed; however, it was not possible 
to trace changes in the signature of all fatty acid metabolites 
because they were present only in relatively small amounts 
or, in some cases, were absent or masked by background 
noise. The two characteristic peaks for methyl stearate 
(C18:0) were significantly higher on days 3 and 5. Chain 
elongation involves the addition of two carbons at the car-
boxyl end of the fatty acid molecule in accordance with the 
concept that fatty acid elongation from palmitic acid (C16:0) 
to stearic acid (C18:0) occurs in all organisms (Nelson and 
Cox 2008; Berg et al. 2012).

Analysis of the pathways for subsequent conversion is 
based on the examination of isotopic ratios for all fatty acids 
present. Greater importance is attached to positive observa-
tions (i.e., the observation of a statistically significant change 
in the isotopic ratio) than to negative ones since conversion 
of fatty acids may occur quickly and intermediaries may 
not persist in time. In effect, we only have a series of ‘snap 
shots’ taken during relatively long time intervals (days), and 
many entities are likely to be found only at very low concen-
trations that are not easily distinguished from background 
levels. Accordingly, while no changes in the isotope ratios of 
oleic (C18:1n9) and linoleic acids (C18:2n6) were observed, 
the significant changes in putative ‘downstream’ entities is 
considered to be of critical importance in the interpreta-
tion of the data. The problem of low tissue concentrations is 
exemplified with respect to methyl α-linolenate (C18:3n3) 
and γ-linolenate (C18:3n6) which, if present, were below 
the detection threshold.

A significant change in the 13C/12C of the α-ion for 
methyl arachidonate (C20:4n6) was observed on days 3 and 
5, demonstrating that A. virens can synthesise arachidonic 
acid from shorter carbon chain, less saturated substrate 
molecules. Arachidonic acid is a precursor of eicosanoids 
and their derivatives such as prostaglandins (Stanley and 
Howard 1998; Stanley 2000), which play important roles 
in immunity, reproductive physiology and ion transport in 
several invertebrates (Stanley 2000). Eicosanoid biosynthe-
sis involves three different pathways: (i) the cyclooxygenase 
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pathway which produces prostaglandins; (ii) the lipoxyge-
nase pathway which generates leukotriene and lipoxin; and 
(iii) the epoxygenase pathway for prostaglandin, throm-
boxane and prostacyclin biosynthesis. The cyclooxygenase 
pathway has been suggested to be an important eicosanoid 
pathway in polychaetes (Meunpol et al. 2005, 2010). Bentley 
et al. (1990) and Bentley and Hardege (1996) have also sug-
gested a reproductive function for arachidonic acid together 
with dihomo-α-linoleate (C20:3n6) which act as oocyte 
maturation hormones.

To build a picture of the EPA biosynthesis pathways from 
shorter chain less saturated fatty acids in A. virens, we draw 
upon our measurements of the accumulation of specific fatty 
acids in the culture system coupled with the isotopic labeling 
data. This species can elongate palmitate (C16:0) to stearate 
(C18:0) by adding two carbons at the carboxyl end, as per 
other eukaryotes. In culture, we also observed net accumu-
lation of the monoenoic acids palmitoleic acid (C16:1n7), 
vaccenic acid (C18:1n7) and oleic acid (C18:1n9), of which 
vaccenic and oleic acid production were particularly promi-
nent. Bischoff et al. (2009) found that tissue concentrations 
of both vaccenic and oleic acids were high in wild-caught 
and cultured Hediste diversicolor, as also found in Peri-
nereis nuntia (Limsuwatthanathamrong et al. 2012). These 
observations suggest that Nereididae are generally able to 
actively maintain their characteristic monoene fatty acid pro-
file. Linoleic acid (C18:2n6) accumulated over the period of 
the experiment but there was a net loss of α-linolenic acid 
(ALA, C18:3n3), one of the so called ‘essential fatty acids’ 
and precursor of the n3 series. ALA was not detected in 
P. nuntia (Limsuwatthanathamrong et al. 2012) nor in wild 
caught H. diversicolor (García-Alonso et al. 2008; Bischoff 
et al. 2009) and the low importance of ALA in Nereididae is 
further confirmed by our labelling experiments since ALA 
was undetected although very small quantities of linoleic 
acid (C18:2n6) were found. We conclude that ALA is not 
an important fatty acid in nereidid worm species and it is 
likely that the desaturation step from linoleic acid to ALA 
is relatively unimportant.

Distinguishing between two key intermediates, γ-linolenic 
acid (C18:3n6) and eicosadienoic acid (C20:2n6), is critical 
to determine the more likely PUFA biosynthetic pathways in 
A. virens. Of the two, only eicosadienoic acid was detected 
in the labelling experiment, suggesting that C20:2n6 is 
the more important intermediate. A virtual absence of 
α-linolenic acid has been found in all studies of polychaete 
taxa so far (Duangchinda 2007; García-Alonso et al. 2008; 
Bischoff et al. 2009; Brown et al. 2011; Limsuwatthanatham-
rong et al. 2012). The absence of this fatty acid is a clear 
indication that A. virens utilises the alternative Δ8 pathway 
to synthesise long-chain PUFA as suggested by Olive et al. 
(Olive et al. 2009) for Arenicola marina. We did not observe 
significant changes in the 13C/12C ratio of the characteristic 

mass spectrum peaks of C20:2n6, but failure to detect such 
differences may be because the intermediate fatty acids in 
a pathway may be present only for a very short period and 
transient changes in the isotope ratio may not be detected 
given the sampling times used. Notwithstanding this dif-
ficulty, we consider the ‘alternative’ Δ8 pathway to be the 
most likely PUFA biosynthetic pathway and, on the basis of 
the evidence discussed here, we suggest a set of likely PUFA 
biosynthetic pathways in A. virens (Fig. 4). Confirmation 
requires study of the proposed Δ8 and Δ5 desaturase activity 
and of the Δ4 desaturase pathway to establish whether or not 
A. virens can synthesise DHA from EPA.

The simplest interpretation of such changes is that they 
could be driven by undetected commensal organisms, e.g., 
a gut microbiome community (Dale et  al. 2019; Hoch-
stein et al. 2019); however, evidence is accumulating that 
enzymes coded in the worm genome could account for the 
differences (Monroig et al. 2013; Liu et al. 2017; Kabeya 
et al. 2018). If dominant infaunal animals such as Alitta 
virens can synthesise substantial quantities of fatty acids 
such as EPA, some revision of our understanding of lipid 
biosynthesis in marine ecosystems may be necessary. A per-
ception remains—although it is being robustly challenged 
(Monroig et al. 2013; Kabeya et al. 2018)—that the major-
ity of animals are incapable of producing PUFA from more 
saturated precursors (Bell and Tocher 2009). Our observa-
tions, although not specifically determining PUFA biosyn-
thesis directly, tend not to support the traditional thesis. For 
example, Caenorhabditis elegans is capable of synthesising 
EPA from C16 substrates via a Δ12 desaturase (Watts and 
Browse 2002; Watts 2009; Menzel et al. 2019) and simi-
lar capability has been demonstrated for a number of insect 
species (Stanley-Samuelson 1987; Blomquist et al. 1991). 
Further, genomic analysis shows that desaturases and elon-
gases are widespread throughout the animal kingdom, and 
these enzymes classes are present in the genome of the poly-
chaete Capitella, the first for which a complete genome has 
been published (Simakov et al. 2013). However, functional 
diversification has occurred (Hashimoto et al. 2006, 2008), 
and the ability to synthesise fatty acids varies throughout the 
eukaryotic domain (Kabeya et al. 2018).

The Δ5 desaturase gene in Octopus vulgaris has similar 
amino acid sequences to bivalve (Crassostrea gigas) and 
gastropod (Lottia gigantia) molluscs, but low similarity with 
less related invertebrates (Monroig et al. 2012b), plus a Δ12 
desaturase has now been identified in O. vulgaris (Garrido 
et al. 2019). However the elongase amino acid sequence in 
the same species of octopus was very similar to those of 
other eukaryotes (Monroig et al. 2012a). Further, Δ5 and Δ6 
fatty acyl desaturases have recently been implicated in PUFA 
biosynthesis in the aquacultured razor clam Sinonovacula 
constricta alongside novel elongases (Ran et al. 2019). The 
observed pattern of fatty acid profiles in different organisms 
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likely reflects functional/ecological diversification within the 
core set of pathways. Such diversification may occur where 
individuals adjust the degree of fatty acid unsaturation as 
an acclimation response to temperature as in Carcinus mae-
nas (Chapelle 1978), Placopecten magellanicus (Hall et al. 
2002), Crassostrea gigas (Pazos et al. 1996), O. vulgaris 
(Miliou et al. 2006) and some deep-sea polychaetes (Taghon 
1988) and regulation of enzyme transcription may also be 
a response to the PUFA profile of the diet as suggested for 
H. diversicolor (Fidalgo e Costa et al. 2000), Artemia salina 
(Zhukova et al. 1998), Pecten maximus (Marty et al. 1992) 
and Mytilus galloprovincialis (Pirini et al. 2007). Although 
the desaturase and elongase genes represented in Fig. 4 are 
conserved and found throughout the animal kingdom the 
production of the enzymes can be regulated in response to 
environmental changes (Brock et al. 2006, 2007; Skrzypski 
et al. 2009; Alhazzaa et al. 2011; Costa et al. 2012).

Collectively, this calls into question the assumption 
that the presence of PUFA necessarily indicates an origin 
from bacteria, diatom or some multicellular eukaryotes. 
A. virens can produce high levels of EPA. From pub-
lished sources for their annual production (Dolbeth et al. 
2012), it is possible to make a preliminary and specula-
tive estimate (within rather broad limits) of the net gain 
of EPA that may be contributed to a typical ecosystem 
containing these worms. For Alitta virens, we use data of 
Kristensen (1984b) for production in Norsminde Fjord, 

Denmark, where annual production can reach 23.73 g ash 
free dry weigh m−2. This converts to 107.75 g wet weight 
m−2 using the EPA data from the present study, which is 
calculated to be 175.841 kg km−2 y−1 or 0.176 g m−2 y−1 
in terms of wet weight. These calculations suggest that in 
a typical population their contribution of EPA to the whole 
ecosystem could reach more than 100 kg EPA per km2 per 
annum (0.1 g m−2 y−1). These worms are an important 
food source for numerous bird and fish species, therefore 
their EPA would be readily transferred throughout the food 
web. Further, the abilities of these animals to synthesise 
long-chain PUFA suggests an enhanced role in integrated 
aquaculture production systems. Tacon (2011) estimated 
that 0.78 million tonnes of marine fish oil were consumed 
in 2008 by the aquaculture industry which may not be 
sustainable (Naylor et al. 2000). To supplement fish oil 
derived from pelagic fisheries, more diverse production 
systems are needed (Olive 1999; Klinger and Naylor 2012; 
Tocher et al. 2019) and worm species could provide such 
a role as they are easily incorporated into recirculating 
aquaculture systems (Fidalgo e Costa 1999; García-Alonso 
et al. 2008; Brown et al. 2011), potentially yielding valu-
able fatty acids in addition to remediating waste organics 
(Marques et al. 2018; Pombo et al. 2018; Gómez et al. 
2019; Wang et al. 2019).

Fig. 4   The hypothesised PUFA biosynthetic pathways in Alitta 
virens. Likely pathways are shown in bold, whereas pathways that do 
not appear to be readily utilised are shown in light grey for compari-

son. Dotted line represents where further investigations are required 
for pathway clarification
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