ORIGINAL PAPER

The Antarctic Circumpolar Current as a dispersive agent in the Southern Ocean: evidence from bivalves

Marina Güller1,2 [·](http://orcid.org/0000-0001-8599-3424) Eleonora Puccinelli3,4 [·](http://orcid.org/0000-0002-6144-6650) Diego G. Zelaya1,[2](http://orcid.org/0000-0002-7868-863X)

Received: 1 April 2020 / Accepted: 23 July 2020 / Published online: 3 September 2020 © Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract

Over the past decades, several studies have revealed that the traditional view of the Antarctic Circumpolar Current (ACC) as an agent for species dispersal in the Southern Ocean is not applicable to all taxa. Some species are actually circum-Antarctically or circum-sub-Antarctically distributed, but some other species actually comprise species' complexes, with cryptic taxa occurring at diferent areas. However, to date, few of the invertebrate species formerly reported as widespread in the Southern Ocean have been re-analyzed using genetic techniques. This study examined whether two geographically distant areas of the sub-Antarctic region under the infuence of the ACC, the Southern tip of South America (SSA) and the Prince Edward Islands (PEI), share some marine invertebrate species. For that, members of two genera of bivalves, *Gaimardia* and *Hiatella*, were selected. As part of this study, we found extremely low genetic diferentiation between specimens from SSA and PEI. In addition, shared haplotypes were found between these two areas. Our results confrm that *Gaimardia trapesina* and one same species of *Hiatella* ("*Hiatella* O") are present in both areas. Given that these two species are found on macroalgae, natural rafts appear as the most plausible means of dispersal of juveniles and adults, although in the case of *Hiatella* O, additional larval dispersion cannot be discarded. In any of these cases, dispersion should be facilitated (or even determined) by the ACC. Thus, this study provides new evidence in favour of considering the ACC as an efective dispersive agent in the Southern Ocean.

Introduction

The Antarctic Circumpolar Current (ACC) is considered a primary force promoting events of dispersion, isolation and speciation in Southern Ocean (Patarnello et al. [1996](#page-11-0); Beu

Universitaire Européen de la Mer, Technopole Brest-Iroise,

Rue Dumont d'Urville, 29280 Plouzané, France

et al. [1997\)](#page-10-0). This current, originated about 25–23 million years ago (in the late Oligocene) (Lyle et al. [2007\)](#page-11-1), fows around the Antarctic continent in a west–east direction. It is delimited by the sub-Antarctic Front in the north and the Southern ACC Front in the south, encompassing in between the Antarctic Polar Front (Orsi et al. [1995](#page-11-2)). These frontal zones have been frequently regarded as natural barriers to genetic exchanges between species located within and outside the ACC, as well as those occurring at both sides of the ACC (Barker et al. [2007](#page-10-1); Hunter and Halanych [2008\)](#page-11-3).

Historically, based on the overall morphological similarities, several invertebrate species have been reported as widely distributed in the Southern Ocean, showing circum-Antarctic or circum-sub-Antarctic patterns (e.g., Dell [1972](#page-10-2)). In this regard, several authors have suggested that the ACC could be responsible for this distributional patterns, either through the dispersion of larval stages (as members of plankton community) or of juvenile/adult specimens by rafting (e.g., Fell [1962;](#page-10-3) Dell [1972](#page-10-2)). Additionally, some authors (e.g., Castilla and Guiñez [2000](#page-10-4)) regarded the anthropogenic dispersal as an alternative way for explaining this distributional pattern in some taxa. However, these hypotheses were seldom supported by factual evidence. In the last decades, the usage of genetic techniques applied to the taxa occurring in the Southern Ocean revealed contrasting distributional patterns: although some species appear to be actually widely distributed (e.g., Nikula et al. [2010](#page-11-4); Moon et al. [2017](#page-11-5)), several other species previously regarded as widely distributed actually proved to correspond to species' complexes, with "cryptic" species occurring in diferent localities (e.g., Wilson et al. [2007;](#page-12-0) Allcock et al. [2011](#page-9-0)). This fact led some authors to conclude that few taxa actually show circum-Antarctic or circum-sub-Antarctic distributions $(e.g., Clarke et al. 2007: 620)$ $(e.g., Clarke et al. 2007: 620)$ $(e.g., Clarke et al. 2007: 620)$. However, to date, it is difficult to determine what "few taxa" exactly means, as a reduced number of the taxa previously considered as widespread have been carefully evaluated using genetic techniques. Among bivalves, for instance, only a few families were thus far genetically investigated, including Ostreidae (Ó Foighil et al. [1999\)](#page-10-6), Limidae (Page and Linse [2002\)](#page-11-6) and Mytilidae (Zbawicka et al. [2019\)](#page-12-1), all of them belonging to the subclass Autobranchia. The results obtained by these studies are not conclusive: the two frst confrm the occurrence of widespread species, while Zbawicka et al. ([2019](#page-12-1)) revealed the presence of diferent (cryptic) species, with allopatric distributions, along the sub-Antarctic area. Considering the great diversifcation of bivalves in this area, and the broad geographic distributions exhibited by several other bivalve genera, this group of invertebrates appears particularly attractive for providing new insights on the biogeography of the Southern Ocean.

Gaimardia (Gaimardiidae) and *Hiatella* (Hiatellidae) are two genera members of the subclass Heterodonta which include species currently regarded as circum-sub-Antarctic. According to MolluscaBase [\(2020\)](#page-11-7), *Gaimardia* comprises 11 valid species, all of them occurring in the southern hemisphere at high latitudes, including Southern South America, the Scotia Arc islands, Prince Edward Islands, Kerguelen, Tasmania, Macquarie, and New Zealand (Dell [1964](#page-10-7); Zelaya [2005\)](#page-12-2). Based on morphological characters, two of these species (*Gaimardia trapesina* and *G. adamsiorum*) are considered as widespread in sub-Antarctic waters, although the conspecifcity of specimens from distant areas was never confrmed with genetic techniques; the remaining nine species of *Gaimardia* are considered as having much smaller distributional ranges (i.e., restricted to one or a few archipelagos, or to some particular areas). To date, the distinction of *Gaimardia* species is not easy. Most of these species remain only known from their original description (usually lacking relevant information for species distinction) and are imperfectly fgured or not fgured at all. A systematic revision encompassing these species has been never performed. Members of this genus lack a free-living larva and exclusively live on macroalgae (Helmuth et al. [1994;](#page-10-8) Ituarte [2009](#page-11-8); Chaparro et al. [2011](#page-10-9); Zelaya et al. [2019\)](#page-12-3). *Gaimardia* *trapesina*, for instance, lives on the giant kelp *Macrocystis pyrifera*, where in fact it is the most abundant epibiotic species on the fronds (Dayton [1985a;](#page-10-10) Adami and Gordillo [1999](#page-9-1); Puccinelli et al. [2018](#page-11-9)).

The knowledge on *Hiatella* is not much better than that of *Gaimardia*. *Hiatella* is a worldwide distributed genus, but all species have been described based on their shell morphology, a character that has proved to be greatly variable, being dependent on the local / particular conditions, where individuals grow (Lezin and Flyachinskaya [2015](#page-11-10)). Molecular studies in members of *Hiatella* are still scarce. Laakkonen et al. [\(2015](#page-11-11)) recognized two lineages (molecular species) of *Hiatella* in the southern hemisphere (which they referred as *Hiatella* A and *Hiatella* B), and 11 lineages in the northern hemisphere (*Hiatella* C-M). Layton et al. [\(2016\)](#page-11-12) found an additional molecular species in the northern hemisphere (which he named *Hiatella* N). Out of these molecularly investigated species, only *Hiatella* A appears in the area under de incidence of the CCA. Members of *Hiatella* may be found over a great variety of substrates, including the giant kelp (Gordillo [2001](#page-10-11); Laakkonen et al. [2015\)](#page-11-11). Species of *Hiatella* for which some developmental information is available reveal the presence of a planktonic larval stage (e.g., Schejter et al. [2010;](#page-11-13) Díaz and Campos [2014](#page-10-12)).

The fact that some species of both *Gaimardia* and *Hiatella* live on macroalgae suggests that rafting may be a responsible driver for their current circum-sub-Antarctic pattern of distribution. Several biological and environmental factors have been reported to cause breakage of stipes and detachment of the holdfasts of the giant kelp (Barrales and Lobban [1975;](#page-10-13) Santelices and Ojeda [1984](#page-11-14); Dayton [1985b](#page-10-14); Duggins et al. [2001\)](#page-10-15). These factors lead to the generation of kelp rafts, which are dispersed in the Southern Ocean, with the aid of the ACC, consequently dispersing the organisms living on them (Fraser et al. [2010](#page-10-16); Nikula et al. [2010](#page-11-4); Gillespie et al. [2011;](#page-10-17) Waters et al. [2018](#page-12-4); Avila et al. [2020](#page-9-2)). In this regard, *Gaimardia trapesina* appears as an emblematic species in sub-Antarctic waters, because it was the frst species in the area in which the dispersion by rafting was documented: Helmuth et al. [\(1994\)](#page-10-8) provided evidence of specimens of *G. trapesina* dispersing on *Macrocystis* rafts from South America to South Georgia (about 1500 km away). Considering that kelp rafts are commonly found in the Southern Ocean (Schiel and Foster [2015\)](#page-11-15) this transport could potentially work for other (more distant) areas too, as in fact it was suggested by some authors (e.g., Dell [1964](#page-10-7); Castilla and Guiñez [2000](#page-10-4)), although this hypothesis was never formally proved.

The aim of this study is to examine if two geographically distant areas of the sub-Antarctic region, the Southern tip of South America (SSA) and the Prince Edwards Islands (PEI), actually share some faunistic elements. For that, members of two genera of bivalves (*Gaimardia* and *Hiatella*) with diferent modes of life and reproduction are selected as particular case studies.

Materials and methods

Studied areas

The SSA encompasses the Atlantic and Pacifc coasts of the American continent. The term is here restricted to refer to the waters south of 47°S, including Isla de los Estados and Burdwood Bank. SSA corresponds to an old geological area, originated from the Gondwana break out (Faure and Mensing [2010](#page-10-18)). The Pacific coast of SSA is under the infuence of the West Wind Drift, a subantarctic water flow that contacts the Chilean coast at about 48°S (Camus [2001](#page-10-19); Thiel et al. [2007\)](#page-11-16). This gives origin to the Cape Horn Current, which fows towards the south along the Pacifc coast, surrounding the southern tip of South America, heading eastwards towards the Atlantic Ocean. The Cape Horn Current gives origin to the Patagonian shelf waters and the Malvinas/Falkland Current, which flow northwards parallel to the Argentine coast. The Malvinas/Falkland Current deflects eastwards off the continental slope at about $40-45^{\circ}$ S (Stramma and England [1999\)](#page-11-17).

The PEI is a relatively young volcanic archipelago, comprising Marion Island (originated about 0.45 million years ago) and Prince Edward Island (originated about 0.2 million years ago) (McDougall et al. [2001](#page-11-18); Chown et al. [2008](#page-10-20)). This archipelago is located in the Indian sector of the Southern Ocean (Fig. [1](#page-2-0)).

Sample collection

Studied specimens of *Gaimardia* were collected by hand from fronds of the giant kelp *Macrocystis pyrifera* attached

Fig. 1 a–**c** Study area (**a**) and sampling sites of *Gaimardia* (circles) and *Hiatella* (triangles), at (**b**) the Southern tip of South America (SSA) and (**c**) the Prince Edward Islands (PEI: light blue). *ACC* Antarctic Circumpolar Current; *BB* Burdwood Bank (purple); *BC* Bea-

gle Channel (orange); *CF* Chilean Fjords (red); *IE* Isla de los Estados (yellow); *PD* Puerto Deseado (green); *SAF* sub-Antarctic Front; *SACC* Southern ACC Front; *TF* Atlantic coast of Tierra del Fuego (light orange)

to the substrate in the shallow subtidal. In SSA, samples were taken in 2011 and 2012, in the Chilean Fjords (CF) (Pacifc coast), in the Beagle Channel (BC), in Isla de los Estados (IE) and Puerto Deseado (PD) (Atlantic coast) and in PEI, in 2016 and 2017 (Fig. [1\)](#page-2-0).

Studied specimens of *Hiatella* were sorted from sediment dredged from 82 to 415 m depth, in SSA at Tierra del Fuego (TF) and Burdwood Bank (BB) and in PEI, during expeditions of BO *Puerto Deseado*, GC-189 *Prefecto García* and RV SA *Agulhas II* in 2016 and 2017 (Fig. [1](#page-2-0)). On BO *Puerto Deseado* and GC-189 *Prefecto García* a dredge of 4 mm² mesh-size net of $20\times60\times60$ cm, was used, while on RV SA *Agulhas II* a dredge of $30 \times 100 \times 100$ cm and a mesh size of 1 cm^2 was used.

All samples were preserved in 100% ethanol until further processing. Voucher specimens were deposited at the Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Buenos Aires, Argentina.

Due to the impossibility to confrm *a-priori* the conspecifcity of the studied specimens of *Gaimardia* and *Hiatella* from SSA and PEI, we refer to these materials as "*Gaimardia*" and "*Hiatella*", in the Results section.

Genetic studies

Total DNA was extracted from adductor muscles using a CTAB/Proteinase K method (Dayrat et al. [2011\)](#page-10-21). For specimens of *Gaimardia*, fractions of the mitochondrial Cytochrome Oxidase subunit I (COI), mitochondrial ribosomal gene 16S, and the nuclear Internal Transcribed Spacer region (ITS1-5.8S-ITS2, from now on "ITS") were amplifed, using the universal primers LCO/HCO (Folmer et al. [1994](#page-10-22)), 16Sar/16Sbr (Palumbi [1996](#page-11-19)) and ITS5/ITS4 (White et al. [1990](#page-12-5)), respectively. For specimens of *Hiatella*, a COI fraction was amplified using the HiaHd/HiaHr primers (Laakkonen et al. [2015\)](#page-11-11). Amplifcations were performed by routine polymerase chain reaction (PCR).

PCR products were visualized in 2% agarose gels, cleaned-up with enzymes (EXO I-FastAP, Thermo Scientific[®]) and sent out to Macrogen, Inc. (Korea) for sequencing on both ways. Sequences were trimmed and refned with chromatograms guidance prior to assemblage, and checked manually. MEGA version 10.0.5 (Kumar et al. [2018\)](#page-11-20) was used for aligning sequences using Clustal W with default settings, and to calculate uncorrected p-distances (from now on "p-dist"). DnaSP version 5 (Librado and Rozas [2009\)](#page-11-21) was used to calculate haplotype diversity (*H*) and nucleotide diversity (π) .

Information on voucher specimens, sampled localities and GenBank accession numbers, are provided in (Table [1](#page-4-0)).

Phylogenetic reconstructions of sequences of *Gaimardia* were performed for each marker individually, and combining the three in a concatenated analysis using a subset of

11 specimens (Table [1\)](#page-4-0). A 16S sequence of *Gaimardia trapesina* from Tierra del Fuego, Argentina, available from GenBank (KX713220.1) was included in the analysis, as well as COI and 16S sequences of *Cyamiomactra laminifera* (KC429131, KC429293.1), another Cyamioidea, here used as outgroup. ITS fragments are not currently available in GenBank for any other Cyamioidea, and therefore, the phylogenetic reconstruction performed with this marker could not be rooted.

For the phylogenetic reconstruction of specimens of *Hiatella*, we included the sequences obtained by Laakkonen et al. [\(2015](#page-11-11)); (*Hiatella* A-M: GeneBank accession numbers KP767805–KP761044). Sequences of *Panopea generosa* (KJ125418.1) and *Panopea globosa* (KJ125413.1) were used as outgroups.

The best evolutionary models were selected with AIC criterion in jModeltest version 2.1.10 (Darriba et al. [2012](#page-10-23)). Maximum Likelihood (ML) reconstructions were performed in MEGA, with node support evaluated through 1000 bootstrap replicates. Bayesian inference (BI) analyses were performed in MrBayes version 3.2 (Ronquist et al. [2012\)](#page-11-22), with four simultaneous runs of 100 generations each and a sample frequency of 100, until average standard deviation of split frequencies reached≤0.001; phylogenetic trees were summarized with a 10% burn-in value. Haplotype networks were built using a median-joining method (Bandelt et al. [1999](#page-10-24)) in Network version 5.0.1.0 (available at [https://www.fuxu](https://www.fluxus-engineering.com/sharenet.htm) [s-engineering.com/sharenet.htm](https://www.fluxus-engineering.com/sharenet.htm)).

Results

The case *Gaimardia*

In total, 23 specimens of *Gaimardia* provided genetic information for analyses: 12 for 16S, 21 for COI, and nine for ITS. Of these, eight specimens successfully amplifed for all gene loci, enabling the concatenated analysis.

The alignment of the twelve 16S sequences (Table [1](#page-4-0)) had a length of 481 bp and resulted in only two variable sites, corresponding to singletons. The phylogenetic reconstructions confrmed the monophyly of specimens of *Gaimardia* from SSA and PEI altogether, with high support both in the ML and BI analyses. Within the *Gaimardia* clade, the 16S did not resolve any grouping.

The alignment of the nine sequences of ITS (Table [1\)](#page-4-0) was 1361 bp long, with nine variable sites and six singletons. The phylogenetic reconstructions based on ITS did not resolve any grouping within the *Gaimardia* clade.

The alignment of the 21 COI sequences (Table [1\)](#page-4-0) had a length of 529 bp with 21 variable sites (4%), with a total of 15 singletons. Low levels of genetic divergence were registered for COI among the considered sequences **Table 1** Specimens of *Gaimardia trapesina* and *Hiatella* O collected as part of the present study for genetic analyses in the Southern tip of South America and the Prince Edward Islands

GenBank repository numbers are provided for each marker

(p-dist=0–1.7%) (Table [2](#page-5-0)). These sequences of *Gaimardia* showed high levels of diferentiation with *Cyamiomactra laminifera* (p-dist = 16.8%). The phylogenetic reconstructions confrmed the monophyly of specimens of *Gaimardia* from SSA and PEI altogether, with high support both in the ML and BI analyses. Within the *Gaimardia*

Table 2 *Gaimardia* COI sequence divergences. Above diagonal: minimum and maximum number of base diferences between localities. Diagonal: average uncorrected *p* distance within locality. Below diagonal: uncorrected p-distance between localities

BC Beagle Channel (*n*=5), *CF* Chilean Fjords (*n*=1), *IE* Isla de los Estados (*n*=1), *PD* Puerto Deseado (*n*=5), *PEI* Prince Edward Islands (*n*=1), *SSA* Southern tip of South America (*n*=12)

clade, the COI marker consistently recovered a subclade, which encompasses all the specimens from BC, IE and CF, with high Bayesian posterior probability (0.98) but moderate bootstrap support in ML (71%). COI showed relatively low genetic differentiation among the five studied localities (average $p\text{-dist}=0.6\%$). These differences were low among diferent localities of SSA, and somewhat greater between PEI and each locality at SSA or SSA as a whole (Table [2](#page-5-0)). The p-dist between PEI and CF, BC, or IE were higher than the respective within-site distances. However, the distances between PEI and PD were lower than the average distance among specimens from PEI (Table [2\)](#page-5-0).

The concatenated alignment of 16S, COI and ITS revealed a distinctive grouping within the *Gaimardia* clade. In this case the $BC + IE + CF$ specimens also formed a subclade, with 80% bootstrap support and 0.97 posterior probability (Fig. [2](#page-5-1)a). In addition, in the concatenated analysis by BI, a second subclade, comprising the specimens from PD, was recovered with moderately good posterior probability (0.86).

Fig. 2 Case *Gaimardia*. **a** Tree obtained by Bayesian Inference for COI, ITS and 16S concatenated markers (GTR+G model). Posterior probabilities>95% are indicated with "*"; maximum likelihood bootstrap support>80 are indicated with "°". **b**, **c** Median-joining haplotype networks of: (**b**) COI and (**c**) ITS. Numbers on branches

correspond to number of mutated sites; size of circles is proportional to the number of specimens per haplotype, according to the scale provided. Specimen codes ("G1"– "G23") correspond to those listed in (Table [1](#page-4-0)). For colour codes see (Fig. [1](#page-2-0))

Among the 21 COI sequences, 15 diferent haplotypes were recognized, separated by a maximum of nine muta tions. Standard diversity indices revealed high haplotype diversity and moderate nucleotide diversity $(H = 0.95)$; π =0.007), a fact also evidenced among sequences from BC ($H = 0.90$; $\pi = 0.003$) and PEI ($H = 0.97$; $\pi = 0.008$). Contrastingly, relatively low diversity was found among sequences from PD $(H=0.40; \pi=0.0008)$. The reconstruction of the median-joining network showed a relatively short topology, with low-frequency haplotypes (Fig. [2b](#page-5-1)). All studied localities showed exclusive haplotypes, with the exception of IE, which shared the same haplotype of BC. The network revealed certain association of the haplotypes with the geographic origin of the specimens. BC, IE and CF were grouped by very similar haplotypes, and connected to the most frequent haplotype of PD by only two substi tutional steps. PEI specimens showed the greatest number of haplotypes (eight), and were separated by the greatest number of steps among them (up to eight). These specimens from PEI resulted in two haplotype groups, connected inde pendently to the PD main haplotype. The frst group ("PEI I") showed a star-like topology with its central haplotype separated from the main haplotype in PD by only two steps. The second group ("PEI II") comprised two additional hap lotypes (Fig. [2](#page-5-1)b). The haplotypes grouped in "PEI I" were similarly differentiated from $BC + IE + CF$ than from "PEI II" (p-dist $= 1.1\%$ and 0.9%, respectively).

Among the nine ITS sequences, seven distinct haplotypes were found, most of them represented by a single sequence, resulting in high haplotype diversity and low nucleotide diversity for this marker $(H=0.92; \pi=0.002)$. The ITS haplotype network revealed no geographic structure. In fact, one shared haplotype was found in BC, IE and PEI (Fig. [2c](#page-5-1)).

When comparing the COI and ITS haplotype networks, no concordant results were found in the position of the speci mens. The PD specimens that shared one central haplotype in the COI network were distinct in ITS. Likewise, the PEI specimen that shared a common haplotype with BC and IE in the ITS network, was distant in COI.

The case *Hiatella*

In total, 17 specimens of *Hiatella* provided genetic infor mation for analyses. The COI alignment (187 sequences, 796 bp) was highly-conserved among the new sequenced specimens from SSA and PEI, with only three vari able sites. However, the inclusion of the sequences of the lineages of *Hiatella* reported by Laakkonen et al. ([2015](#page-11-11)) resulted in a total of 279 variable sites (35%). High levels of genetic divergence were found between the newly obtained sequences and any other previously known molecular species (p-dist > 19.1%; Table [3\)](#page-6-0), in contrast to the minimum divergence among the material

Table 3 *Hiatella* COI sequence divergences of molecular species: A-M: Laakkonen et al. ([2015](#page-11-11)), N: Layton et al. [\(2016](#page-11-12)), O: present study. Diagonal: average uncorrected p-distance within

Table 3 Hiatella COI sequence divergences of molecular species: A-M: Laakkonen et al. (2015), N: Layton et

 (2016) , O:

ತ

present study. Diagonal: average uncorrected p-distance within

² Springer

studied herein (p-dist = 0.06% ; Table [3\)](#page-6-0), and the divergence between the specimens from SSA and PEI $(p\t -dist = 0.06\%)$. The material here studied was closer to Laakkonen et al.'s [\(2015](#page-11-11)) molecular species from the southern hemisphere (i.e., *Hiatella* A: from the Magellan Strait, and *Hiatella* B: from New Zealand) than any other lineage from the northern hemisphere (Table [3](#page-6-0)).

The phylogenetic reconstructions revealed the monophyly of the studied material, with high bootstrap support and bayesian probability (98% and 1.00, respectively) $(Fig. 3a)$ $(Fig. 3a)$ $(Fig. 3a)$. No subclades were recovered among these sequences, which showed a basal position to the previously known *Hiatella* species, although lacking adequate support (Fig. [3a](#page-7-0)).

Only four haplotypes were recognized in the sequences obtained as part of this study (Fig. [3](#page-7-0)b): one, the dominant, being present in all sampled localities $(TF+IE+BB+PEI)$, two haplotypes exclusive from BB, and the remaining exclusive from PEI. The last three haplotypes appear separated by only one or two mutational steps from the main haplotype.

Discussion

In recent years, several studies have analyzed the connectivity and origin of the marine fauna from diferent sub-Antarctic archipelagos (e.g., Waters [2008;](#page-12-6) Cumming et al. [2014](#page-10-25); Moon et al. [2017](#page-11-5); González-Wevar et al. [2018](#page-10-26); and references therein), although few of these studies have considered the fauna of PEI. González-Wevar et al. [\(2014](#page-10-27)) provided genetic evidence of the occurrence at PEI of a gastropod species (*Nacella delesserti*) that is not present in SSA or any other area in the Southern Ocean (where other species of *Nacella* are present). This fact would suggest certain degree of faunistic isolation of PEI. On the contrary, the bivalves considered in the present study show extremely low genetic diferentiation, together with the presence of shared haplotypes between PEI and SSA, revealing that the same species of *Gaimardia* and *Hiatella* are present in these two areas. These results are similar to those reported for the bivalve *Limatula pygmaea* (Page and Linse [2002](#page-11-6)), and the isopods *Septemserolis septemcarinata* and *Limnoria stephenseni* (Leese et al. [2010](#page-11-23); Nikula et al. [2010\)](#page-11-4); suggesting that this wide distributional pattern is not unusual, and that it occurs

Fig. 3 Case *Hiatella*. Tree obtained by Bayesian Inference for COI $(TIM3+I+G \text{ model})$. Posterior probabilities > 95% are indicated with "*"; maximum likelihood bootstrap support > 80 are indicated with "°". Terminals "A" to "M" correspond to Laakkonen et al.'s ([2015\)](#page-11-11) molecular species (GenBank accession numbers KP767805 to KP761044); terminals grouped in "O" correspond to newly

sequenced specimens. **b** Median-joining haplotype network for COI. Numbers on branches correspond to the number of mutated sites; size of circles is proportional to the number of specimens per haplotype, according to the scale provided. Specimen codes ("H1"–"H17") correspond to those listed in (Table [1](#page-4-0)). For colour codes see (Fig. [1](#page-2-0))

in species with diferent modes of life and reproduction. The low genetic diferentiation here found between specimens from SSA and PEI does not seem to be originated in the used molecular markers. In fact, two of the fragments here used proved to be successful in distinguishing other cyamioidean and hiatelloidean species: the 16S sequences obtained by Zelaya et al. ([2019\)](#page-12-3), resulted in p-dist from 15 to 18.8% among species of *Cyamiocardium*; similarly, the COI marker shows high divergence of lineages in *Hiatella* (11.2–20.2%), according to Laakkonen et al. [\(2015\)](#page-11-11). A taxonomical revision of the species of *Gaimardia* occurring in the Southern Ocean (Güller and Zelaya, in prep) allows us to confrm that the taxon involved in this study is *G. trapesina*. The species of *Hiatella* cannot be determined with confdence, as none of the nominal species of this genus described or reported from the Southern Ocean (and even worldwide) is properly defned. Despite that, the species involved in the present study does not correspond to any of the molecular species, previously recognized by Laakkonen et al. ([2015\)](#page-11-11) or Layton et al. ([2016](#page-11-12)), either from the southern or the northern hemisphere, revealing that the molecular diversity of *Hiatella* is even greater than previously known. For the purpose of the subsequent discussion, the taxon involved in this study is referred as *Hiatella* O.

The little genetic diferentiation found in this study for ITS sequences (fast-evolving nuclear loci), supports the hypothesis of relatively recent events of colonization of PEI by *Gaimardia trapesina*. In addition, the presence of two diferent groups of haplotypes of *G. trapesina* at PEI, which diverge from SSA's main haplotype (when considering COI marker) is compatible with the occurrence of more than one event of colonization of this archipelago. This is in agreement with the fndings by Page and Linse ([2002](#page-11-6)) for *Limatula pygmaea* (in that case, based on ITS-1 sequences).

How can species occur in geographically distant areas?

The occurrence of a same species in two geographically distant areas is usually explained as a consequence of a common history of these areas (i.e., geological or tectonic connections), anthropogenic transport or natural dispersive events (Castilla and Guiñez [2000](#page-10-4)). The diferent geologic histories of SSA and PEI argue against the frst of those alternatives to explain the co-occurrence of these taxa in these two areas. Anthropogenic transport does not seem to have major signifcance for explaining the occurrence of these two taxa at PEI either, as both *Gaimardia trapesina* and *Hiatella* O are relatively small-sized species, which do not represent human food-source or are involved in aquaculture activities. On the other hand, the PEI historically have had only occasional ships traffic, due to the distant location of the islands from usual sea routes (Cooper [2008](#page-10-28); Leese et al. [2010](#page-11-23)); and studies on the sea-chests fauna of the few ships visiting this archipelago (Lee and Chown [2007](#page-11-24)) did not report these species.

On the contrary, some biological and ecological aspects of the two species considered in this study support the hypothesis that natural dispersive events have been the main responsible drivers for their current pattern of distribution. *Gaimardia trapesina* exclusively live on the giant kelp *Macrocystis pyrifera* (Dayton [1985a](#page-10-10); Adami and Gordillo [1999](#page-9-1); Puccinelli et al. [2018\)](#page-11-9), on which all the specimens here studied, either from SSA and PEI, were collected. Specimens of *Hiatella* O can also be occasionally found on *M. pyrifera*, where early juveniles are usually present on the fronds and larger specimens on the holdfasts (Zelaya, pers obs). The present study takes Helmuth et al.'s ([1994](#page-10-8)) fndings even further, revealing that specimens of *G. trapesina* may be dispersed in this way, over much greater distances, thus occurring in SSA and PEI (6500 km away). Furthermore, members of the genus *Hiatella* have been also found living on the bull kelp *Durvillaea antarctica* (López et al. [2018](#page-11-25)), which according to Smith ([2002\)](#page-11-26) is likely to be more important for dispersal over larger spatial scales than *M. pyrifera* in the Southern Ocean. Therefore, rafting on macroalgae represents the most probable way in which *G. trapesina* (and perhaps also *Hiatella* O) has reached the PEI.

The dispersion of *Hiatella* O does not merely restrict to the rafting on macroalgae*.* Members of this genus have been also reported associated to pumice (Velasquez et al. [2018](#page-11-27)). Considering that pumice is frequently found in several sub-Antarctic localities (Risso et al. [2002;](#page-11-28) Bryan et al. [2012](#page-10-29)), and that pumice from South Sandwich Islands have been recovered in quite distant localities, such as New Zealand (Coombs and Landis [1966\)](#page-10-30), this alternative of dispersion cannot be discarded. In fact, rafting on pumice was regarded as the most probable way of long-distance dispersal in *Ostrea chilensis* (Ó Foighil et al. [1999](#page-10-6)). In addition to rafting, another way of dispersion for *Hiatella* O arises from the free-living larval stage present in members of this genus (Gordillo [2001;](#page-10-11) Greene and Grizzle [2007](#page-10-31)). In conclusion, the natural dispersion of larvae, juveniles or adults appears as the most probable alternative to explain the presence of *Gaimardia trapesina* and *Hiatella* O in PEI, a phenomenon which, in any way, must have been facilitated by the ACC. This current is regarded as the strongest marine current of the world (Olbers et al. [2004](#page-11-29)), with an average speed of about 40 cm.s⁻¹ and jet surface speeds reaching 0.6 m.s⁻¹ (Whitworth et al. [1982;](#page-12-7) Meredith et al. [2011\)](#page-11-30). The simulations of particle movements in the Southern Ocean performed by Fraser et al. ([2018\)](#page-10-32) provide evidence in favour of regarding the ACC as a potential way allowing the dispersion from SSA to PEI. But even if assuming that the ACC keeps its maximum speed, covering the distance between SSA and PEI (6500 km) would take at least 125 days, which represent more than the estimated foating periods for rafts of *Macrocystis pyrifera* (100 days, according to Helmuth et al. [1994;](#page-10-8) Hu and Fraser [2016\)](#page-11-31). Additionally, species of *Hiatella* have a shorter larval phase (of about 30–60 days, fide López et al. [\(2018\)](#page-11-25)). However, rare meteorological and extreme oceanographic conditions can reduce the time required for such large-scale dispersive events (Gillespie et al. [2011](#page-10-17)). An alternative explanation to such successful dispersion arises in the fact that both *G. trapesina* and *Hiatella* have been reported in intermediate localities between SSA and PEI, such as the Malvinas/Falkland Islands and South Georgia; and *Hiatella* also at Gough Island (Dell [1964](#page-10-7)). In all these archipelagos, *M. pyrifera* and *D. antarctica* are also present (Fraser et al. [2009](#page-10-33); Macaya and Zuccarello [2010a](#page-11-32), [b](#page-11-33); Caselle et al. [2018\)](#page-10-34). In addition, small-sized specimens of *Hiatella* have been found in some intermediate localities between SSA and PEI. Thus, the intermediate archipelagos between SSA and PEI could have acted/be acting as stepping-stones for the colonisations of PEI by specimens of *Gaimardia trapesina* and *Hiatella* O, which it is compatible with the route of colonization of the diferent sub-Antarctic islands proposed by Fraser et al. ([2012\)](#page-10-35).

Future perspectives

Several issues, to be addressed in the future, arise from this study:

- 1. Are recurrent events of colonization of PEI coming from a single source or multiple sources? Some of the results obtained for *Gaimardia trapesina* in this study, as well as previous fndings from Page and Linse ([2002\)](#page-11-6) on *Limatula pygmaea*, suggest the presence of diferent lineages of these species at PEI. Such pattern may be interpreted as a consequence of diferent events of colonization from a single source or, alternatively, as a consequence of specimens from diferent localities of the Southern Ocean arriving to PEI. Incorporating specimens from intermediate areas (i.e., Malvinas/Falkland Islands, South Georgia, South Sandwich Islands, Gough Island) could help to evaluate the connectivity of PEI with each of these areas, and the potential multiple origins of the marine invertebrate fauna present today at PEI.
- 2. How frequent is the circum-sub-Antarctic pattern here reported? The contrasting results between species shared between PEI and SSA (e.g., *Gaimardia trapesina*, *Limatula pygmaea* and *Hiatella* O) vs. endemic species at PEI (*Nacella delesserti*), reveal the necessity of carefully revising each species previously considered as circumsub-Antarctic based exclusively on their morphological similarity.

3. What is the proper name for *Hiatella* O? To solve this issue, a systematic revision of the numerous nominal species of *Hiatella* reported for the southern hemisphere is crucial. Such revision should encompass topotypic specimens and consider genetic information, particularly taking into account the plasticity exhibited by members of the genus *Hiatella* in shell morphology (Beu [1971](#page-10-36); Lezin and Flyachinskaya [2015\)](#page-11-10).

Acknowledgements This study was funded by the South African National Antarctic Program (SANAP) and the South African Department of Environmental Affairs and Tourism (grants 105539 and 110735 to Dr. Sarah Fawcett; grant 110719 to Prof. Isabelle Ansorge); and by Agencia Nacional de Promoción Científca y Tecnológica (PICT 2016-2983) and Universidad de Buenos Aires (UBACYT 20020150100195BA) to DZ. Part of the samples were obtained through funds of the Argentine National Law Nº 26875. Special thanks go to Captain Bengu and his officers and crew of the SA *Agulhas II* for their assistance at sea; and to the crews of the BO *Puerto Deseado* and GC-189 *Prefecto García*. Cristián Ituarte, Matías Urcola, María del Mar Eivers and the staff of Huinay Scientific Field Station kindly provided some of the specimens for this study. The authors are grateful to Alex Gottlieb, who provided advice on molecular studies. We thank B. M. and an anonymous reviewer who greatly improved the fnal version of the manuscript. MG and DZ are members of the Consejo Nacional de Investigaciones Científcas y Técnicas (CONICET). This work is the contribution Nº 39 of the MPA Namuncurá/Burdwood Bank.

Author contributions All authors contributed equally to the study conception, data collection, analysis and manuscript writing.

Compliance with ethical standards

Conflicts of interest The authors declare that they have no confict of interest.

Ethical approval All applicable international, national and/or institutional guidelines for sampling, care and experimental use of organisms for this study have been followed and all necessary approvals have been obtained.

Availability of data and material The datasets generated and analyzed during the current study are available in the GenBank repository. Gen-Bank accession numbers are indicated in Table [1](#page-4-0) accepted.

References

- Adami M, Gordillo S (1999) Structure and dynamics of the biota associated with *Macrocystis pyrifera* (Phaeophyta) from the Beagle Channel Tierra del Fuego. Sci Mar. 63:183–191
- Allcock AL, Barratt I, Eléaume M, Linse K, Norman MD, Smith PJ, Steinke D, Stevens DW, Strugnell JM (2011) Cryptic speciation and the circumpolarity debate: a case study on endemic Southern Ocean octopuses using the COI barcode of life. Deep-Sea Res II 58:242–249.<https://doi.org/10.1016/j.dsr2.2010.05.016>
- Avila C, Angulo-Preckler C, Martín-Martín RP, Figuerola B, Grifths HJ, Waller CL (2020) Invasive marine species discovered on non– native kelp rafts in the warmest Antarctic island. Sci Rep 10:1639. <https://doi.org/10.1038/s41598-020-58561-y>
- Barker PF, Filippelli GM, Florindo F, Martin EE, Scher HD (2007) Onset and role of the Antarctic Circumpolar Current. Deep Sea Res II 54:2388–2398.<https://doi.org/10.1016/j.dsr2.2007.07.028>
- Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecifc phylogenies. Mol Biol Evol 16:37–48. [https](https://doi.org/10.1093/oxfordjournals.molbev.a026036) [://doi.org/10.1093/oxfordjournals.molbev.a026036](https://doi.org/10.1093/oxfordjournals.molbev.a026036)
- Barrales H, Lobban CS (1975) The comparative ecology of *Macrocystis pyrifera*, with emphasis in the forest of Chubut, Argentina. J Ecol 63:657–677.<https://doi.org/10.2307/2258743>
- Beu AG (1971) New light on the variation and taxonomy of the bivalve *Hiatella*. New Zeal J Geol Geop 14:64–66. [https://doi.](https://doi.org/10.1080/00288306.1971.10422459) [org/10.1080/00288306.1971.10422459](https://doi.org/10.1080/00288306.1971.10422459)
- Beu AG, Griffin M, Maxwell PA (1997) Opening of the drake passage gateway and late miocene to pleistocene cooling refected in southern ocean molluscan dispersal: evidence from New Zealand and Argentina. Tectonophysics 281:83–97. [https://doi.](https://doi.org/10.1016/S0040-1951(97)00160-1) [org/10.1016/S0040-1951\(97\)00160-1](https://doi.org/10.1016/S0040-1951(97)00160-1)
- Bryan SE, Cook AG, Evans JP, Hebden K, Hurrey L, Colls P, Jell JS, Weatherley D, Firn J (2012) Rapid, long-distance dispersal by pumice rafting. PLoS ONE 7:e40583. [https://doi.org/10.1371/](https://doi.org/10.1371/journal.pone.0040583) [journal.pone.0040583](https://doi.org/10.1371/journal.pone.0040583)
- Camus PA (2001) Biogeografía marina de Chile continental. Rev Chil Hist Nat 74:587–617. [https://doi.org/10.4067/S0716-078X200100](https://doi.org/10.4067/S0716-078X2001000300008) [0300008](https://doi.org/10.4067/S0716-078X2001000300008)
- Caselle JE, Hamilton SL, Davis K, Thompson CDH, Turchik A, Jenkinson R, Simpson D, Sala E (2018) First quantifcation of subtidal community structure at Tristan da Cunha Islands in the remote South Atlantic: from kelp forests to the deep sea. PLoS ONE 13:e019516. <https://doi.org/10.1371/journal.pone.0195167>
- Castilla JC, Guiñez R (2000) Disjoint geographical distribution of intertidal and nearshore benthic invertebrates in the Southern Hemisphere. Rev Chil Hist Nat 73:585–603. [https://doi.](https://doi.org/10.4067/S0716-078X2000000400004) [org/10.4067/S0716-078X2000000400004](https://doi.org/10.4067/S0716-078X2000000400004)
- Chaparro OR, Schmidt AJ, Pardo LM, Andrade PV, Wagner CE, Cubillos VM (2011) Reproductive strategy of the semelparous clam *Gaimardia bahamondei* (Bivalvia, Gaimardiidae). Invertebr Biol 130:49–59.<https://doi.org/10.1111/j.1744-7410.2010.00218.x>
- Chown SL, Lee JE, Shaw JD (2008) Conservation of Southern Ocean islands: invertebrates as exemplars. J Insect Conserv 12:277–291. <https://doi.org/10.1007/s10841-008-9151-8>
- Clarke A, Grifths HJ, Linse K, Barnes DKA, Crame JA (2007) How well do we know the Antarctic marine fauna? A preliminary study of macroecological and biogeographical patterns in Southern Ocean gastropod and bivalve molluscs. Divers Distrib 13:620– 632.<https://doi.org/10.1111/j.1472-4642.2007.00380.x>
- Coombs DS, Landis CA (1966) Pumice from South Sandwich eruption of March 1962 reaches New Zealand. Nature 209:289–290
- Cooper J (2008) Human history. In: Chown SL, Froneman PW (eds) The Prince Edward Islands, Land-sea interactions in a changing ecosystem. Sun Press, Stellenbosch, pp 331–350
- Cumming RA, Nikula R, Spencer HG, Waters JM (2014) Transoceanic genetic similarities of kelp-associated sea slug populations: longdistance dispersal via rafting? J Biogeogr 41:2357–2370. [https://](https://doi.org/10.1111/jbi.12376) doi.org/10.1111/jbi.12376
- Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772. <https://doi.org/10.1038/nmeth.2109>
- Dayrat B, Conrad M, Balayan S, White TR, Albrecht C, Golding R, Gomes SR, Harasewych MG, de Frias Martins AM (2011) Phylogenetic relationships and evolution of pulmonate gastropods (Mollusca): New insights from increased taxon sampling. Mol Phylogenet Evol 59:425–437. [https://doi.org/10.1016/j.ympev](https://doi.org/10.1016/j.ympev.2011.02.014) [.2011.02.014](https://doi.org/10.1016/j.ympev.2011.02.014)
- Dayton PK (1985a) The structure and regulation of some South American kelp communities. Ecol Monogr 55:447–468. [https://doi.](https://doi.org/10.2307/2937131) [org/10.2307/2937131](https://doi.org/10.2307/2937131)
- Dayton PK (1985b) Ecology of kelp communities. Annu Rev Ecol Systemat 16:215–245. [https://doi.org/10.1146/annurev.es.16.11018](https://doi.org/10.1146/annurev.es.16.110185.001243) [5.001243](https://doi.org/10.1146/annurev.es.16.110185.001243)
- Dell RK (1964) Antarctic and subantarctic Mollusca: Amphineura, Scaphopoda and Bivalvia. Discover Rep 33:93–250
- Dell RK (1972) Antarctic benthos. Adv Mar Biol 10:1–216
- Díaz P, Campos B (2014) Ontogenia de la concha larval y postlarval de cuatro especies de bivalvos de la costa del Pacífco sureste. Rev Biol Mar Oceanog 49:175–191. [https://doi.org/10.4067/S0718](https://doi.org/10.4067/S0718-19572014000200002) [-19572014000200002](https://doi.org/10.4067/S0718-19572014000200002)
- Duggins D, Eckman JE, Siddon CE, Klinger T (2001) Interactive roles of mesograzers and current fow in survival of kelps. Mar Ecol Prog Ser 223:143–155.<https://doi.org/10.3354/meps223143>
- Faure G, Mensing TM (2010) Break-up of Gondwana and assembly of Antarctica. In: Faure G, Mensing TM (eds) The transantarctic mountains: Rocks, ice, meteorites and water. Springer, Dordrecht, pp 491–515
- Fell HB (1962) West-Wind-Drift dispersal of echinoderms in the Southern hemisphere. Nature 193:759–761. [https://doi.](https://doi.org/10.1038/193759a0) [org/10.1038/193759a0](https://doi.org/10.1038/193759a0)
- Foighil ÓD, Marshall BA, Hilbish TJ, Pino MA (1999) Trans-Pacifc range extension by rafting is inferred for the fat oyster *Ostrea chilensis*. Biol Bull 196:122–126
- Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplifcation of mitochondrial Cytochrome C Oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299
- Fraser CI, Nikula R, Spencer HG, Waters JM (2009) Kelp genes reveal efects of subantarctic sea ice during the Last Glacial Maximum. P Natl Acad Sci USA 106:3249–3253. [https://doi.org/10.1073/](https://doi.org/10.1073/pnas.0810635106) [pnas.0810635106](https://doi.org/10.1073/pnas.0810635106)
- Fraser CI, Nikula R, Waters JM (2010) Oceanic rafting by a coastal community. Proc R Soc B 278:649–655. [https://doi.org/10.1098/](https://doi.org/10.1098/rspb.2010.1117) [rspb.2010.1117](https://doi.org/10.1098/rspb.2010.1117)
- Fraser CI, Nikula R, Ruzzante DE, Waters JM (2012) Poleward bound: biological impacts of Southern Hemisphere glaciation. Trends Ecol Evol 27:462–471.<https://doi.org/10.1016/j.tree.2012.04.011>
- Fraser CI, Morrison AK, McC Hogg A, Macaya EC, van Sebille E, Ryan PG, Padovan A, Jack C, Valdivia N, Waters JM (2018) Antarctica's ecological isolation will be broken by storm-driven dispersal and warming. Nat Clim Change 8:704–708. [https://doi.](https://doi.org/10.1038/s41558-018-0209-7) [org/10.1038/s41558-018-0209-7](https://doi.org/10.1038/s41558-018-0209-7)
- Gillespie RG, Waters JM, Fraser CI, Nikula R, Baldwin BG, Roderick GK (2011) Long-distance dispersal - a framework for hypothesis testing. Trends Ecol Evol 27:47–55. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.tree.2011.08.009) [tree.2011.08.009](https://doi.org/10.1016/j.tree.2011.08.009)
- González-Wevar CA, Chown SL, Morley S, Coria N, Saucéde T, Poulin E (2014) Out of Antarctica: quaternary colonization of sub-Antarctic Marion Island by the limpet genus *Nacella* Patellogastropoda: Nacellidae). Polar Biol 39:77–89. [https://doi.org/10.1007/](https://doi.org/10.1007/s00300-014-1620-9) [s00300-014-1620-9](https://doi.org/10.1007/s00300-014-1620-9)
- González-Wevar CA, Segovia NI, Rosenfeld S, Ojeda J, Hüne M, Naretto J, Saucède T, Brickle P, Morley S, Féral J-P, Spencer HG, Poulin E (2018) Unexpected absence of island endemics: longdistance dispersal in higher latitude sub-Antarctic *Siphonaria* (Gastropoda: Euthyneura) species. J Biogeogr 45:874–884. [https](https://doi.org/10.1111/jbi.13174) [://doi.org/10.1111/jbi.13174](https://doi.org/10.1111/jbi.13174)
- Gordillo S (2001) Puzzling distribution of the fossil and living genus *Hiatella* (Bivalvia). Palaeogeogr, Palaeoclimatol, Palaeoecol 165:231–249. [https://doi.org/10.1016/S0031-0182\(00\)00162-0](https://doi.org/10.1016/S0031-0182(00)00162-0)
- Greene JK, Grizzle RE (2007) Successional development of fouling communities on open ocean aquaculture fsh cages in the western Gulf of Maine, USA. Aquaculture 262:289–301. [https://doi.](https://doi.org/10.1016/j.aquaculture.2006.11.003) [org/10.1016/j.aquaculture.2006.11.003](https://doi.org/10.1016/j.aquaculture.2006.11.003)
- Helmuth B, Veit RR, Holberton R (1994) Long-distance dispersal of a subantarctic brooding bivalve (*Gaimardia trapesina*) by

kelp-rafting. Mar Biol 120:421–426. [https://doi.org/10.1007/](https://doi.org/10.1007/BF00680216) [BF00680216](https://doi.org/10.1007/BF00680216)

- Hu ZM, Fraser C (2016) Seaweed phylogeography. Adaptation and evolution of seaweeds under environmental change, Springer, Dordrecht, Netherlands
- Hunter RL, Halanych KM (2008) Evaluating connectivity in the brooding brittle star *Astrotoma agassizii* across the Drake Passage in the Southern Ocean. J Hered 99:137–148. [https://doi.org/10.1093/](https://doi.org/10.1093/jhered/esm119) [jhered/esm119](https://doi.org/10.1093/jhered/esm119)
- Ituarte C (2009) Unusual modes of oogenesis and brooding in bivalves: the case of *Gaimardia trapesina* (Mollusca: Gaimardiidae). Invertebr Biol 128:243–251. [https://doi.org/10.111](https://doi.org/10.1111/j.1744-7410.2009.00171.x) [1/j.1744-7410.2009.00171.x](https://doi.org/10.1111/j.1744-7410.2009.00171.x)
- Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 35:1547–1549. [https://doi.org/10.1093/](https://doi.org/10.1093/molbev/msy096) [molbev/msy096](https://doi.org/10.1093/molbev/msy096)
- Laakkonen HM, Strelkov P, Väinölä R (2015) Molecular lineage diversity and inter-oceanic biogeographical history in *Hiatella* (Mollusca, Bivalvia). Zool Scr 44:383–402. [https://doi.org/10.1111/](https://doi.org/10.1111/zsc.12105) [zsc.12105](https://doi.org/10.1111/zsc.12105)
- Layton KKS, Martel AL, Hebert DN (2016) Geographic patterns of genetic diversity in two species complexes of Canadian marine bivalves. J Moll Stud 82:282–291. [https://doi.org/10.1093/mollu](https://doi.org/10.1093/mollus/eyv056) [s/eyv056](https://doi.org/10.1093/mollus/eyv056)
- Lee JE, Chown SL (2007) *Mytilus* on the move: transport of an invasive bivalve to the Antarctic. Mar Ecol Progr Ser 339:307–310. [https](https://doi.org/10.3354/meps339307) [://doi.org/10.3354/meps339307](https://doi.org/10.3354/meps339307)
- Leese F, Agrawal S, Held C (2010) Long-distance island hopping without dispersal stages: transportation across major zoogeographic barriers in a Southern Ocean isopod. Sci Nat 97:583–594. [https](https://doi.org/10.1007/s00114-010-0674-y) [://doi.org/10.1007/s00114-010-0674-y](https://doi.org/10.1007/s00114-010-0674-y)
- Lezin P, Flyachinskaya L (2015) Shell sculpture formation in bivalves of the genus *Hiatella* under diferent temperature conditions. J Mar Biol Assoc UK 95:1621–1627. [https://doi.org/10.1017/S0025](https://doi.org/10.1017/S0025315415000259) [315415000259](https://doi.org/10.1017/S0025315415000259)
- Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451– 1452.<https://doi.org/10.1093/bioinformatics/btp187>
- López BA, Macaya EC, Rivadeneira MM, Tala F, Tellier F, Thiel M (2018) Epibiont communities on stranded kelp rafts of *Durvillaea antarctica* (Fucales, Phaeophyceae) – Do positive interactions facilitate range extensions? J Biogeogr 45:1833–1845. [https](https://doi.org/10.1111/jbi.13375) [://doi.org/10.1111/jbi.13375](https://doi.org/10.1111/jbi.13375)
- Lyle M, Gibbs S, Moore TC, Rea DK (2007) Late Oligocene initiation of the Antarctic circumpolar current: evidence from the South Pacifc. Geology 35:691–694.<https://doi.org/10.1130/G23806A.1>
- Macaya EC, Zuccarello GC (2010a) DNA barcoding and genetic divergence in the giant kelp *Macrocystis* (Laminariales). J Phycol 46:736–742.<https://doi.org/10.1111/j.1529-8817.2010.00845.x>
- Macaya EC, Zuccarello GC (2010b) Genetic structure of the giant kelp *Macrocystis pyrifera* along the southeastern Pacifc. Mar Ecol Prog Ser 420:103–112.<https://doi.org/10.3354/meps08893>
- McDougall I, Verwoerd W, Chevallier L (2001) K-Ar geochronology of Marion Island, Southern Ocean. Geol Mag 1:1–17. [https://doi.](https://doi.org/10.1017/S0016756801005039) [org/10.1017/S0016756801005039](https://doi.org/10.1017/S0016756801005039)
- Meredith MP, Woodworth PL, Chereskin TK, Marshall DP, Allison LC, Bigg GR, Donohue K, Heywood KJ, Hughes CW, Hibbert A, Mc Hogg A, Johnson HL, Jullion L, King BA, Leach H, Lenn Y-D, Morales Maqueda MA, Munday DR, Naveira Garabato AC, Provost C, Sallée J-B, Sprintall J (2011) Sustained monitoring of the Southern Ocean at Drake Passage past achievements and future priorities. Rev Geophys 49:4005. [https://doi.](https://doi.org/10.1029/2010RG000348) [org/10.1029/2010RG000348](https://doi.org/10.1029/2010RG000348)
- MolluscaBase eds (2020) World register of Marine Species. [https://](http://www.marinespecies.org/) www.marinespecies.org/ (Access 27 Jan 2020)
- Moon KL, Chown SL, Fraser CI (2017) Reconsidering connectivity in the sub-Antarctic. Biol Rev 92:2164–2181. [https://doi.](https://doi.org/10.1111/brv.12327) [org/10.1111/brv.12327](https://doi.org/10.1111/brv.12327)
- Nikula R, Fraser C, Spencer H, Waters J (2010) Circumpolar dispersal by rafting in two subantarctic kelp-dwelling crustaceans. Mar Ecol Prog Ser 405:221–230.<https://doi.org/10.3354/meps08523>
- Olbers D, Borowski D, Völker C, Wölf JO (2004) The dynamical balance, transport and circulation of the Antarctic Circumpolar Current. Antarct Sci 16:439–470. [https://doi.org/10.1017/S0954](https://doi.org/10.1017/S0954102004002251) [102004002251](https://doi.org/10.1017/S0954102004002251)
- Orsi AH, Whitworth TIII, Nowlin WD Jr (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res I 42:641–673. [https://doi.org/10.1016/0967-0637\(95\)00021](https://doi.org/10.1016/0967-0637(95)00021-W) [-W](https://doi.org/10.1016/0967-0637(95)00021-W)
- Palumbi SR (1996) Nucleic acids II: the polymerase chain reaction. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics. Sinauer Associates, Sunderland, pp 205–247
- Page TJ, Linse K (2002) More evidence of speciation and dispersal across the Antarctic Polar Front through molecular systematics of Southern Ocean *Limatula* (Bivalvia: Limidae). Polar Biol 25:818–826.<https://doi.org/10.1007/s00300-002-0414-7>
- Patarnello T, Bargelloni L, Varotto V, Battaglia B (1996) Krill evolution and the Antarctic ocean currents: evidence of vicariant speciation as inferred by molecular data. Mar Biol 126:603–608. <https://doi.org/10.1007/BF00351327>
- Puccinelli E, von der Meden CEO, McQuaid CD, Ansorge IJ (2018) Biological characteristics of the rafting bivalve *Gaimardia trapesina* in the Southern Ocean. Mar Biol 165:172. [https://doi.](https://doi.org/10.1007/s00227-018-3430-z) [org/10.1007/s00227-018-3430-z](https://doi.org/10.1007/s00227-018-3430-z)
- Risso C, Scasso RA, Aparicio A (2002) Presence of large pumice blocks on Tierra del Fuego and South Shetland Islands shorelines, from 1962 South Sandwich Islands eruption. Mar Geol 186:413–422. [https://doi.org/10.1016/S0025-3227\(02\)00190-1](https://doi.org/10.1016/S0025-3227(02)00190-1)
- Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539– 542.<https://doi.org/10.1093/sysbio/sys029>
- Santelices B, Ojeda FP (1984) Population dynamics of coastal forests of *Macrocystis pyrifera* in Puerto Toro, Isla Navarino, Southern Chile. Mar Ecol Prog Ser 14:175–183
- Schejter L, Bremec C, Waloszek D, Escolar M (2010) Recently settled stages and larval developmental mode of the bivalves *Zygochlamys patagonica* and *Hiatella meridionalis* in the Argentine Sea. J Shellfsh Res 29:63–67.<https://doi.org/10.2983/035.029.0127>
- Schiel DR, Foster MS (2015) The biology and ecology of giant kelp forests. University of California Press, Oakland
- Smith SDA (2002) Kelp rafts in the Southern Ocean. Global Ecol Biogeogr 11:67–69. [https://doi.org/10.1046/j.1466-822X.2001.00259](https://doi.org/10.1046/j.1466-822X.2001.00259.x) [.x](https://doi.org/10.1046/j.1466-822X.2001.00259.x)
- Stramma L, England M (1999) On the water masses and mean circulation of the south Atlantic ocean. J Geophys Res 104:863–883. <https://doi.org/10.1029/1999JC900139>
- Thiel M, Macaya EC, Acuña E, Arntz W, Bastias H, Brokordt K, Camus PA, Castilla JC, Castro LR, Cortes M, Dumont CP, Scribano R, Fernandez M, Gajardo JA, Gaimer CF, Gomez I, Gonzalez AE, Gonzalez HE, Haye PA, Illanes JE, Iriarte JL, Lancellotti DA, Luna Jorquera G, Luxoro C, Manriquez PH, Marin V, Muñoz P, Navarrete SA, Perez E, Poulin E, Sellanes J, Hito Sepulveda H, Stotz W, Tala F, Thomas A, Vargas CA, Vasquez JA, Alonso Vega JM (2007) The Humboldt current system of northern and central Chile. Oceanogr Mar Biol Ann Rev 45:195–344. [https://](https://doi.org/10.1201/9781420050943.ch6) doi.org/10.1201/9781420050943.ch6
- Velasquez E, Bryan S, Ekins M, Cook AG, Hurrey L, Firn J (2018) Age and area predict patterns of species richness in pumice rafts contingent on climatic zone encountered. Ecol Evol 8:5034–5046. <https://doi.org/10.1002/ece3.3980>
- Waters JM (2008) Driven by the West Wind Drift? A synthesis of southern temperate marine biogeography, with new directions for dispersalism. J Biogeogr 35:417–427. [https://doi.org/10.111](https://doi.org/10.1111/j.1365-2699.2007.01724.x) [1/j.1365-2699.2007.01724.x](https://doi.org/10.1111/j.1365-2699.2007.01724.x)
- Waters JM, King TM, Fraser CI, Garden C (2018) Rafting dispersal in a brooding southern sea star (Asteroidea: *Anasterias*). Invertebr Syst 32:253–258.<https://doi.org/10.1071/IS17037>
- White TJ, Bruns T, Lee S, Taylor J (1990) Amplifcation and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Michael DHG, Innis A, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322
- Whitworth T, Nowlin WD, Worley SJ (1982) The net transport of the Antarctic Circumpolar Current through Drake Passage. J Physiol Oceanogr 12:960–971. [https://doi.org/10.1175/1520-](https://doi.org/10.1175/1520-0485(1982)012<0960:TNTOTA>2.0.CO;2) [0485\(1982\)012<0960:TNTOTA>2.0.CO;2](https://doi.org/10.1175/1520-0485(1982)012<0960:TNTOTA>2.0.CO;2)
- Wilson NG, Hunter RL, Lockhart SJ, Halanych KM (2007) Multiple lineages and absence of panmixia in the "circumpolar" crinoid *Promachocrinus kerguelensis* from the Atlantic sector of

Antarctica. Mar Biol 152:895–904. [https://doi.org/10.1007/s0022](https://doi.org/10.1007/s00227-007-0742-9) [7-007-0742-9](https://doi.org/10.1007/s00227-007-0742-9)

- Zbawicka M, Gardner JPA, Wenne R (2019) Cryptic diversity in smooth-shelled mussels on Southern Ocean islands: Connectivity, hybridisation and a marine invasion. Front Zool 6:16–32. [https](https://doi.org/10.1186/s12983-019-0332-y) [://doi.org/10.1186/s12983-019-0332-y](https://doi.org/10.1186/s12983-019-0332-y)
- Zelaya DG (2005) The bivalves from the Scotia Arc islands species richness and faunistic affinities. Sci Mar. 69:113-122. [https://doi.](https://doi.org/10.3989/scimar.2005.69s2113) [org/10.3989/scimar.2005.69s2113](https://doi.org/10.3989/scimar.2005.69s2113)
- Zelaya DG, Güller M, Ituarte CI (2019) Filling a blank in bivalve taxonomy: an integrative analysis of Cyamioidea (Mollusca: Bivalvia). Zool J Linn Soc. <https://doi.org/10.1093/zoolinnean/zlz144>

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.