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Abstract
The Longqi vent field, situated on the Southwest Indian Ridge, is ecologically distinct among known hydrothermal vents 
fields. It hosts a combination of previously unknown species and those shared at species or genus level with other hydrother-
mal vents on the Central Indian Ridge (CIR) and East Scotia Ridge (ESR). We investigate the size-based and trophodynamics 
of consumers at Longqi vent field and compared these with ESR and CIR vent fields using stable isotope analysis. Intra-
specific variability in δ13C and δ15N values in relationship to shell length was observed in Gigantopelta aegis but absent in 
Chrysomallon squamiferum. A model-based clustering approach identified four trophic groupings at Longqi: species with 
the lowest δ13C values being supported by carbon fixed via the Calvin–Benson–Bassham cycle, the highest δ13C values being 
supported by the reductive tricarboxylic acid cycle and intermediate values potentially supported by a mix of these primary 
production sources. These clusters were driven by potential differences in resource partitioning. There were also differences in 
the spread of stable isotope values at the vent field level when comparing Bayesian stable isotope ellipse areas among Longqi, 
CIR and ESR vent fields. This was driven by a combination of the range in δ13C value of macrofauna, and the negative δ15N 
values which were only observed at Longqi and CIR vent fields. Many of the shared species or genera showed inter-vent 
field differences in stable isotope values which may be related to site-specific differences in food sources, geochemistry or 
potential intra-field competition. This study provides important information on the trophic ecology of hydrothermal vent 
macrofauna found within an area of seabed that is licensed for seabed mining exploration.

Introduction

Deep-sea hydrothermal vents are patchy, ephemeral habi-
tats that occur along tectonically or volcanically active mid-
ocean ridges, back-arc spreading centres and seamounts 
(Tunnicliffe et al. 2003; Staudigel et al. 2006). Microbial 

and macrofaunal biomass at hydrothermal vents are typically 
higher in comparison with the surrounding deep sea because 
of in situ primary production by chemotrophic bacteria, 
which forms the base of the food web. These bacteria can be 
free living microbes, epibionts or found as endosymbionts in 
some macrofaunal species (Childress and Fisher 1992; Karl 
1995; Sievert and Vetriani 2012). Chemotrophic bacteria 
use the energy from reduced chemical species (e.g. H2S, 
HS−, CH4) present in vent fluid emitted from the seafloor 
to convert inorganic carbon sources (e.g. CO2) into simple 
organic compounds (McCollom and Shock 1997). Organic 
matter produced via chemosynthetic primary production 
is the dominant food source at active hydrothermal vents, 
which supports the specialist fauna found in those habitats 
(Sievert and Vetriani 2012).

The temperature and geochemical composition of hydro-
thermal vent fluid emitted from the seafloor are two impor-
tant factors influencing the distribution of microbial and 
macrofaunal communities (Sarrazin et al. 1999, 2015; Dick 
2019). The hydrothermal vent habitat has a high degree of 
spatial heterogeneity in environmental conditions, even 
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though individual vent fields are relatively small-scale fea-
tures on the seafloor (Butterfield et al. 1994; German and 
Von Damm 2003; Tivey 2007). Coupled with temporal vari-
ability in the degree of hydrothermal activity, this results 
in a dynamic ecosystem, governed by subsurface processes 
(German and Von Damm 2003; Kelley et al. 2005). The 
dominant bacterial primary producers, Epsilonproteobacte-
ria and Gammaproteobacteria, occupy different temperature 
and geochemical regimes (Campbell et al. 2006; Hügler and 
Sievert 2011). These bacterial groups fix carbon using dif-
ferent enzymatic systems (Hügler and Sievert 2011). The 
reductive tricarboxylic acid (rTCA) cycle is used by Epsi-
lonproteobacteria, which dominate areas where temperature 
is > 20 °C, oxygen levels are low and microaerobic growth 
can occur using additional electron acceptors including 
NO3

−(Hügler and Sievert 2011). In contrast, Gammapro-
teobacteria use the Calvin–Benson–Bassham (CBB) cycle 
in areas where temperature is < 20 °C and oxygen is far more 
plentiful (Hügler and Sievert 2011; Yamamoto and Takai 
2011).

Overlain on this microbial template are dense macrofau-
nal communities that utilize chemosynthetic primary pro-
duction (Van Dover and Fry 1994; Colaço et al. 2002; Reid 
et al. 2013). The proximity to high-temperature fluids and 
tolerance of toxic vent effluent are important determinants of 
species distributions (Sarrazin et al. 1999; Henry et al. 2008; 
Podowski et al. 2010). Macrofauna exploit vent-derived pri-
mary production through endosymbiotic and epibiotic rela-
tionships, grazing on free-living microbes and particulate 
organic matter from hard surfaces, or through suspension 
feeding in the water column and indirectly through predation 
and scavenging (Colaço et al. 2002; Van Dover 2002; Reid 
et al. 2013). The result is specific faunal patterns of zona-
tion around hydrothermal fluid sources that are potentially 
linked to trophic guilds and specific chemotrophic primary 
producers (Marsh et al. 2012). These patterns are often con-
sistent within a biogeographical province depending on the 
successional stage of the hydrothermal vent (Marsh et al. 
2012; Sarrazin et al. 2015).

Stable isotopes of carbon (13C/12C expressed as δ13C) 
and nitrogen (15N/14N expressed as δ15N) are routinely 
used to investigate species-specific and trophodynamics at 
hydrothermal vents (Fisher et al. 1994; Colaço et al. 2002; 
Van Dover 2002; Reid et al. 2013; Bell et al. 2017). Stable 
isotopes have certain advantages over other techniques for 
studying food webs, especially those where stomach con-
tent analysis may be prohibitive depending on the dietary 
sources. Stable isotopes measure the organic material that 
is assimilated from an organism’s diet post-digestion and 
provide temporally and spatially integrated information on 
energy flow within a system (Post 2002; Newsome et al. 
2007). δ13C and δ15N are used to identify different character-
istics of the food web. δ13C has lower trophic discrimination 

(0 to  ~ 1‰) between food source and consumer than δ15N 
(~ 2‰ to  ~ 4‰) making it suitable for distinguishing dif-
ferent carbon fixation pathways which are isotopically dis-
crete (Post 2002; Caut et al. 2009). At hydrothermal vents, 
this allows for putative assessment of which carbon fixa-
tion pathways are potentially supporting macrofauna; the 
range of δ13C values of carbon fixed via the rTCA cycle is 
between ~  − 15‰ to  ~  − 10‰, and those of the CBB cycle 
are ~  − 35‰ to  ~  − 20‰ (Hügler and Sievert 2011; Reid 
et al. 2013; Portail et al. 2016). The wide range in δ13C 
values observed in organisms dependent on the CBB cycle 
is partly because there are different forms of the enzyme 
ribulose-1,5-biphosphate carboxylase/oxygenase (RuBisCO) 
used to catalyse the carboxylation or oxidation of ribulose-
1,5-biphosphate during the first step of autotrophic CO2 
fixation (Hügler and Sievert 2011). The stable isotopic 
fraction differs between form I and II RuBisCO with form 
I RuBisCO ranging between 22‰ and 30‰ (Guy et al. 
1993; Scott 2003; Scott et al. 2004) while form II RuBisCO 
ranges between 18‰ and 23‰ (Guy et al. 1993; Robinson 
et al. 2003). The result is that hydrothermal vent fauna with 
δ13C values at the lower end of the range associated with 
the CBB cycle are potentially utilizing carbon fixed via the 
form I RuBisCo, while those with values closer to  − 20‰ 
are utilizing carbon fixed via form II RuBisCO. δ15N is often 
used to estimate trophic position in food webs because of the 
greater trophic discrimination between predator and prey 
than is observed in δ13C (Peterson and Fry 1987; Post 2002).

The Longqi vent field is located on the Southwest 
Indian Ridge (SWIR) at 37° 47′ S and 49° 39′ E at a depth 
of approximately 2750 m (Tao et al. 2012; Copley et al. 
2016). The SWIR is the longest section of very slow to 
ultra-slow seafloor spreading ridge in the global mid-ocean 
ridge system and is spreading at a rate of approximately 
14–16 mm year−1(Dick et al. 2003). It contains massive 
sulphide deposits (Tao et al. 2014) as well as established 
sulphide structures including black-smoker chimneys 
(> 300 °C), diffuse flow areas (< 100 °C) and inactive chim-
neys (Copley et al. 2016; Ji et al. 2017; Zhou et al. 2018). 
The Longqi vent field is found within an area of seabed that 
is licensed to the China Ocean Minerals Resources R & D 
Association by the International Seabed Authority for poly-
metallic metal exploration. The Longqi vent field contains 
several macrofaunal species not yet recorded at other vent 
fields (Copley et al. 2016; Zhou et al. 2018). There are also 
major similarities in some macrofaunal species between the 
Longqi vent field and Central Indian Ridge (CIR) vent fields 
suggesting that it is part of an Indian Ocean vent biogeo-
graphical province (Copley et al. 2016; Zhou et al. 2018). 
Furthermore, Longqi vent field appears to have also histori-
cal or current connections to the East Scotia Ridge (ESR) 
which shares a number of species or genera (Chen et al. 
2015b; Herrera et al. 2015; Copley et al. 2016; Zhou et al. 
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2018). Some of the species and genera shared with other 
vent fields are found in similar habitats and distance from 
high-temperature venting. These include the crustaceans 
Rimicaris kairei (Crustacea; Malacostrata), Mirocaris sp. 
(Crustacea; Malacostrata), and Kiwa sp. (Crustacea; Mala-
costrata), which were observed close to the high-temperature 
fluid sources; the scaly-foot gastropod Chrysomallon squa-
miferum (Mollusca; Gastropoda) and Bathymodiolus maris-
indicus (Mollusca; Bivalvia) which were found within lower-
temperature diffuse flow areas; and Neolepas (Crustacea; 
Hexanauplia) which dominates at the periphery of the vent 
field (Marsh et al. 2012; Copley et al. 2016).

Here, we examine the trophodynamics at the Longqi vent 
field on the SWIR and compare it with hydrothermal vents 
on the ESR and CIR. The aims of this research are: (1) to 
investigate the size-based trophic ecological interactions in 
Gigantopelta aegis (Mollusca; Gastropoda) and C. squa-
miferum; (2) to investigate trophic interactions at Longqi 
vent field; and (3) to compare the trophic structure of the 
Longqi vent field with that of the ESR and CIR vent fields.

Methods

Sample collection

The Longqi vent field (Fig. 1) was sampled between 27 to 
30th November 2011 using the remotely operated vehicle 
(ROV) ROV KIEL 6000 from onboard the RRS James Cook 
(Copley et al. 2016). Faunal specimens were collected from 
different locations in the vent field using the ROV’s suction 
sampler and scoops and placed into different containers. 
Once the samples were retrieved on the ship after the ROV 
dives, they were transferred to a shipboard 4 °C constant-
temperature laboratory and sorted into morphospecies. 
Samples for stable isotope analysis were then frozen whole 
at − 80 °C. 

Stable isotope preparation and analysis

In the laboratory, samples were part defrosted, dissected to 
remove specific tissues for analysis (Table 1), rinsed with 
distilled water and refrozen at − 80 °C. Neolepas marisindica 

Fig. 1   Location of the Longqi hydrothermal vent field and its location in relation to E2 and E9 vent on the East Scotia Ridge and the Kairei vent 
field on the Central Indian Ridge
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(Crustacea; Hexanauplia) was analysed whole because of 
low sample mass. For C. squamiferum, the external pro-
teinaceous dermal sclerites were removed from their foot. 
The shell length (mm) for C. squamiferum and G. aegis 
was measured along the central axis from the shell apex to 
the outer lip using vernier callipers. Tissue samples were 
freeze-dried and ground to a fine homogenous powder using 
a pestle and mortar. Samples were tested for carbonates by 
the drop-wise addition of 0.1 N HCl. None of the samples 
showed evidence of effervescence, which indicated that 
carbonates were not present and therefore no samples were 
acidified before analysis.

Approximately 1  mg of powder was weighed into 
a tin capsule for dual carbon and nitrogen stable iso-
tope analysis using an elemental analyser coupled to a 
Europa Scientific 20–20 isotope ratio mass spectrom-
eter (Iso-Analytical, Crewe, United Kingdom). The fol-
lowing samples were run for quality control: IA-R068 
soy protein, δ13C =  − 25.22‰ ± 0.05 standard deviation 
(SD), δ15N = 0.99‰ ± 0.04 SD, IA-R038 (L-alanine, 
δ13C =  − 25.16‰ ± 0.03 SD, δ15N =  − 0.55‰ ± 0.01 
SD), IA-R069 (tuna protein, δ13C =  − 18.91‰ ± 0.04 SD, 
δ15N = 11.64‰ ± 0.02 SD) and a mixture of IAEA-C7 
(oxalic acid, δ13C =  − 14.50‰ ± 0.05 SD) and IA-R046 
(ammonium sulfate, δ15N = 21.76‰ ± 0.03 SD). IA-R068, 
IA-R038 and IA-R069 internal standards which are cali-
brated against and traceable to IAEA-CH-6 (sucrose, 
δ13C =  − 10.43‰) and IAEA-N-1 (ammonium sulfate, 
δ15N = 0.40‰). IA-R046 is calibrated against and traceable 
to IAEA-N-1. IAEA-C7, IAEA-CH-6 and IAEA-N-1 are 
inter-laboratory comparison standards distributed by the 
International Atomic Energy Agency, Vienna. Stable iso-
tope ratios were expressed in the delta (δ) notation as parts 
per thousand/ per mil (‰). An external reference material 
of freeze-dried and ground fish muscle (Antimora rostrata) 
was also analysed (δ13C, n = 7, − 18.84‰ ± 0.11 SD; δ15N, 
n = 7, 13.22‰ ± 0.12 SD).

Data analysis

Generalized linear models (GLM) were used to assess the 
relationship between δ13C or δ15N and shell length for 
the oesophageal gland and foot in C. squamiferum and G. 
aegis. The model assumptions were examined by inspect-
ing the plots of residuals versus fitted values and qqplots. 
The full model is reported. The δ13C and δ15N values of 
Longqi fauna were examined to see whether distinctive 
clusters were present. A model-based clustering approach 
was implemented using the package mclust (Scrucca et al. 
2016). The foot was included in the model-based cluster-
ing analysis for the species Bathymodiolus marisindicus, C. 
squamiferum and G. aegis because these are muscular tis-
sues. The gill tissue of B. marisindicus and the oesophageal 
glands of C. squamiferum and G. aegis, which host endo-
symbionts, were excluded from this analysis because these 
were not independent from the foot tissue, having been taken 
from the same individuals. The model-based clustering is 
based on a finite Gaussian mixture model and is fitted by 
an expectation–maximization algorithm. The optimal model 
containing the number of mixing components and the geo-
metric features of the shape was assessed using Bayesian 
information criterion (BIC). The optimal model is chosen 
based on the highest BIC score. The optimal model was an 
EVI model where all clusters were equal (E), the shapes 
of the clusters varied (V) and the orientation was the iden-
tity (I) resulting in clusters parallel to the coordinate axes. 
Given the difference in BIC between the EVI model with 5 
(BIC =  − 446.87) and 4 (BIC =  − 448.39) clusters was only 
1.52 and the greater uncertainty in the classification of a 
number of individuals in the 5 cluster model (Supplementary 
Fig 1), the 4 cluster model was deemed more appropriate.

The variability in stable isotope values across the species 
sampled at Longqi vent field was compared with published 
data from the Kairei, E2 and E9 vent fields (Van Dover 

Table 1   Stable isotope values (mean and standard deviation) and the tissues analysed of hydrothermal vent fauna collected from the Southwest 
Indian Ridge [Species witha are taken from Copley et al. (2016)]

Phylum Class Species Tissue N δ13C (sd) δ15N (sd)

Crustacea Malacostraca Kiwa sp. SWIR Muscle 1  − 15.6 8.6
Malacostraca Mirocaris indica Muscle 9  − 13.3 (2.1) 7.8 (0.3)
Hexanauplia Neolepas marisindicaa Whole 8  − 25.0 (0.8) 5.16 (0.9)
Malacostraca Rimicaris kairei Muscle 2  − 15.73,  − 15.11 6.83, 6.92

Mollusca Bivalvia Bathymodiolus marisindicusa Foot 9  − 32.6 (0.4)  − 7.6 (2.1)
Bivalvia Bathymodiolus marisindicusa Gill 9  − 33.1 (0.4)  − 8.0 (2.5)
Gastropoda Chrysomallon squamiferum Foot 5  − 22.5 (1.0) 5.0 (0.6)
Gastropoda Chrysomallon squamiferum Oesophageal gland 5  − 25.0 (0.5) 0.96 (0.1)
Gastropoda Gigantopelta aegisa Foot 13  − 26.4 (0.7) 5.0 (0.6)
Gastropoda Gigantopelta aegis Oesophageal gland 13  − 28.7 (0.5) 0.2 (0.8)

Echinodermata Holothuroidea Chiridota spa Muscle 2  − 22.58,  − 22.21 3.01, 9.53
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2002; Reid et al. 2013; Copley et al. 2016). Sample size 
corrected standard ellipse area (SEAc), Bayesian standard 
ellipse area (SEAb), eccentricity (shape of the SEAc) and 
theta (the angle in radians between semi-major axis and the 
x-axis) were calculated using the SIBER package (Jackson 
et al. 2011). Eccentricity and theta are parameters used to 
calculate the standard ellipse area. They have been used 
to distinguish the SEAc in species-specific trophic studies 
where SEAc are similar size among species but the shape 
or inclination of the SEAc in xy-space differs (Reid et al. 
2016). Here, we used them to examine differences in isotope 
variability among the four hydrothermal vent fields at the 
community level. To compare the community level SEAb, 
the model was run for 20 000 iterations, with a burn-in of 
10,000 and then thinned by a factor of 10. The mode for each 
vent field is reported along with the 95% credible interval 
(CI). All data analysis was undertaken using R version 4.0.2 
and data used in these analyses can be found in the Supple-
mentary data spreadsheet.

Results

Endosymbiont‑hosting size‑based trophic 
relationships

There was no relationship between either δ13C or δ15N 
values of the oesophageal gland and foot with shell length 
(range 21–38 mm) in C. squamiferum (GLM: δ13C v shell 
length, t = 1.277, p = 0.2577; δ15N v shell length, t = 1.331, 
p = 0.241). The oesophageal gland had consistently lower 
stable isotope values compared with the foot (GLM: δ13C v 
tissue, t =  − 3.210, p = 0.0237; δ15N v tissue, t =  − 38.784, 
p < 0.001; Fig. 2a, b). This indicated that the tissue off-set 
was similar regardless of size (Fig. 2a, b). The GLM esti-
mated that the oesophageal gland was 2.3‰ [± 0.7 standard 
error (SE)] and 2.6‰ (± 0.1 SE) lower than the foot for δ13C 
and δ15N, respectively.

In contrast, there was a positive relationship between the 
δ13C values in the oesophageal gland and foot with shell 
length (range 15–35 mm) in G. aegis (GLM: t = 3.141, 
p = 0.00458; Fig. 3a). The oesophageal gland had consist-
ently lower δ13C compared with the foot (GLM: t =  − 3.141, 
p < 0.0001). For δ15N, however, there was a negative rela-
tionship between the δ15N values in the oesophageal gland 
and foot with shell length (GLM: t =  − 4.744, p < 0.001). 
The δ15N values in the oesophageal gland were lower than 
the foot (GLM: t =  − 22.518, p < 0.001; Fig. 3b). The GLM 
estimated a difference between oesophageal gland and 
foot of 2.2‰ (± 0.2 SE) for δ13C, which was similar to 
that observed in C. squamiferum. The difference between 

oesophageal gland and foot δ15N values was much greater for 
in G. aegis (4.8‰ ± 0.2 SE) compared with C. squamiferum.

Southwest Indian ridge trophodynamics

δ13C ranged from  − 32.6‰ (± 0.4 SD) in the foot of 
Bathymodiolus marisindicus to  − 13.3‰ (± 2.1 SD) in 
Mirocaris indica (Table 1). Bathymodiolus marisindicus 
foot had the lowest δ15N values, − 7.6‰ (± 2.1 SD), while 
the muscle of Kiwa sp. SWIR had the highest δ15N value 
with 8.6‰ (Table 1). Model-based clustering indicated 
that the Longqi hydrothermal vent fauna fell into 4 clus-
ters (Fig. 4). Bathymodiolus marisindicus was the only 
species in cluster 1 with the ellipse centred on  − 32.6‰ 
(δ13C) and  − 7.6‰ (δ15N). This cluster contained indi-
viduals with the lowest δ13C and δ15N values. Cluster 2 
and cluster 3 represented those species with intermediate 
δ13C values. Cluster 2 was centred on  − 22.3‰ (δ13C) and 
4.4‰ (δ15N) and contained Chiridota sp. (Echinodermata; 
Holothuroidea), 4 out of the 5 C. squamiferum sampled 
and a single individual of N. marisindica. However, the 
classification of N. marisindica within this cluster 2 was 
within the quantile of highest uncertainty (95%). Cluster 
3 contained G. aegis, N. marisindica and a single speci-
men of C. squamiferum. These individuals were centred 
on  − 25.9‰ (δ13C) and 5.0‰ (δ15N). The remaining 
species, Kiwa sp. SWIR, Rimicaris kairei and Mirocaris 
indica (Crustacea; Malacostraca), were in cluster 4, cen-
tred on  − 13.8‰ (δ13C) and 7.7‰ (δ15N). This cluster 
represented the species with the greatest δ13C and δ15N 
values.

Spatial differences in trophodynamics

The SEAc varied among the vent fields and was in good 
agreement with the mode of SEAb estimates (Fig. 5). SEAc 
was smallest at the E2 vent field (15.65‰2) and largest at 
the Longqi vent field (74.45‰2) (Table 2). Comparisons 
of SEAb indicated that there was a greater than 95% prob-
ability that E2 SEAb was smaller than Kairei, E9 and SWIR 
SEAb (Fig. 6) based on there being no overlap in the 95% 
CI (Table 2). Longqi vent field had the largest SEAb, which 
had a 95% probability of being larger than E9 but only a 75% 
probability of being larger than Kairei vent field (Fig. 6). 
Theta was very similar between E2 (0.17) and E9 (0.14) 
vent fields while it was much greater at Longqi (0.67) and 
Kairei (0.73) vent fields. This indicated that the inclination, 
and therefore the relationship between δ13C and δ15N, of the 
ellipse differed greatly between the ESR vent fields and both 
the Longqi and Kairei vent fields (Fig. 5). This was the result 
of the negative δ15N values that were observed at the Longqi 
and Kairei vent fields but were absent at the ESR locations.
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Discussion

Gastropod size‑based trophodynamics

Chrysomallon squamiferum showed no relationship 
between stable isotope values and shell length but G. 
aegis exhibited size-based trends in δ13C and δ15N val-
ues. The absence of a size-based relationship in δ13C and 
δ15N indicates that the diet is constant over the size range 
sampled in C. squamiferum. The sample size is small for 
C. squamiferum and it can be difficult to detect ecologi-
cally meaningful isotope size-based trends if the propor-
tion of the total size range sampled is low (Galvan et al. 
2010). The relationship between stable isotope values and 
size for C. squamiferum were consistent with those found 
at the Kairei hydrothermal vent field (Van Dover 2002). 
This indicates that the relationship between stable isotope 
values and shell length at Longqi vent field is likely to be 
similar. In contrast, G. aegis showed a positive relation-
ship between the δ13C and shell length while there was 
a negative relationship between δ15N and shell length. 

Size-based δ13C and δ15N trends are also observed in the 
closely related Gigantopelta chessoia (Reid et al. 2016). 
Gigantopelta chessoia trends are potentially the result of 
ecophysiological interactions between the substrate deple-
tion and the endosymbiont (Reid et al. 2016) that may be 
linked to variability in microbial cell density which can 
influence isotopic discrimination (Kampara et al. 2009). 
Other hydrothermal vent fauna including endosymbiotic 
hosting species show size-based stable isotope relation-
ships (Trask and Van Dover 1999; De Busserolles et al. 
2009; Reid et al. 2016). These may be related to a number 
of mechanisms including: CO2 limitation in the endos-
ymbionts (Fisher et al. 1990); an increase in the diffusion 
distance for CO2 to travel from the environment through 
the host to the endosymbiont (Trask and Van Dover 1999); 
and a shift in the community structure of the endosymbi-
ont community (De Busserolles et al. 2009). It is not clear 
whether dissolved organic matter in the diffuse flow fluids 
is a further source of nutrition; Bathymodiolus azoricus 
gains a proportion of its nutrition from dissolved organic 
matter uptake (Riou et al. 2010). It may be that free amino 

Fig. 2   The relationship between (a) δ13C or (b) δ15N and shell length 
(mm) in Chrysomallon squamiferum. Solid circles represent foot and 
the solid triangles represent the oesophageal gland. Grey shaded areas 
indicate 95% confidence intervals. The relationship between δ13C 
and shell length: foot δ13C =  − 24.44863 + (shell length × 0.07022); 

oesophageal gland δ13C = ( − 24.44863 − 2.22308) + (shell length ×  
0.07022) The relationship between δ15N and shell length: foot 
δ15N = 3.438596 + (shell length × 0.007024); oesophageal gland δ15N 
= (3.438596 − 2.642500) + (shell length × 0.007024). Foot and oesoph-
ageal gland tissues did not vary with shell length for δ13C and δ15N
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acids in the diffuse flow are a source of carbon and nitro-
gen for hydrothermal vent organisms and that the relative 
contribution to the overall carbon and nitrogen pool varies 
with body size. Experimentation will be required to better 

understand what is driving these size-based trends in δ13C 
and δ15N in C. squamiferum and G. aegis.

There were consistent tissue-isotope differences observed 
between the foot and the oesophageal gland in C. squa-
miferum and G. aegis, regardless of shell length. There were 

Fig. 3   The relationship between (a) δ13C or (b) δ15N and shell length 
(mm) in Gigantopelta aegis. Solid circles represent foot and the 
solid triangles represent the oesophageal gland. Grey shaded areas 
indicate 95% confidence intervals. The relationship between δ13C 
and shell length: foot δ13C =  − 28.07951 + (shell length × 0.06120); 

oesophageal gland δ13C = ( − 28.07951 − 2.22308) + (shell 
length× 0.06120) The relationship between δ15N and shell length: 
foot δ15N = 7.66452 + (shell length×  − 0.09983); oesophageal gland 
δ15N = (7.66452 − 4.75231) + (shell length×  − 0.09983)

Fig. 4   δ13C and δ15N values for individual hydrothermal vent fauna 
collected from the Longqi vent field and the ellipses which indicate 
the results from the model-based clustering approach. The clusters 
contain the following macrofauna: cluster 1 includes Bathymodiolus 
marisindicus; cluster includes Chiridota sp., 4 out of the 5 Chyrso-

mallon squamiferum sampled and a single individual of Neolepas 
marisindica; cluster 3 includes Gigatopelta aegis, N. marisindica and 
a single specimen of C. squamiferum; cluster 4 includes Rimicaris 
kairei, Mirocaris indica and Kiwa sp. SWIR
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also species-level differences between foot and the oesopha-
geal gland for δ15N but not δ13C. The differences between 
these two tissues may reflect differences in the routing of 
dietary macromolecules and/ or the biochemical composi-
tion of the tissue which is known to vary amongst tissues 
in hydrothermal vent fauna (Pranal et al. 1995; Pruski et al. 
1998). This difference in routing pathways occurs when 
an individual gains its dietary protein and non-protein 
(e.g. carbohydrates) from separate sources (Martínez del 
Rio et al. 2009). Bathymodiolus azoricus gains a propor-
tion of its nutrition from suspension feeding and dissolved 
organic matter uptake (Riou et al. 2010). Given that both 
C. squamiferum and G. aegis are supported by endosymbi-
onts and morphological examination suggests that they are 

not feeding on free-living bacteria as adults, it is unlikely 
that they are utilising multiple food sources but the role of 
dissolved organic matter as a nutritional source cannot be 
ruled out. These species do differ in external morphologi-
cal features with C. squamiferum carrying proteinaceous 
dermal sclerites on their foot (Chen et al. 2015a). The iso-
topic fractionation of amino acids in gastropods is known 
to depend on the balance between energy production and 
the construction of proteins for growth and additional pro-
teinaceous mucus (Choi et al. 2018). Those species with 
higher proteinaceous mucus production have smaller differ-
ences in δ15N between muscle and mucus (Choi et al. 2018). 
This additional production of proteinaceous material in C. 
squamiferum may result in lower δ15N values and smaller 
differences between tissues. The result is that the difference 
between the δ15N values of the foot and oesophageal gland 
for these species may be the result of physiological processes 
and biochemical composition of the tissue rather than purely 
trophic interactions (Okada et al. 2019).

Southwest Indian Ridge trophodynamics

The δ13C values of the macrofauna associated with the 
Longqi hydrothermal vent indicated that they were using 
carbon fixed via the CBB (~  − 35‰ to  ~  − 20‰) and rTCA 
(~  − 16‰ to  ~  − 10‰) cycles while δ15N covered a range 
of 16.2‰. Within this broad range of δ13C and δ15N values, 

Fig. 5   The δ13C and δ15N val-
ues of hydrothermal vent fauna 
collected at the East Scotia 
Ridge (E2 and E9), Longqi and 
Kairei vent fields. 10 posterior 
Bayesian estimates of the 95% 
standard ellipse areas are plot-
ted in each facet

Table 2   Community level isotopic niche parameters sample size-cor-
rected standard ellipse area (SEAc), theta (θ) and Bayesian standard 
ellipse area (SEAb) for the E2, E9, Longqi and Kairei vent fields

The SEAb is mode of the posterior distribution and the upper and 
lower 95% credible intervals (CI) indicate the uncertainty in the 
SEAb estimates

Vent field n SEAc Θ SEAb 95% CI

E2 114 15.51 0.17 15.40 12.84–18.56
E9 186 46.02 0.14 45.82 39.57–52.73
Longqi 67 74.45 0.67 74.20 54.91–97.93
Kairei 130 51.89 0.73 52.16 43.78–62.24
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the hydrothermal vent fauna fell into 4 different clusters. 
Bathymodiolus marisindicus was the sole species in cluster 
1. The δ13C values indicated that the endosymbionts were 
sulphur-oxidizing bacteria using the CBB cycle (~  − 30‰ 
to  ~  − 20‰) and most probably the form I ribulose-1,5-bi-
phosphate carboxylase/ oxygenase (RubisCO) (Petersen 
and Dubilier 2009). Bathymodiolus marisindicus gills 
and foot δ13C values were at the upper range of the values 
expected of the CBB cycle and may have also contained 
contributions of organic carbon produced by methane oxi-
dizers. Dual endosymbiosis is known for B. aff. brevior at 
the Kairei and Edmond hydrothermal vent fields at the CIR 
(McKiness and Cavanaugh 2005). The SWIR B. marisindi-
cus δ13C values are similar to those to other bathymodiolid 
mussels that include dual sulphur- and methane-oxidizing 
endosymbionts from the CIR (Van Dover 2002, Yamanaka 
et al. 2015) and the Okinawa Trough (Yamanaka et al. 2015). 
Bathymodiolus marisindicus was the only species to have 

negative δ15N values. Hydrothermal vent bathymodiolid 
mussel δ15N values range between ~  − 17‰ (Robinson 
et al. 1998) and ~ 6‰ (Limen & Juniper 2006), with the 
Longqi vent field samples being approximately in the middle 
of this range. The variability among different hydrothermal 
vent fields for bathymodiolid δ15N is likely a combination 
of several biological and chemical factors. These include 
differences in concentrations of inorganic nitrogen source 
(e.g. N2, NH4, NO3-), which inorganic substrate the endo-
symbionts use to produce organic material and the role of 
internal nitrogen cycling within the host (Liao et al. 2014; 
Ferrier-Pages and Leal 2019).

Cluster 2 contained C. squamiferum, Chiridota sp., and 
a single individual of N. marisindica. The δ13C values of 
individuals ranged from  − 23.7‰ to − 21.5‰, which indi-
cated that these individuals were feeding on organic car-
bon fixed via the CBB cycle. The δ13C values are within 
the range expected for carbon fixed via RubisCO form II 

Fig. 6   The mode (solid black circle) of posterior Bayesian estimates 
of the standard ellipse area (SEAb) with 50, 75 and 95% credible 
intervals plotted in decreasing order of size calculated based on the 
δ13C and δ15N values of hydrothermal vent fauna collected at the 

East Scotia Ridge (E2 and E9), Longqi (SWIR) and Kairei (CIR) 
vent fields. The black x indicates the sample size-corrected standard 
ellipse area (SEAc)
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and potentially other autochthonous vent carbon sources 
including carbon fixed via RubisCO form I and allochtho-
nous photosynthetic primary production entering the system 
(Erickson et al. 2009; Hügler and Sievert 2011; Reid et al. 
2013). In the case of C. squamiferum, the δ13C values and 
known endosymbiotic relationship with Gammaproteobac-
teria at CIR vent fields (Goffredi et al. 2004; Nakagawa et al. 
2014) indicated that this species is dependent on locally 
fixed carbon. The δ13C values for C. squamiferum at Longqi 
(~  − 23‰) were less than those found at Kairei vent field 
(~ 18‰) indicating some potential mechanism influenc-
ing the stable isotope values between these locations. This 
potentially means that differences in the δ13C values may be 
related differences in the δ13C values of the inorganic carbon 
substrate used to fix organic carbon between hydrothermal 
vent fields or differences in temperature regimes which can 
influence trophic fractionation and isotopic turnover rates 
(Power et al. 2003; Martínez del Rio et al. 2009). In contrast 
to C. squamiferum, Chiridota sp. and N. marisindica are 
likely to consume free-living bacteria and particulate organic 
matter (POM). Chiridota hydrothermica has large lobe like 
tentacles, which are hypothesized to allow this species to 
shift between suspension- and deposit-feeding (Smirnov 
et al. 2000). The tentacle morphology is yet to be described 
in Chiridota sp. from the SWIR. The stable isotope values 
indicate that they may be consuming a heterogeneous mix of 
POM and free-living bacteria, which would be similar to the 
trophic guild based on the morphology of C. hydrothermica. 
Neolepas marisindica may potentially use a combination of 
suspension feeding or consume epibionts attached to their 
cirri as believed to occur in other hydrothermal vent stalked 
barnacles (Suzuki et al. 2009; Buckeridge et al. 2013; Reid 
et al. 2013). The δ13C values indicate that the carbon assimi-
lated from their diet is potentially a mix of carbon produced 
via CBB and rTCA cycles. However, the role of photosyn-
thetic primary production in the diet cannot be ruled out for 
Chiridota sp. and N. marisindica without the use of δ34S 
(Erickson et al. 2009; Reid et al. 2013).

Gigantopelta aegis, the majority of N. marisindica 
and single specimen of C. squamiferum formed cluster 3. 
The δ13C values within this cluster ranged from  − 27.5‰ 
to  − 24.1‰, which indicated that carbon was fixed via the 
CBB cycle (Hügler and Sievert 2011). These δ13C values 
were lighter than those in cluster 2 indicating that the pre-
dominant pathway for carbon fixation was potentially via 
RubisCO form I. The δ13C values of the endosymbiont host-
ing gastropods, G. aegis and C. squamiferum, would imply 
that they house Gammaproteobacteria in their oesophageal 
gland. This class of bacteria are found in the oesophageal 
gland of the closely related species G. chessoia from the 
ESR (Heywood et al. 2017) with G. chessoia endosymbiont 
being similar to that of C. squamiferum (Goffredi et al. 2004; 
Heywood et al. 2017). However, G. aegis and the majority 

of C. squamiferum were found in separate clusters within 
this analysis, which was largely dictated by differences in 
δ13C rather than δ15N. Gigantopelta aegis and C. squa-
miferum were sampled at different distances from the vent 
fluid source with C. squamiferum dominating diffuse flow 
areas closer to the vent opening and then G. aegis occupying 
the next distinctive faunal assemblage (Copley et al. 2016). 
This potentially means that differences in the δ13C values 
may be related to spatial differences in the δ13C values of the 
inorganic carbon substrate used to fix organic carbon. δ13C 
values of dissolved inorganic carbon in vent effluent can 
vary by up to ~ 1.5‰ across diffuse flow areas (Reid et al. 
2013), which is less than the difference between G. aegis and 
C. squamiferum. Therefore, other mechanisms may also be 
driving differences in δ13C values including metabolic dif-
ferences among these endosymbionts (Beinart et al. 2019) or 
differences in the isotopic fractionation of inorganic carbon 
during uptake by the host (Ferrier-Pages and Leal 2019).

Neolepas marisindica was another dominant member 
of cluster 3 with its δ13C values reflecting that of the CBB 
cycle. The δ13C values from Longqi vent field were similar 
to the ESR Neolepas scotianesis (Reid et al. 2013) but 
lower than the stalked barnacles from the Kairei vent field 
(Neolepas sp. δ13C =  ~  − 16‰) (Van Dover 2002) and 
Brothers Caldera vent field (V. osheai, δ13C =  ~  − 12‰) 
(Suzuki et al. 2009). Distance from the fluid source is 
known to result in differences in δ13C values for POM 
(Levesque et al. 2005) and the composition of epibiont 
communities on macrofauna (Zwirglmaier et al. 2015). 
Vulcanolepas osheai occur close to where vent fluid 
escapes from the seafloor leading to a high proportion of 
Epsilonproteobacteria (Suzuki et al. 2009), which will fix 
carbon via the rTCA cycle. Neolepas marisindica at Longi 
and N. scotianesis at ESR vents both occupy peripheral 
areas of hydrothermal vent fields (Marsh et al. 2012; Cop-
ley et al. 2016). The absence of dense bacteria on the cirri 
of N. scotianesis and the morphological structure indi-
cated that this species is potentially a suspension feeder 
(Buckeridge et al. 2013; Reid et al. 2016). The similarity 
in spatial position in the vent field and their δ13C values 
indicate that N. marisindica may be more dependent on 
suspended POM than any potential epibionts growing on 
their cirri. However, there was a ~ 2‰ difference in the 
δ13C and δ15N values between the individuals of N. maris-
indica occurring in cluster 2 and 3. These were sampled 
at different locations, which may be related to the within-
field variability in δ13C and δ15N value of POM (Levesque 
et al. 2005) as can be seen in N. scotianesis between north-
ern and southern sections of the E9 vent field on the ESR 
(Reid et al. 2013).

Cluster 4 contained the mobile fauna Kiwa sp. SWIR, 
R. kairei and M. indica. These species can be found associ-
ated with structures emitting high-temperature fluids and in 
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low-temperature diffuse flow areas (Copley et al. 2016). The 
δ13C values of these fauna fell within the range observed 
for the rTCA cycle (Hügler and Sievert 2011). Kiwa sp. 
SWIR and R. kairei were sampled from diffuse flow areas 
of the Longqi vent field and their δ13C values were very 
similar (~  − 15‰). The closely related K. tyleri from the 
ESR and Rimicaris exoculata are known to be in epibi-
ont–host association with Epsilonproteobacteria (Petersen 
et al. 2010; Zwirglmaier et al. 2015) and their δ13C values 
range between  − 19.4‰ and  − 10.6‰ (Reid et al. 2013) 
and  − 15.8‰ to  − 9.8‰ (Polz et al. 1998; Colaço et al. 
2002), respectively. It is likely, given the δ13C values of 
Longqi species, that Epsilonproteobacteria are a dominant 
component of the epibiont community for Kiwa sp. SWIR 
and R. kairei. The δ13C values of Kiwa sp. SWIR and R. 
kairei are at the lower end of the range observed for these 
genera and it is likely that the collection from diffuse flow 
areas means that Gammaproteobacteria, which fix carbon via 
the CBB cycle, are also part of their epibiont communities. 
Given the small sample size collected from the Longqi vent 
field, however, it is difficult to ascertain how representative 
these samples are of the vent field, as both δ13C and δ15N 
values can change with body size, life history stage (Van 
Dover 2002; Reid et al. 2016) and between high and low-
temperature areas of the vent field (Reid et al. 2013). In con-
trast, a larger sample size was collected for Mirocaris indica 
from structures associated with high-temperature fluid flow. 
This had the highest δ13C values of all the Longqi vent fauna 
( − 13.3‰) and was at the higher end of the spectrum in rela-
tion to Mirocaris fortunata and Mirocaris keldyshi from the 
Mid-Atlantic Ridge ( − 19.8‰ to  − 12.8‰) (Colaço et al. 
2002; De Busserolles et al. 2009). POM on active hydrother-
mal vent chimneys can fall within the δ13C range observed 
in M. indica (Limen and Juniper 2006; Lang et al. 2012; Jae-
schke et al. 2014). Mirocaris indica mouthparts suggest this 
species is grazing on POM attached to the hard-substrate and 
similar to M. fortunata, they are not using their mouthparts 
to grow epibionts for food (Komai et al. 2006).

Spatial differences in trophodynamics

Differences in the food web metrics were observed among 
the four hydrothermal vents examined. A difference was 
observed in the community isotopic niche area, as described 
by SEAb, which was smallest at E2 and largest at Longqi 
vent fields. This may be a result of the lower sample size 
at Longqi vent field rather than the spread of stable iso-
tope values for the vent fauna. The CIs for the Longqi vent 
field SEAb were much greater in comparison to the other 
three vent fields, meaning that there is higher uncertainty in 
the SEAb estimates compared to the other sites. However, 
it is likely that additional factors are also contributing to 
these differences. The primary driver is likely the vent fluid 

chemistry, which dictates the composition of the microbial 
communities (Campbell et al. 2013; Meier et al. 2016; For-
tunato et al. 2018). Hydrothermal vent fauna consuming 
bacteria utilizing the rTCA cycle does not seem to be as 
prevalent in the diet of fauna at the E2 vent field compared 
to the other three locations. This is clearly observed in K. 
tyleri and Kiwa sp. SWIR, which at the E9 and Longqi vent 
fields have some of the heaviest δ13C values indicative of the 
rTCA cycle, whereas at E2 K. tyleri δ13C values were more 
indicative of carbon fixed via the CBB cycle (Reid et al. 
2013). The difference between δ13C values of K. tyleri at E2 
and E9 were likely the result of differences in the epibiont 
community composition, which may have been driven by 
differences in the hydrothermal vent fluid chemistry (Reid 
et al. 2013; Zwirglmaier et al. 2015). SEAb and theta also 
differed between the Indian Ocean and Southern Ocean vent 
fields. This was largely a result of a greater range in δ15N 
values at the Indian Ocean vent fields compared to the ESR 
sites. Bathymodiolus marisindicus had negative δ15N val-
ues, which were not present in species from the ESR nor 
were bathymodiolid mussels found on the ESR (Van Dover 
2002; Rogers et al. 2012; Reid et al. 2013). These negative 
values also resulted in a difference in theta, which dictates 
the angle of the ellipses in relation to the x-axis. Although 
SEAb were largely comparable amongst E9, Longqi and 
Kairei vent fields, theta has clearly highlighted that there 
are differences in the relationship between δ13C and δ15N.

Interpreting differences in theta and SEAb in relation 
to trophic structure is more complicated. The use of SEAb 
and theta, here, indicates that at a “broad-brush” level there 
are potentially important differences in trophic interactions 
among species based on the fauna sampled for these analyses 
but it explains less about the trophic structure. Converting 
the δ15N values into an estimate of trophic position would 
potentially standardize the interpretation of δ15N across the 
four hydrothermal vent fields allowing greater insights into 
macroecological patterns in food web structure, rather than 
examining site-specific differences in stable isotope values 
(Olsson et al. 2009; Tran et al. 2015) or examining patterns 
of variability. However, estimating trophic position is diffi-
cult at hydrothermal vents given the potential high variabil-
ity in δ15N of inorganic nitrogen compounds and the absence 
of organisms that could potentially act as a baseline (Bour-
bonnais et al. 2012; Reid et al. 2013; Winkel et al. 2014). 
This means that additional complementary data will have to 
be included in order to estimate trophic position including 
stomach content analysis, either through eDNA or identifica-
tion, and behavioural observations. Even though the hydro-
thermal vent food webs are unlikely to host no more than 
3 trophic levels (Reid et al. 2013; Lelievre et al. 2018), a 
number of the top-level predators are found on the periphery 
of the hydrothermal vent in diffuse flow areas (Marsh et al. 
2012; Reid et al. 2013), which may be more at risk to habit 
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destruction or modification through deep-sea mining. It is 
important that any food web metric that is potentially used as 
a comparative tool for understanding ecological differences 
in food web structure, system health or used as a baseline 
assessment prior to exploitation, is easily interpretable from 
an ecological or management perspective (Van Audenhaege 
et al. 2019).

The species and genera at the Longqi vent field, which 
overlapped with those present on the ESR and CIR occu-
pied trophic niches that would be expected given the avail-
able ecological information known from these sites (Van 
Dover 2002; Marsh et al. 2012; Reid et al. 2013; Copley 
et al. 2016). However, there are clear differences in the rela-
tive contribution of different genera among these locations 
(Rogers et al. 2012; Copley et al. 2016) and as well as a 
degree of variation in their stable isotope values. The dif-
ference in δ13C values between G. chessoia (~ 30‰) and G. 
aegis (~ 26‰) may also be the result of different phylotypes 
of Gammaproteobacteria. A difference of ~ 3‰ among vent 
fields is also observed in the genus Alvinoconcha along the 
Eastern Lau Spreading Center, which contain different phy-
lotypes of Gammaproteobacteria (Beinart et al. 2012). The 
difference in phylotypes is spatial inter-field differences but 
it is not clear whether there are intra-field differences as well 
(Beinart et al. 2012). The presence of B. marisindicus and C. 
squamiferum at SWIR may be limiting the distribution of G. 
aegis at Longqi compared to G. chessoia at the ESR where 
the lack of bathymodiolid mussels and C. squamiferum may 
result in a lower competitive pressure to occupancy the low-
temperature diffuse flow areas. The successional stage of 
the hydrothermal vent may also be important because G. 
aegis appears in more abundant on predominantly diffuse 
flow vents with lower high-temperature activity (Copley 
et al. 2016). This contrasts with G. chessoia which is present 
on hydrothermal structures which contain both high- and 
low-temperature venting and just low-temperature venting 
(Marsh et al. 2012). This may result in G. aegis occupying 
a different physiochemical niche, either in space or time, 
than G. chessoia, which may ultimately influence the endo-
symbiont community or other processes that drive variation 
in δ13C values.

Even though there was a clear indication that the δ13C 
values of Longqi vent field macrofauna represented those 
fixed via the rTCA cycle, the observed abundances of Kiwa 
sp. SWIR and R. kairei were low compared with the spe-
cies of the same genera at ESR and CIR vent fields (Marsh 
et al. 2012; Copley et al. 2016). Kiwa tyleri and R. kairei 
are biomass-dominating taxa close to high-temperature vent 
orifices at ESR and CIR vent fields, respectively. Their bio-
mass is supported by chemoautotrophic epibionts, which are 
predominantly Epsilonproteobacteria (Campbell and Cary 
2004; Campbell et al. 2013). The first species at the Longqi 
vent field found in high abundance are C. squamiferum 

which are found close to diffuse venting fluids and had δ13C 
values indicative of the CBB cycle and are known to house 
Gammaproteobacteria at vent fields on the CIR (Goffredi 
et al. 2004). The result is that the proportion of carbon fixed 
by the CBB and rTCA cycles, which enters the metazoan 
food web to sustain the biomass, is potentially different. 
The underlying process for this is not clear. H2S, H2 and 
CH4 have been sampled from a high-temperature source at 
Longqi vent field (Ji et al. 2017; Tao et al. 2020) and the H2S 
concentrations are lower than found at the ESR (James et al. 
2014). The concentration of sulphides in the environment 
are important determinants of whether Gamma- or Epsilon-
proteobacteria dominate, with high sulphide and H2 condi-
tions resulting in a greater proportion of Epsilonproteobac-
teria (Nakagawa and Takai 2008; Beinart et al. 2012). If the 
geochemical environment is not appropriate for the growth 
of Epsilonproteobacteria in association with R. kairei then 
there is potentially a lack of food to sustain high populations. 
However, this may not explain the low numbers of Kiwa 
sp. SWIR because the epibiont community on the closely 
related K. tyleri can be dominated by Gammaproteobacteria 
(Zwirglmaier et al. 2015). The low abundance for both these 
species may be related to the dispersal ability of these two 
species rather than the geochemical environment at Longqi 
or a combination of both. It is not clear whether Kiwa sp. 
SWIR and R. kairei are at the edge of their respective ranges, 
resulting in this region of the SWIR being a population sink. 
In this case, C. squamiferum has the potential to expand its 
ecological niche into parts of the hydrothermal vent field 
that in other CIR vent fields are dominated by R. kairei.

In conclusion, there is evidence of carbon fixed via the 
CBB and rTCA cycle entering the Longqi vent field food 
web. Several shared vent fauna, at genus level, show similar 
stable isotope values as those from other vent fields but there 
is a degree of isotopic variability among the locations. There 
is a clear requirement to undertake spatial characterization 
of microbial communities and define the physiochemical 
niches of hydrothermal vent fauna at Longqi vent field to 
put this trophodynamic investigation into greater context. 
Further work should investigate the food web at a higher spa-
tial resolution and include sampling potential food sources 
like dissolved organic matter, particulate organic matter 
and free-living bacteria. Furthermore, there are differences 
in the observed abundance of some of these species and 
genera when comparing Longqi to the ESR and CIR vent 
fields. It is unclear why this may be occurring. It may be that 
Kiwa sp. SWIR and R. kairei do not reach high population 
abundances found at other vent fields for those taxa because 
these are sink populations, even though the highly devel-
oped chimney structures would suggest prolonged venting 
at Longqi vent field. The underlying ecological processes 
driving turnover of species along large-scale gradients and 
how this may result in differing trophic structure is still 
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largely unknown. The interaction among dispersal ability, 
available habitat and nutritional resources within and among 
vent fields all need to be considered. This will require plac-
ing hydrothermal vent fields like the Longqi vent field into 
the wider ridge context with further exploration along the 
SWIR towards the CIR and Bouvet Triple Junction, but also 
require the incorporation of biological traits (Chapman et al. 
2019) into any analyses on trophic structure.
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