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Abstract
Over the past decades, several studies have revealed that the traditional view of the Antarctic Circumpolar Current (ACC) 
as an agent for species dispersal in the Southern Ocean is not applicable to all taxa. Some species are actually circum-
Antarctically or circum-sub-Antarctically distributed, but some other species actually comprise species’ complexes, with 
cryptic taxa occurring at different areas. However, to date, few of the invertebrate species formerly reported as widespread 
in the Southern Ocean have been re-analyzed using genetic techniques. This study examined whether two geographically 
distant areas of the sub-Antarctic region under the influence of the ACC, the Southern tip of South America (SSA) and the 
Prince Edward Islands (PEI), share some marine invertebrate species. For that, members of two genera of bivalves, Gaima-
rdia and Hiatella, were selected. As part of this study, we found extremely low genetic differentiation between specimens 
from SSA and PEI.  In addition, shared haplotypes were found between these two areas. Our results confirm that Gaimardia 
trapesina and one same species of Hiatella (“Hiatella O”) are present in both areas. Given that these two species are found 
on macroalgae, natural rafts appear as the most plausible means of dispersal of juveniles and adults, although in the case of 
Hiatella O, additional larval dispersion cannot be discarded. In any of these cases, dispersion should be facilitated (or even 
determined) by the ACC. Thus, this study provides new evidence in favour of considering the ACC as an effective dispersive 
agent in the Southern Ocean.

Introduction

The Antarctic Circumpolar Current (ACC) is considered a 
primary force promoting events of dispersion, isolation and 
speciation in Southern Ocean (Patarnello et al. 1996; Beu 

et al. 1997). This current, originated about 25–23 million 
years ago (in the late Oligocene) (Lyle et al. 2007), flows 
around the Antarctic continent in a west–east direction. It 
is delimited by the sub-Antarctic Front in the north and the 
Southern ACC Front in the south, encompassing in between 
the Antarctic Polar Front (Orsi et al. 1995). These frontal 
zones have been frequently regarded as natural barriers to 
genetic exchanges between species located within and out-
side the ACC, as well as those occurring at both sides of the 
ACC (Barker et al. 2007; Hunter and Halanych 2008).

Historically, based on the overall morphological simi-
larities, several invertebrate species have been reported 
as widely distributed in the Southern Ocean, showing 
circum-Antarctic or circum-sub-Antarctic patterns (e.g., 
Dell 1972). In this regard, several authors have suggested 
that the ACC could be responsible for this distributional 
patterns, either through the dispersion of larval stages (as 
members of plankton community) or of juvenile/adult speci-
mens by rafting (e.g., Fell 1962; Dell 1972). Additionally, 
some authors (e.g., Castilla and Guiñez 2000) regarded the 
anthropogenic dispersal as an alternative way for explain-
ing this distributional pattern in some taxa. However, these 
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hypotheses were seldom supported by factual evidence. In 
the last decades, the usage of genetic techniques applied to 
the taxa occurring in the Southern Ocean revealed contrast-
ing distributional patterns: although some species appear 
to be actually widely distributed (e.g., Nikula et al. 2010; 
Moon et al. 2017), several other species previously regarded 
as widely distributed actually proved to correspond to spe-
cies’ complexes, with “cryptic” species occurring in differ-
ent localities (e.g., Wilson et al. 2007; Allcock et al. 2011). 
This fact led some authors to conclude that few taxa actually 
show circum-Antarctic or circum-sub-Antarctic distributions 
(e.g., Clarke et al. 2007: 620). However, to date, it is difficult 
to determine what “few taxa” exactly means, as a reduced 
number of the taxa previously considered as widespread 
have been carefully evaluated using genetic techniques. 
Among bivalves, for instance, only a few families were thus 
far genetically investigated, including Ostreidae (Ó Foighil 
et al. 1999), Limidae (Page and Linse 2002) and Mytilidae 
(Zbawicka et al. 2019), all of them belonging to the sub-
class Autobranchia. The results obtained by these studies 
are not conclusive: the two first confirm the occurrence of 
widespread species, while Zbawicka et al. (2019) revealed 
the presence of different (cryptic) species, with allopatric 
distributions, along the sub-Antarctic area. Considering the 
great diversification of bivalves in this area, and the broad 
geographic distributions exhibited by several other bivalve 
genera, this group of invertebrates appears particularly 
attractive for providing new insights on the biogeography 
of the Southern Ocean.

Gaimardia (Gaimardiidae) and Hiatella (Hiatellidae) 
are two genera members of the subclass Heterodonta which 
include species currently regarded as circum-sub-Antarctic. 
According to MolluscaBase (2020), Gaimardia comprises 
11 valid species, all of them occurring in the southern hemi-
sphere at high latitudes, including Southern South America, 
the Scotia Arc islands, Prince Edward Islands, Kerguelen, 
Tasmania, Macquarie, and New Zealand (Dell 1964; Zelaya 
2005). Based on morphological characters, two of these spe-
cies (Gaimardia trapesina and G. adamsiorum) are consid-
ered as widespread in sub-Antarctic waters, although the 
conspecificity of specimens from distant areas was never 
confirmed with genetic techniques; the remaining nine spe-
cies of Gaimardia are considered as having much smaller 
distributional ranges (i.e., restricted to one or a few archi-
pelagos, or to some particular areas). To date, the distinc-
tion of Gaimardia species is not easy. Most of these species 
remain only known from their original description (usually 
lacking relevant information for species distinction) and 
are imperfectly figured or not figured at all. A systematic 
revision encompassing these species has been never per-
formed. Members of this genus lack a free-living larva and 
exclusively live on macroalgae (Helmuth et al. 1994; Ituarte 
2009; Chaparro et al. 2011; Zelaya et al. 2019). Gaimardia 

trapesina, for instance, lives on the giant kelp Macrocystis 
pyrifera, where in fact it is the most abundant epibiotic spe-
cies on the fronds (Dayton 1985a; Adami and Gordillo 1999; 
Puccinelli et al. 2018).

The knowledge on Hiatella is not much better than that 
of Gaimardia. Hiatella is a worldwide distributed genus, 
but all species have been described based on their shell 
morphology, a character that has proved to be greatly vari-
able, being dependent on the local / particular conditions, 
where individuals grow (Lezin and Flyachinskaya 2015). 
Molecular studies in members of Hiatella are still scarce. 
Laakkonen et al. (2015) recognized two lineages (molecular 
species) of Hiatella in the southern hemisphere (which they 
referred as Hiatella A and Hiatella B), and 11 lineages in the 
northern hemisphere (Hiatella C-M). Layton et al. (2016) 
found an additional molecular species in the northern hemi-
sphere (which he named Hiatella N). Out of these molecu-
larly investigated species, only Hiatella A appears in the 
area under de incidence of the CCA. Members of Hiatella 
may be found over a great variety of substrates, including 
the giant kelp (Gordillo 2001; Laakkonen et al. 2015). Spe-
cies of Hiatella for which some developmental information 
is available reveal the presence of a planktonic larval stage 
(e.g., Schejter et al. 2010; Díaz and Campos 2014).

The fact that some species of both Gaimardia and Hia-
tella live on macroalgae suggests that rafting may be a 
responsible driver for their current circum-sub-Antarctic 
pattern of distribution. Several biological and environmental 
factors have been reported to cause breakage of stipes and 
detachment of the holdfasts of the giant kelp (Barrales and 
Lobban 1975; Santelices and Ojeda 1984; Dayton 1985b; 
Duggins et al. 2001). These factors lead to the generation 
of kelp rafts, which are dispersed in the Southern Ocean, 
with the aid of the ACC, consequently dispersing the organ-
isms living on them (Fraser et al. 2010; Nikula et al. 2010; 
Gillespie et al. 2011; Waters et al. 2018; Avila et al. 2020). 
In this regard, Gaimardia trapesina appears as an emblem-
atic species in sub-Antarctic waters, because it was the first 
species in the area in which the dispersion by rafting was 
documented: Helmuth et al. (1994) provided evidence of 
specimens of G. trapesina dispersing on Macrocystis rafts 
from South America to South Georgia (about 1500 km 
away). Considering that kelp rafts are commonly found in 
the Southern Ocean (Schiel and Foster 2015) this transport 
could potentially work for other (more distant) areas too, as 
in fact it was suggested by some authors (e.g., Dell 1964; 
Castilla and Guiñez 2000), although this hypothesis was 
never formally proved.

The aim of this study is to examine if two geographically 
distant areas of the sub-Antarctic region, the Southern tip of 
South America (SSA) and the Prince Edwards Islands (PEI), 
actually share some faunistic elements. For that, members 
of two genera of bivalves (Gaimardia and Hiatella) with 
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different modes of life and reproduction are selected as par-
ticular case studies.

Materials and methods

Studied areas

The SSA encompasses the Atlantic and Pacific coasts of 
the American continent. The term is here restricted to refer 
to the waters south of 47°S, including Isla de los Estados 
and Burdwood Bank. SSA corresponds to an old geologi-
cal area, originated from the Gondwana break out (Faure 
and Mensing 2010). The Pacific coast of SSA is under 
the influence of the West Wind Drift, a subantarctic water 
flow that contacts the Chilean coast at about 48°S (Camus 
2001; Thiel et al. 2007). This gives origin to the Cape Horn 
Current, which flows towards the south along the Pacific 

coast, surrounding the southern tip of South America, head-
ing eastwards towards the Atlantic Ocean. The Cape Horn 
Current gives origin to the Patagonian shelf waters and the 
Malvinas/Falkland Current, which flow northwards paral-
lel to the Argentine coast. The Malvinas/Falkland Current 
deflects eastwards off the continental slope at about 40–45°S 
(Stramma and England 1999).

The PEI is a relatively young volcanic archipelago, com-
prising Marion Island (originated about 0.45 million years 
ago) and Prince Edward Island (originated about 0.2 million 
years ago) (McDougall et al. 2001; Chown et al. 2008). This 
archipelago is located in the Indian sector of the Southern 
Ocean (Fig. 1).

Sample collection

Studied specimens of Gaimardia were collected by hand 
from fronds of the giant kelp Macrocystis pyrifera attached 

Fig. 1   a–c Study area (a) and sampling sites of Gaimardia (circles) 
and Hiatella (triangles), at (b) the Southern tip of South America 
(SSA) and (c) the Prince Edward Islands (PEI: light blue). ACC​ Ant-
arctic Circumpolar Current; BB Burdwood Bank (purple); BC Bea-

gle Channel (orange); CF Chilean Fjords (red); IE Isla de los Esta-
dos (yellow); PD Puerto Deseado (green); SAF sub-Antarctic Front; 
SACC​ Southern ACC Front; TF Atlantic coast of Tierra del Fuego 
(light orange)
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to the substrate in the shallow subtidal. In SSA, samples 
were taken in 2011 and 2012, in the Chilean Fjords (CF) 
(Pacific coast), in the Beagle Channel (BC), in Isla de los 
Estados (IE) and Puerto Deseado (PD) (Atlantic coast) and 
in PEI, in 2016 and 2017 (Fig. 1).

Studied specimens of Hiatella were sorted from sediment 
dredged from 82 to 415 m depth, in SSA at Tierra del Fuego 
(TF) and Burdwood Bank (BB) and in PEI, during expedi-
tions of BO Puerto Deseado, GC-189 Prefecto García and 
RV SA Agulhas II in 2016 and 2017 (Fig. 1). On BO Puerto 
Deseado and GC-189 Prefecto García a dredge of 4 mm2 
mesh-size net of 20 × 60×60 cm, was used, while on RV SA 
Agulhas II a dredge of 30 × 100×100 cm and a mesh size of 
1 cm2 was used.

All samples were preserved in 100% ethanol until further 
processing. Voucher specimens were deposited at the Museo 
Argentino de Ciencias Naturales “Bernardino Rivadavia”, 
Buenos Aires, Argentina.

Due to the impossibility to confirm a-priori the conspeci-
ficity of the studied specimens of Gaimardia and Hiatella 
from SSA and PEI, we refer to these materials as “Gaima-
rdia” and “Hiatella”, in the Results section.

Genetic studies

Total DNA was extracted from adductor muscles using 
a CTAB/Proteinase K method (Dayrat et al. 2011). For 
specimens of Gaimardia, fractions of the mitochondrial 
Cytochrome Oxidase subunit I (COI), mitochondrial ribo-
somal gene 16S, and the nuclear Internal Transcribed Spacer 
region (ITS1-5.8S-ITS2, from now on “ITS”) were ampli-
fied, using the universal primers LCO/HCO (Folmer et al. 
1994), 16Sar/16Sbr (Palumbi 1996) and ITS5/ITS4 (White 
et al. 1990), respectively. For specimens of Hiatella, a COI 
fraction was amplified using the HiaHd/HiaHr primers 
(Laakkonen et al. 2015). Amplifications were performed by 
routine polymerase chain reaction (PCR).

PCR products were visualized in 2% agarose gels, 
cleaned-up with enzymes (EXO I-FastAP, Thermo 
Scientific®) and sent out to Macrogen, Inc. (Korea) for 
sequencing on both ways. Sequences were trimmed and 
refined with chromatograms guidance prior to assemblage, 
and checked manually. MEGA version 10.0.5 (Kumar et al. 
2018) was used for aligning sequences using Clustal W with 
default settings, and to calculate uncorrected p-distances 
(from now on “p-dist”). DnaSP version 5 (Librado and 
Rozas 2009) was used to calculate haplotype diversity (H) 
and nucleotide diversity (π).

Information on voucher specimens, sampled localities 
and GenBank accession numbers, are provided in (Table 1).

Phylogenetic reconstructions of sequences of Gaimardia 
were performed for each marker individually, and combin-
ing the three in a concatenated analysis using a subset of 

11 specimens (Table 1). A 16S sequence of Gaimardia 
trapesina from Tierra del Fuego, Argentina, available from 
GenBank (KX713220.1) was included in the analysis, as 
well as COI and 16S sequences of Cyamiomactra laminifera 
(KC429131, KC429293.1), another Cyamioidea, here used 
as outgroup. ITS fragments are not currently available in 
GenBank for any other Cyamioidea, and therefore, the phy-
logenetic reconstruction performed with this marker could 
not be rooted.

For the phylogenetic reconstruction of specimens of Hia-
tella, we included the sequences obtained by Laakkonen 
et al. (2015); (Hiatella A-M: GeneBank accession numbers 
KP767805–KP761044). Sequences of Panopea generosa 
(KJ125418.1) and Panopea globosa (KJ125413.1) were 
used as outgroups.

The best evolutionary models were selected with AIC 
criterion in jModeltest version 2.1.10 (Darriba et al. 2012). 
Maximum Likelihood (ML) reconstructions were performed 
in MEGA, with node support evaluated through 1000 boot-
strap replicates. Bayesian inference (BI) analyses were per-
formed in MrBayes version 3.2 (Ronquist et al. 2012), with 
four simultaneous runs of 100 generations each and a sample 
frequency of 100, until average standard deviation of split 
frequencies reached ≤ 0.001; phylogenetic trees were sum-
marized with a 10% burn-in value. Haplotype networks were 
built using a median-joining method (Bandelt et al. 1999) 
in Network version 5.0.1.0 (available at https​://www.fluxu​
s-engin​eerin​g.com/share​net.htm).

Results

The case Gaimardia

In total, 23 specimens of Gaimardia provided genetic infor-
mation for analyses: 12 for 16S, 21 for COI, and nine for 
ITS. Of these, eight specimens successfully amplified for all 
gene loci, enabling the concatenated analysis.

The alignment of the twelve 16S sequences (Table 1) had 
a length of 481 bp and resulted in only two variable sites, 
corresponding to singletons. The phylogenetic reconstruc-
tions confirmed the monophyly of specimens of Gaimardia 
from SSA and PEI altogether, with high support both in the 
ML and BI analyses. Within the Gaimardia clade, the 16S 
did not resolve any grouping.

The alignment of the nine sequences of ITS (Table 1) 
was 1361 bp long, with nine variable sites and six single-
tons. The phylogenetic reconstructions based on ITS did not 
resolve any grouping within the Gaimardia clade.

The alignment of the 21 COI sequences (Table  1) 
had a length of 529 bp with 21 variable sites (4%), with 
a total of 15 singletons. Low levels of genetic divergence 
were registered for COI among the considered sequences 

https://www.fluxus-engineering.com/sharenet.htm
https://www.fluxus-engineering.com/sharenet.htm
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(p-dist = 0–1.7%) (Table 2). These sequences of Gaima-
rdia showed high levels of differentiation with Cyamio-
mactra laminifera (p-dist = 16.8%). The phylogenetic 

reconstructions confirmed the monophyly of specimens of 
Gaimardia from SSA and PEI altogether, with high sup-
port both in the ML and BI analyses. Within the Gaimardia 

Table 1   Specimens of Gaimardia trapesina and Hiatella O collected as part of the present study for genetic analyses in the Southern tip of 
South America and the Prince Edward Islands

GenBank repository numbers are provided for each marker

Taxon/
specimen 
code

Collection site 16S CO1 ITS1-5.8S-ITS2 Concat-
enated 
analysis

Gaimardia trapesina
G1 Canal Albatross, Chilean Fjords, 48°18′01′’S 74°46′09′’W MT708217
G2 Canal Albatross, Chilean Fjords, 48°18′01′’S 74°46′09′’W MT708217 MT708515 Yes
G3 Beagle Channel, 54°49′10′’S 68°10′24′’W MT708222 MT708524 Yes
G4 Beagle Channel, 54°49′10′’S 68°10′24′’W MT708222 MT708524 Yes
G4 Beagle Channel, 54°49′10′’S 68°10′24′’W MT708223 MT708525 MT708201 Yes
G5 Beagle Channel, 54°49′10′’S 68°10′24′’W MT708224 MT708526 Yes
G6 Beagle Channel, 54°57′30′’S 66°55′11′’W MT708219 MT708517 MT708204 Yes
G7 Beagle Channel, 54°57′30′’S 66°55′11′’W MT708518 Yes
G8 Isla de los Estados, 54°44′59′’S 63°52′07′’W MT708218 MT708516 MT708206 Yes
G10 Puerto Deseado, 47°45′20′’S 65°52′52′’W MT708221 MT708523 MT708202 Yes
G11 Puerto Deseado, 47°45′20′’S 65°52′52′’W MT708220 MT708519 MT708203 Yes
G12 Puerto Deseado, 47°45′20′’S 65°52′52′’W MT708520
G13 Puerto Deseado, 47°45′20′’S 65°52′52′’W MT708522
G14 Puerto Deseado, 47°45′20′’S 65°52′52′’W MT708521
G15 Prince Edward Islands, 46°52′31′’S 37°51′43′’E MT708225 MT708527 MT708200 Yes
G16 Prince Edward Islands, 46°52′31′’S 37°51′43′’E MT708529
G17 Prince Edward Islands, 46°52′31′’S 37°51′43′’E MT708227 MT708530 MT708198 Yes
G18 Prince Edward Islands, 46°52′31′’S 37°51′43′’E MT708227 MT708530 MT708198 Yes
G19 Prince Edward Islands, 46°52′31′’S 37°51′43′’E MT708535
G20 Prince Edward Islands, 46°52′31′’S 37°51′43′’E MT708532
G21 Prince Edward Islands, 46°52′31′’S 37°51′43′’E MT708534
G22 Prince Edward Islands, 46°52′31′’S 37°51′43′’E MT708226 MT708528 MT708199 Yes
G23 Prince Edward Islands, 46°52′31′’S 37°51′43′’E MT708531
Hiatella O
H1 NE of Tierra del Fuego, 54°11′37′’S 65°57′37′’W, 82 m MT712766
H2 NE of Tierra del Fuego, 54°11′37′’S 65°57′37′’W, 82 m MT712768
H3 Isla de los Estados, 54°50′58′’S 63°52′01′’W, 330 m MT712761
H4 Burdwood Bank, 54°36′11′’S 61°30′39′’W, 294 m MT712774
H5 Burdwood Bank, 54°37′36′’S 61°25′15′’W, 415 m MT712775
H6 Burdwood Bank, MPA Namuncurá, 53°48′54′’S 61°19′11′’W, 197 m MT712760
H7 Burdwood Bank, 54°37′29′’S 61°05′09′’W, 202 m MT712772
H8 Burdwood Bank, MPA Namuncurá, 54°06′27′’S 60°52′46′’W, 128 m MT712762
H9 Burdwood Bank, MPA Namuncurá, 54°44′49′’S 59°56′51′’W, 177 m MT712763
H10 Burdwood Bank, MPA Namuncurá, 54°44′49′’S 59°56′51′’W, 177 m MT712773
H11 Prince Edward Islands, 46°54′11.28′’S 37°35′04.02′’E, 200 m MT712759
H12 Prince Edward Islands, 46°43′05′’S 37°49′56′’E, 300 m MT712764
H13 Prince Edward Islands, 46°43′05′’S 37°49′56′’E, 300 m MT712765
H14 Prince Edward Islands, 46°48′14′’S 37°59′06′’E, 134 m MT712769
H15 Prince Edward Islands, 46°48′14′’S 37°59′06′’E, 134 m MT712767
H16 Prince Edward Islands, 46°48′14′’S 37°59′06′’E, 134 m MT712771
H17 Prince Edward Islands, 46°48′14′’S 37°59′06′’E, 134 m MT712770
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clade, the COI marker consistently recovered a subclade, 
which encompasses all the specimens from BC, IE and CF, 
with high Bayesian posterior probability (0.98) but moder-
ate bootstrap support in ML (71%). COI showed relatively 
low genetic differentiation among the five studied localities 
(average p-dist = 0.6%).These differences were low among 
different localities of SSA, and somewhat greater between 
PEI and each locality at SSA or SSA as a whole (Table 2). 
The p-dist between PEI and CF, BC, or IE were higher than 
the respective within-site distances. However, the distances 

between PEI and PD were lower than the average distance 
among specimens from PEI (Table 2).

The concatenated alignment of 16S, COI and ITS 
revealed a distinctive grouping within the Gaimardia clade. 
In this case the BC + IE + CF specimens also formed a sub-
clade, with 80% bootstrap support and 0.97 posterior prob-
ability (Fig. 2a). In addition, in the concatenated analysis by 
BI, a second subclade, comprising the specimens from PD, 
was recovered with moderately good posterior probability 
(0.86).

Table 2   Gaimardia COI 
sequence divergences. Above 
diagonal: minimum and 
maximum number of base 
differences between localities. 
Diagonal: average uncorrected 
p distance within locality. 
Below diagonal: uncorrected 
p-distance between localities

BC Beagle Channel (n = 5), CF Chilean Fjords (n = 1), IE Isla de los Estados (n = 1), PD Puerto Deseado 
(n = 5), PEI Prince Edward Islands (n = 1), SSA Southern tip of South America (n = 12)

CF BC IE PD PEI SSA

CF n/a 1 1 3–4 4–8 –
BC 0.00340 0.00302 0–2 2–5 3–9 –
IE 0.00189 0.00151 n/a 2–3 3–7 –
PD 0.00605 0.00567 0.00416 0.00076 2–6 –
PEI 0.01,113 0.01075 0.00924 0.00647 0.00751 2–9
SSA – – – – 0.00887 0.0039

Fig. 2   Case Gaimardia. a Tree obtained by Bayesian Inference for 
COI, ITS and 16S concatenated markers (GTR + G model). Poste-
rior probabilities > 95% are indicated with “*”; maximum likelihood 
bootstrap support > 80 are indicated with “°”. b, c Median-joining 
haplotype networks of: (b) COI and (c) ITS. Numbers on branches 

correspond to number of mutated sites; size of circles is proportional 
to the number of specimens per haplotype, according to the scale pro-
vided. Specimen codes (“G1”– “G23”) correspond to those listed in 
(Table 1). For colour codes see (Fig. 1)
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Among the 21 COI sequences, 15 different haplotypes 
were recognized, separated by a maximum of nine muta-
tions. Standard diversity indices revealed high haplotype 
diversity and moderate nucleotide diversity (H = 0.95; 
π = 0.007), a fact also evidenced among sequences from 
BC (H = 0.90; π = 0.003) and PEI (H = 0.97; π = 0.008). 
Contrastingly, relatively low diversity was found among 
sequences from PD (H = 0.40; π = 0.0008). The reconstruc-
tion of the median-joining network showed a relatively 
short topology, with low-frequency haplotypes (Fig. 2b). 
All studied localities showed exclusive haplotypes, with the 
exception of IE, which shared the same haplotype of BC. 
The network revealed certain association of the haplotypes 
with the geographic origin of the specimens. BC, IE and 
CF were grouped by very similar haplotypes, and connected 
to the most frequent haplotype of PD by only two substi-
tutional steps. PEI specimens showed the greatest number 
of haplotypes (eight), and were separated by the greatest 
number of steps among them (up to eight). These specimens 
from PEI resulted in two haplotype groups, connected inde-
pendently to the PD main haplotype. The first group (“PEI 
I”) showed a star-like topology with its central haplotype 
separated from the main haplotype in PD by only two steps. 
The second group (“PEI II”) comprised two additional hap-
lotypes (Fig. 2b). The haplotypes grouped in “PEI I” were 
similarly differentiated from BC + IE + CF than from “PEI 
II” (p-dist = 1.1% and 0.9%, respectively).

Among the nine ITS sequences, seven distinct haplotypes 
were found, most of them represented by a single sequence, 
resulting in high haplotype diversity and low nucleotide 
diversity for this marker (H = 0.92; π = 0.002). The ITS hap-
lotype network revealed no geographic structure. In fact, one 
shared haplotype was found in BC, IE and PEI (Fig. 2c).

When comparing the COI and ITS haplotype networks, 
no concordant results were found in the position of the speci-
mens. The PD specimens that shared one central haplotype 
in the COI network were distinct in ITS. Likewise, the PEI 
specimen that shared a common haplotype with BC and IE 
in the ITS network, was distant in COI.

The case Hiatella

In total, 17 specimens of Hiatella provided genetic infor-
mation for analyses. The COI alignment (187 sequences, 
796 bp) was highly-conserved among the new sequenced 
specimens from SSA and PEI, with only three vari-
able sites. However, the inclusion of the sequences of 
the lineages of Hiatella reported by Laakkonen et  al. 
(2015) resulted in a total of 279 variable sites (35%). 
High levels of genetic divergence were found between 
the newly obtained sequences and any other previously 
known molecular species (p-dist > 19.1%; Table 3), in 
contrast to the minimum divergence among the material Ta
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studied herein (p-dist = 0.06%; Table 3), and the diver-
gence between the specimens from SSA and PEI 
(p-dist = 0.06%). The material here studied was closer 
to Laakkonen et al.’s (2015) molecular species from the 
southern hemisphere (i.e., Hiatella A: from the Magellan 
Strait, and Hiatella B: from New Zealand) than any other 
lineage from the northern hemisphere (Table 3).

The phylogenetic reconstructions revealed the mono-
phyly of the studied material, with high bootstrap support 
and bayesian probability (98% and 1.00, respectively) 
(Fig.  3a). No subclades were recovered among these 
sequences, which showed a basal position to the previ-
ously known Hiatella species, although lacking adequate 
support (Fig. 3a).

Only four haplotypes were recognized in the 
sequences obtained as part of this study (Fig. 3b): one, 
the dominant, being present in all sampled localities 
(TF + IE + BB + PEI), two haplotypes exclusive from BB, 
and the remaining exclusive from PEI. The last three hap-
lotypes appear separated by only one or two mutational 
steps from the main haplotype.

Discussion

In recent years, several studies have analyzed the connectiv-
ity and origin of the marine fauna from different sub-Antarc-
tic archipelagos (e.g., Waters 2008; Cumming et al. 2014; 
Moon et al. 2017; González-Wevar et al. 2018; and refer-
ences therein), although few of these studies have considered 
the fauna of PEI. González-Wevar et al. (2014) provided 
genetic evidence of the occurrence at PEI of a gastropod 
species (Nacella delesserti) that is not present in SSA or any 
other area in the Southern Ocean (where other species of 
Nacella are present). This fact would suggest certain degree 
of faunistic isolation of PEI. On the contrary, the bivalves 
considered in the present study show extremely low genetic 
differentiation, together with the presence of shared haplo-
types between PEI and SSA, revealing that the same species 
of Gaimardia and Hiatella are present in these two areas. 
These results are similar to those reported for the bivalve 
Limatula pygmaea (Page and Linse 2002), and the isopods 
Septemserolis septemcarinata and Limnoria stephenseni 
(Leese et al. 2010; Nikula et al. 2010); suggesting that this 
wide distributional pattern is not unusual, and that it occurs 

Fig. 3   Case Hiatella. Tree obtained by Bayesian Inference for COI 
(TIM3 + I + G model). Posterior probabilities > 95% are indicated 
with “*”; maximum likelihood bootstrap support > 80 are indicated 
with “°”. Terminals “A” to “M” correspond to Laakkonen et  al.’s 
(2015) molecular species (GenBank accession numbers KP767805 
to KP761044); terminals grouped in “O” correspond to newly 

sequenced specimens. b Median-joining haplotype network for COI. 
Numbers on branches correspond to the number of mutated sites; size 
of circles is proportional to the number of specimens per haplotype, 
according to the scale provided. Specimen codes (“H1”–“H17”) cor-
respond to those listed in (Table 1). For colour codes see (Fig. 1)
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in species with different modes of life and reproduction. The 
low genetic differentiation here found between specimens 
from SSA and PEI does not seem to be originated in the used 
molecular markers. In fact, two of the fragments here used 
proved to be successful in distinguishing other cyamioidean 
and hiatelloidean species: the 16S sequences obtained by 
Zelaya et al. (2019), resulted in p-dist from 15 to 18.8% 
among species of Cyamiocardium; similarly, the COI marker 
shows high divergence of lineages in Hiatella (11.2–20.2%), 
according to Laakkonen et al. (2015). A taxonomical revi-
sion of the species of Gaimardia occurring in the Southern 
Ocean (Güller and Zelaya, in prep) allows us to confirm that 
the taxon involved in this study is G. trapesina. The species 
of Hiatella cannot be determined with confidence, as none 
of the nominal species of this genus described or reported 
from the Southern Ocean (and even worldwide) is properly 
defined. Despite that, the species involved in the present 
study does not correspond to any of the molecular species, 
previously recognized by Laakkonen et al. (2015) or Layton 
et al. (2016), either from the southern or the northern hemi-
sphere, revealing that the molecular diversity of Hiatella is 
even greater than previously known. For the purpose of the 
subsequent discussion, the taxon involved in this study is 
referred as Hiatella O.

The little genetic differentiation found in this study for 
ITS sequences (fast-evolving nuclear loci), supports the 
hypothesis of relatively recent events of colonization of 
PEI by Gaimardia trapesina. In addition, the presence of 
two different groups of haplotypes of G. trapesina at PEI, 
which diverge from SSA’s main haplotype (when consider-
ing COI marker) is compatible with the occurrence of more 
than one event of colonization of this archipelago. This is in 
agreement with the findings by Page and Linse (2002) for 
Limatula pygmaea (in that case, based on ITS-1 sequences).

How can species occur in geographically distant 
areas?

The occurrence of a same species in two geographically 
distant areas is usually explained as a consequence of a 
common history of these areas (i.e., geological or tectonic 
connections), anthropogenic transport or natural dispersive 
events (Castilla and Guiñez 2000). The different geologic 
histories of SSA and PEI argue against the first of those 
alternatives to explain the co-occurrence of these taxa in 
these two areas. Anthropogenic transport does not seem to 
have major significance for explaining the occurrence of 
these two taxa at PEI either, as both Gaimardia trapesina 
and Hiatella O are relatively small-sized species, which do 
not represent human food-source or are involved in aquacul-
ture activities. On the other hand, the PEI historically have 
had only occasional ships traffic, due to the distant location 
of the islands from usual sea routes (Cooper 2008; Leese 

et al. 2010); and studies on the sea-chests fauna of the few 
ships visiting this archipelago (Lee and Chown 2007) did 
not report these species.

On the contrary, some biological and ecological aspects 
of the two species considered in this study support the 
hypothesis that natural dispersive events have been the main 
responsible drivers for their current pattern of distribution. 
Gaimardia trapesina exclusively live on the giant kelp Mac-
rocystis pyrifera (Dayton 1985a; Adami and Gordillo 1999; 
Puccinelli et al. 2018), on which all the specimens here stud-
ied, either from SSA and PEI, were collected. Specimens of 
Hiatella O can also be occasionally found on M. pyrifera, 
where early juveniles are usually present on the fronds and 
larger specimens on the holdfasts (Zelaya, pers obs). The 
present study takes Helmuth et al.’s (1994) findings even 
further, revealing that specimens of G. trapesina may be 
dispersed in this way, over much greater distances, thus 
occurring in SSA and PEI (6500 km away). Furthermore, 
members of the genus Hiatella have been also found living 
on the bull kelp Durvillaea antarctica (López et al. 2018), 
which according to Smith (2002) is likely to be more impor-
tant for dispersal over larger spatial scales than M. pyrifera 
in the Southern Ocean. Therefore, rafting on macroalgae 
represents the most probable way in which G. trapesina (and 
perhaps also Hiatella O) has reached the PEI.

The dispersion of Hiatella O does not merely restrict 
to the rafting on macroalgae. Members of this genus have 
been also reported associated to pumice (Velasquez et al. 
2018). Considering that pumice is frequently found in sev-
eral sub-Antarctic localities (Risso et al. 2002; Bryan et al. 
2012), and that pumice from South Sandwich Islands have 
been recovered in quite distant localities, such as New Zea-
land (Coombs and Landis 1966), this alternative of disper-
sion cannot be discarded. In fact, rafting on pumice was 
regarded as the most probable way of long-distance dispersal 
in Ostrea chilensis (Ó Foighil et al. 1999). In addition to 
rafting, another way of dispersion for Hiatella O arises from 
the free-living larval stage present in members of this genus 
(Gordillo 2001; Greene and Grizzle 2007). In conclusion, 
the natural dispersion of larvae, juveniles or adults appears 
as the most probable alternative to explain the presence of 
Gaimardia trapesina and Hiatella O in PEI, a phenomenon 
which, in any way, must have been facilitated by the ACC. 
This current is regarded as the strongest marine current of 
the world (Olbers et al. 2004), with an average speed of 
about 40 cm.s−1 and jet surface speeds reaching 0.6 m.s−1 
(Whitworth et al. 1982; Meredith et al. 2011). The simu-
lations of particle movements in the Southern Ocean per-
formed by Fraser et al. (2018) provide evidence in favour of 
regarding the ACC as a potential way allowing the disper-
sion from SSA to PEI. But even if assuming that the ACC 
keeps its maximum speed, covering the distance between 
SSA and PEI (6500 km) would take at least 125 days, which 
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represent more than the estimated floating periods for rafts of 
Macrocystis pyrifera (100 days, according to Helmuth et al. 
1994; Hu and Fraser 2016). Additionally, species of Hiatella 
have a shorter larval phase (of about 30–60 days, fide López 
et al. (2018)). However, rare meteorological and extreme 
oceanographic conditions can reduce the time required for 
such large-scale dispersive events (Gillespie et al. 2011). An 
alternative explanation to such successful dispersion arises 
in the fact that both G. trapesina and Hiatella have been 
reported in intermediate localities between SSA and PEI, 
such as the Malvinas/Falkland Islands and South Georgia; 
and Hiatella also at Gough Island (Dell 1964). In all these 
archipelagos, M. pyrifera and D. antarctica are also present 
(Fraser et al. 2009; Macaya and Zuccarello 2010a, b; Caselle 
et al. 2018). In addition, small-sized specimens of Hiatella 
have been found in some intermediate localities between 
SSA and PEI. Thus, the intermediate archipelagos between 
SSA and PEI could have acted/be acting as stepping-stones 
for the colonisations of PEI by specimens of Gaimardia 
trapesina and Hiatella O, which it is compatible with the 
route of colonization of the different sub-Antarctic islands 
proposed by Fraser et al. (2012).

Future perspectives

Several issues, to be addressed in the future, arise from this 
study:

1.	 Are recurrent events of colonization of PEI coming 
from a single source or multiple sources? Some of the 
results obtained for Gaimardia trapesina in this study, 
as well as previous findings from Page and Linse (2002) 
on Limatula pygmaea, suggest the presence of differ-
ent lineages of these species at PEI. Such pattern may 
be interpreted as a consequence of different events of 
colonization from a single source or, alternatively, as 
a consequence of specimens from different localities 
of the Southern Ocean arriving to PEI. Incorporating 
specimens from intermediate areas (i.e., Malvinas/Falk-
land Islands, South Georgia, South Sandwich Islands, 
Gough Island) could help to evaluate the connectivity of 
PEI with each of these areas, and the potential multiple 
origins of the marine invertebrate fauna present today at 
PEI.

2.	 How frequent is the circum-sub-Antarctic pattern here 
reported? The contrasting results between species shared 
between PEI and SSA (e.g., Gaimardia trapesina, Lima-
tula pygmaea and Hiatella O) vs. endemic species at PEI 
(Nacella delesserti), reveal the necessity of carefully 
revising each species previously considered as circum-
sub-Antarctic based exclusively on their morphological 
similarity.

3.	 What is the proper name for Hiatella O? To solve this 
issue, a systematic revision of the numerous nominal 
species of Hiatella reported for the southern hemisphere 
is crucial. Such revision should encompass topotypic 
specimens and consider genetic information, particularly 
taking into account the plasticity exhibited by members 
of the genus Hiatella in shell morphology (Beu 1971; 
Lezin and Flyachinskaya 2015).
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