
Vol.:(0123456789)1 3

Marine Biology (2018) 165:169 
https://doi.org/10.1007/s00227-018-3424-x

ORIGINAL PAPER 

Changes in California sea lion diet during a period of substantial 
climate variability

Heather Robinson1 · Julie Thayer1 · William J. Sydeman1 · Michael Weise2

Received: 19 July 2018 / Accepted: 25 September 2018 / Published online: 11 October 2018 
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
The California Current Ecosystem (CCE) is a productive eastern boundary upwelling system that supports a wide variety of 
forage stocks. Decadal and interannual variability in the environment influence forage species, which in turn affects preda-
tors. The recent diet of California sea lions (Zalophus californianus; CSL) from Central California was determined using 
identification of hard parts from scat samples (n = 785) collected on Año Nuevo Island (37.1083°N 122.3378°W) in 2010 
and 2012–2016. Comparisons were made with previously reported data from the late 1990’s and with prey availability as 
measured by fishery-independent surveys. A significant shift in diet was seen between the two decades where diet from the 
1990’s was dominated by Pacific sardine (Sardinops sagax) and northern anchovy (Engraulis mordax). By 2010, diet was 
more diverse, characterized by rockfishes, Pacific hake, and market squid. There were also strong interannual differences in 
diet during the most recent decade, a time of substantial climate variability in the North Pacific Ocean. In general, prey were 
consumed in relation to what was available in the environment.

Introduction

The California Current Ecosystem (CCE) is a productive 
eastern boundary current system characterized by seasonal 
wind-driven upwelling. As such, this region has a strong 
seasonality in primary and secondary productions that sup-
port a wide variety of forage stocks (Checkley and Barth 
2009 and references therein). Sardine, anchovy, rockfishes, 
and squid are all examples of important forage in this sys-
tem. Forage stocks, however, are known to vary with cli-
mate shifts on both decadal and interannual scales (Hilborn 
et al. 2017). For instance, Pacific sardine (Sardinops sagax) 

and Northern anchovy (Engraulis mordax) biomass cycle to 
low levels on a roughly 60-year periodicity (Baumgartner 
et al. 1992; Field et al. 2009) possibly related to large-scale 
sea surface temperature (SST) variability (Lindergren et al. 
2013). While exact mechanisms are not understood, sardine 
and anchovy recruitments are thought to depend on SST, 
sea surface height (SSH), and upwelling (Cury et al. 1995; 
Zwolinski et al. 2011; Stachura et al. 2014) and, therefore, 
may vary on interannual time scales with the seasonal occur-
rence of El Niño–Southern Oscillation (ENSO) events. The 
general trend of warming ocean waters and the possibility of 
more frequent ENSO events may have influenced large-scale 
changes in the dominant forage species in the CCE with the 
decline of sardine and anchovy, and the rise of mackerel, 
hake, and rockfishes in recent years (Zwolinski and Demer 
2012; Koslow et al. 2013; Ralston et al. 2015).

Forage species such as sardine, rockfish, and squid are 
important prey for many seabirds and marine mammals in 
the CCE (Szoboszlai et al. 2015). Large-scale changes in for-
age populations can have profound effects on predators that 
rely on them, whether those predators are specialists with 
diets dominated by several prey, or generalists with diverse 
diets. Several species of seabirds have been shown to rely 
heavily on forage fish and may, therefore, be sensitive to 
reductions in forage stocks (Koehn et al. 2016). One model 
predicts depleted sardine populations, from either natural 
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cycles or fishing pressure, will lead to strong declines of 
dolphins and halibut, and moderate declines in seabirds 
(Kaplan et al. 2017). Reductions in abundance of seabirds 
at sea in the CCE (Sydeman et al. 2015) and poor seabird 
reproductive success (Anderson et al. 1982; Velarde et al. 
2004; Tompkins et al. 2017) have been linked to declines 
of sardine and anchovy populations. These reductions of 
energy-rich forage have also forced California sea lions in 
Southern California to shift their diet to less energy-rich prey 
species which has coincided with years of low pup growth 
rates and increased mortality (Melin et al. 2010; McClatchie 
et al. 2016a, b).

California sea lions have been described as “plastic spe-
cialists” or “opportunistic feeders” that have a diverse diet 
of 35–40 + possible species but is dominated by 3–4 key 
prey, the proportions of which shift depending on availabil-
ity (Lowry et al. 1991; Weise and Harvey 2008; Orr et al. 
2011). CSL at Año Nuevo Island in Central California are 
on the northern edge of their breeding range. The increased 
use of this area by CSL as a haul-out, and more recently as 
a small rookery, is likely the result of the growing popula-
tion in Southern California expanding to Central California 
(Lowry et al. 2017; Laake et al. 2018), and greater numbers 
of animals moving into Central California during warm-
water periods (Weise 2000). Año Nuevo Island is located 
near the productive Monterey Bay and Gulf of the Faral-
lones, which provide a great deal of potential prey avail-
ability for wide foraging CSL (Weise et al. 2006). Here, 
we characterize the diet of CSL in Central California from 
the early to mid-2010s. As this was a period of great cli-
mate variability (García-Reyes and Sydeman 2017), we 
hypothesized that CSL diet composition would change in 
strong El Niño years as well as in years when the warm 
water “Blob” had dramatic effects on the oceanography of 
the North Pacific (Bond et al. 2015). Due to decadal-scale 
changes in fish populations, we further hypothesized that 
CSL diet in Central California would have undergone signifi-
cant changes since the late 1990’s when the last diet study 
from this region was published (Weise and Harvey 2008). 
We also examined whether CSL diet varies from an index of 
local prey availability that we derived from National Marine 
Fisheries Service (NMFS) midwater trawl survey data. We 
hypothesized that diet of CSL would track local forage abun-
dance estimates.

Materials and methods

Study area and sample collection/processing

Año Nuevo Island (37.1083°N 122.3378°W) is located 
1 km offshore of the Central California mainland, midway 
between Monterey Bay and Gulf of the Farallones/San 

Francisco Bay (Fig. 1). Año Nuevo Island is one of the larg-
est haul-out sites along this stretch of coastline for California 
sea lions with almost 10,000 individuals in some years, and 
due to an increasing number of births, has recently been 
further classified as a rookery (Lowry et al. 2017).

California sea lion scat samples were collected weekly 
from April to August during 6 years (2010; 2012–2016) 
when researchers visited Año Nuevo Island for multiple 
other studies, to minimize disturbance. Scats were chosen 
from island locations known to be free of other pinniped 
species to ensure they were deposited by CSL. We attempted 
to sample from a wide variety of scat sizes and locations to 
represent various CSL age classes and sexes. However, we 
have assumed an unequal sex ratio based on recent visual 
surveys which indicate that even though female use of Año 
Nuevo has been increasing, the island is still predominantly 
utilized by sub-adult and adult males.

Frozen scats were thawed and cleaned using the wash-
ing machine method described in Orr et al. (2003). Cepha-
lopod beaks were removed, stored in isopropyl alcohol, 
and identified to lowest taxonomic level using published 
guides and the help of W. Walker at the National Marine 
Fisheries Service–National Marine Mammal Laboratory 
(NMFS–NMML) in Seattle, Washington. After all remaining 
materials (rocks, bones, vegetation, etc.) were dehydrated, 
otoliths were removed and identified to lowest taxonomic 
level using pertinent literature (Harvey et al. 2000; Lowry 
2011). Otolith and beak rostral/hood lengths were measured 
using either digital calipers or software (Image J, Scion Cor-
poration). Due to the large number of beaks in some years, 
only a representative subset of 10 within each sample was 
measured. Otoliths from some related species (rockfishes, 
surfperches, and sculpins) have very similar morphologies 
that are difficult to distinguish, particularly after erosion and, 
therefore, these groups were only identified to family level.

Several studies have investigated the relevance of using an 
“all-structures” method for determining pinniped diet (Tollit 
et al. 2003; Phillips and Harvey 2009); however, this was 
beyond the scope of time and resources for this project and 
as such, only otoliths and beaks were used to determine CSL 
prey species. Sweeney and Harvey (2011) compared both 
methods in controlled feeding trials and calculated numeri-
cal correction factors (NCFs) to account for reduced prey 
recovery, which we used here (among other sources, see 
below). The earlier study, from which we draw data to make 
decadal comparisons (Weise and Harvey 2008), did use the 
“all-structures” method for salmon and cartilaginous prey 
identification and enumeration. We acknowledge that these 
particular prey types may have been under-represented in 
the recent diet, although their relative contributions were 
expected to be small as Weise and Harvey (2008) found very 
few of each of these prey in the 1998 summer diet and none 
in 1999 summer diet.
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Diet description

Cumulative species curves were run with Matlab (v. R2015a) 
to determine if enough scat samples had been collected in 
each year to properly describe diet. Adequate sample size 
was determined from the points at which curves reach 
asymptotes, which indicates that new prey items are intro-
duced only rarely (Ferry and Cailliet 1996; Cortéz 1997).

California sea lion diet was described using two relative 
measures of prey quantity (RMPQs), number and mass. 
Traditional methods for calculating the number of fish 
consumed employ a simple technique where otoliths are 
assigned orientations (left/right), the total number of each 
side is counted, and the highest value is used as the mini-
mum number of individuals (MNI) for each species. While 
this method is simple, it has the potential to underestimate 
how many individuals were consumed. To provide a more 
realistic estimate of the number of individuals, we devel-
oped a “pairing” method in which all lengths were used to 
match up pairs of left and right otoliths, resulting in a modi-
fied minimum number of individuals (MMNI). Mille et al. 
(2015) found no significant differences in the lengths of left 
and right otoliths for several fishes, and only one species 

had a difference of 0.2 mm which was determined to be 
biologically inconsequential. For this study, as we were deal-
ing with partially eroded otoliths, we considered 0.5 mm to 
be a more conservative level of difference, so left and right 
otoliths were paired if their lengths fell within that range of 
each other. If any otoliths did not have opposite side length 
matches less than the designated 0.5-mm cut-off they were 
left unpaired. Thus, our MMNI became the total number of 
pairs plus any unpaired otoliths within each sample. Because 
we did not measure every cephalopod beak, we could not use 
our pairing method for these structures; therefore, cephalo-
pods were enumerated using the greatest number of upper 
or lower beaks to calculate a traditional MNI.

To account for differential passage times and hard parts 
which may have been lost during digestion, we applied 
published numerical correction factors (NCFs; see Online 
Resource 1) to otolith and beak counts. Where NCFs were 
not available for identified fish species, we used values 
from otoliths with similar robustness and, therefore, resil-
ience to erosion, as substitutes, and for cephalopods a 
value of 1.1, the NCF for market squid (Doryteuthis opal-
escens) was substituted. Once NCFs were applied, results 
were used to enhance MNI counts. Within each sample we 

Fig. 1   Location of Año Nuevo 
Island along central California 
coast where all scat samples 
were collected. Black circles 
denote trawl stations of the core 
area for the Rockfish Recruit-
ment and Ecosystem Assess-
ment Survey (RREAS) used to 
estimate prey availability San 
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determined the percent by number (%N) that each species 
made up of the total MNI of all species and then averaged 
across all samples to calculate the mean %N for each spe-
cies in the diet.

Otolith and beak rostral/hood lengths were used with 
regression equations from publications and personal com-
munications (see Online Resource 1) to determine the bio-
mass of prey species consumed by CSL. Previous studies 
have demonstrated that otoliths found in scat have various 
levels of degradation due to the digestive process (Bowen 
2000; Orr and Harvey 2001) and, therefore, we applied 
length correction factors (LCFs; see Online Resource 1) to 
all otoliths before back-calculating prey masses. If species-
specific LCFs were not available, an average length factor 
of 1.43 was used for otoliths (Weise and Harvey 2008). As 
cephalopod beaks are known to withstand effects of diges-
tion, no LCFs were used for these structures. The lengths 
of otoliths with low levels of erosion (Grade 1 and 2; 
Lance et al. 2001) were used in regression equations; the 
resulting masses were averaged within samples and mul-
tiplied by MMNI to determine the minimum biomass of 
individuals (MBI) for each species. For samples in which 
no Grade 1 or 2 otoliths were present, or where Grade 3 
otoliths were greater than 1 mm in length from the largest 
or smallest Grade 1/2 otolith in a sample, thus represent-
ing a wider size range of prey, we added Grade 3 otoliths 
to calculations when determining MBI (n = 236). While 
we recognize this method likely underestimated mass for 
those samples, it was determined to be better than having 
a truncated size range or no estimate at all. Similarly to 
calculating number, we determined the percent by mass 
(%M) that each species made up of total MBI within each 
sample and then averaged across all samples to calculate 
a mean %M for all species in CSL diet.

As frequency of occurrence (FO) is already inherently 
contained in %N and %M calculations (Brown et al. 2012), 
we made no independent estimates of this metric. Thus, we 
combined only the two diet metrics, number and mass, into 
one general measure, the geometric index of importance 
(% GII), to facilitate comparisons. This approach allows 
the multidimensional distribution of dietary measures to 
be condensed into a single vector whose magnitude can be 
directly compared between prey species (Assis 1996), and 
was calculated as follows:

where the RMPQs for the j’th prey group are added together 
and divided by the number of RMPQs used. In addition to 
the years sampled in this study, we calculated %GII for 
1998 and 1999 (“summer” season only; Weise and Harvey 
2008) for comparison. Our samples were collected at Año 

%GIIj =
(%N + %M)j

2
,

Nuevo Island, and those in Weise and Harvey (2008) came 
from northern and southern Monterey Bay, roughly 20 and 
40 km to the south, respectively. Relative to the wide forag-
ing range of CSL (up to 1450 km2; Weise et al. 2006), sam-
pling sites were in close proximity to each other, and were 
located within the same upwelling plume (Pt. Año Neuvo 
Plume; Woodson et al. 2009). Sex ratio was also compara-
ble between sites, being predominantly adult and sub-adult 
males at Año Nuevo Island as mentioned above, and a mean 
of 74–83% adult males at the Monterey Bay sites (Weise 
and Harvey 2008).

Prey that comprised 5% or greater of diet by number in 
any year were retained as individual categories for statisti-
cal analysis. All other taxa were combined into one of three 
additional general categories (flatfishes, other fishes, and 
other cephalopods).

Forage abundance determination

Midwater trawl surveys have been conducted by the National 
Marine Fisheries Service–Southwest Fisheries Science 
Center (NMFS–SWFSC) in Central California every 
May–June since 1983 (Sakuma et al. 2016). The “Rockfish 
Recruitment and Ecosystem Assessment Survey” (RREAS) 
core area is made up of 35 stations that stretch along the 
coast from Monterey Bay to Bodega Bay (Fig. 1) sampled 
from 1983 to present, and encompasses the same geographic 
region in which scat samples were collected both for our 
recent diet analysis and from Weise and Harvey (2008). In 
general, marine fauna were collected in May–July at night 
with ~ 15 min tows of a modified Cobb midwater trawl fished 
at ~ 2 knots at a station-specific standard depth (~ 10 m 
or ~ 30 m); more survey details can be found in Ralston 
et al. (2015). For our years of interest (1998–1999, 2010, 
2012–2016), catch-per-unit-effort (CPUE) was calculated 
for the top species identified in CSL diet (Pacific sardine, 
rockfish spp., market squid, Pacific hake, red octopus, north-
ern anchovy, jack mackerel, and sanddab spp.), averaged 
by station and then year. Non-standard tows, tows made to 
non-standard depths, tows for which an error was noted, and 
stations that were added or dropped mid-time series were 
not included.

Statistical analysis

Interannual comparison of CSL diet was conducted using 
%GII values for years within this study as well as with data 
previously published from the late 1990’s. Interannual dif-
ferences were initially compared using Spearman Rank 
Correlations. Percent GII data for prey groups composing 
the top 90% of diet were then logit-transformed to adjust 
for non-normality (Collett 2002; Warton and Hui 2011) 
and comparisons among years were further examined using 
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PRIMER-E (v6.1.5, 2006). Similarity matrices were con-
structed for each dataset using the Bray–Curtis similarity 
coefficient, and one-way analysis of similarity (ANOSIM) 
tests was performed to determine significance of similarity 
among years (Daly et al. 2009; Thayer et al. 2014). Similar-
ity percentages (SIMPER) were used to identify which taxo-
nomic categories made the greatest contributions to any dis-
similarity. All resulting relationships were visualized using 
non-metric multidimensional scaling (nMDS) plots; stress 
values less than 0.10 were unlikely to result in misinterpreta-
tion of the data (Clarke and Warwick 2001).

To investigate potential correlations between CSL diet 
and forage abundance indices, we utilized logit-transformed 
%N values from diet as these values were more directly relat-
able to CPUE data from trawls. RREAS trawl CPUE were 
natural log transformed and compared to CSL diet using 
SIMPER and ANOSIM tests as above.

Results

Diet description

In total, 785 scat samples were collected and processed dur-
ing the 6 years of this study, of which 40 (5%) contained 
no otoliths or beaks and were removed from further anal-
ysis. Cumulative species curves revealed that to properly 
determine CSL diet in this time period roughly 50–80 scat 
samples containing prey items were needed (see Online 
Resource 2) and that all years, with the exception of 2012, 
had more than enough samples (n2010 = 69; n2012 = 26; 
n2013 = 84; n2014 = 129; n2015 = 261; n2016 = 176). Despite 
having limited samples from 2012, top prey items from this 
year were similar to others. We retained these samples for 
analysis and were cautious with interpretation. In the ear-
lier study, Weise and Harvey (2008) reported needing only 
31–48 scat samples to adequately characterize summer diet.

From the 745 scats with hard parts, we identified 41 dif-
ferent prey taxa in CSL diet, including 34 fishes and seven 
cephalopods (see Online Resource 1). Fishes were com-
prised of epipelagic (14), mesopelagic (5), and demersal 
species (14), while cephalopods were almost all pelagic 
squid with one octopus species. All but two prey types 
(Spiny dogfish, Squalus acanthias, and Salmon spp., Onco-
rhynchus spp.) from 1998/1999 diet were also found in this 
study (2010–2016), which may be attributable to our slightly 
different methods for these species. There were 19 fishes and 
five squids, however, in the recent CSL diet samples which 
were not found in the earlier study. For analysis, all prey 
taxa were reduced to 11 categories: Pacific sardine (Sar-
dinops sagax), rockfishes (Sebastes spp.), market squid, 
Pacific hake (Merluccius productus), red octopus (Octopus 
rubescens), northern anchovy (Engraulis mordax), flatfishes 

(Pleuronectidae), jack mackerel (Trachurus symmetricus), 
Pacific saury (Cololabis saira), other fishes, and other 
cephalopods.

Examination of diet using number, mass, and the com-
bined metric, GII, all revealed similar results where the top 
80% of recent diet was composed mostly of rockfish, Pacific 
hake, market squid, and red octopus (Fig. 2, see Online 
Resource 3). One exception to this was in 2015, when diet 
was still diverse but CSL consumed a large amount of jack 
mackerel (27% by number) which had been virtually absent 
in all other years. Conversely, diet from the late 1990s was 
dominated by two prey items, Pacific sardine and northern 
anchovy, both of were much less prominent in CSL diet in 
recent years.

Interannual and interdecadal variability

Spearman rank tests between years revealed significant 
negative correlations between Pacific sardine and (a) rock-
fish, (b) Pacific hake, and (c) other cephalopods, as well 
as between northern anchovy and (a) market squid and (b) 
red octopus (Table 1). These negative correlations indicate 
that the visually evident shift in CSL diet between the late 
1990s and recent years was indeed significant. Additionally, 
in years when CSL consumed more market squid they also 
consumed higher levels of red octopus and Pacific saury, and 
in years when CSL ate more rockfishes there were higher 
levels of other cephalopods and flatfishes (Table 1).

Overall CSL diet between the 1990s and 2010s was 
significantly different (R = 0.97, p = 0.04). SIMPER tests 
revealed 22% dissimilarity between decades mostly due to 
fewer Pacific sardine and more cephalopods in the 2010s. 
There was 90% similarity among the recent years, which was 
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attributed to the prevalence of Pacific hake, market squid, 
and rockfishes in all 6 years. The influx of jack mackerel 
to CSL diet in 2015 and 2016 set these 2 years apart from 
2010 to 2014. With only 2 years of data from the 1990s we 
were not able to run a similarity test on CSL diet within this 
decade, but visually could see high levels of sardine and 
anchovy in the diet (Fig. 2). The non-metric MDS plot also 
clearly showed the significant dietary differences among and 
within decades (Fig. 3).

Forage abundance indices

Trawl survey data from the RREAS core area revealed dis-
tinct changes in prey availability between the decades and 
high interannual variability among recent years (Fig. 4). In 
1998, catch was overwhelmingly dominated by northern 
anchovy and Pacific sardine, the latter of which declined 
the following year and was not observed again in any 
great abundance. Northern anchovy, however, did increase 
in 2015/2016 to levels observed in the late 90’s (Fig. 4). 
Increases of rockfish, market squid, Pacific hake, and sand-
dab catches were observed in the 2010s.

Diet versus prey availability

There was a significant relationship between overall CSL 
diet and the RREAS indices of prey availability (R = 0.50, 
p = 0.02). A SIMPER test revealed 33% dissimilarity 
between diet and availability, with Pacific sardine, red 
octopus, and jack mackerel occurring more in diet than Ta
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in trawls. Examining individual relationships, northern 
anchovy and market squid were consumed by CSL in 
close proportion to availability indices (Fig. 5). Rock-
fishes and red octopus in CSL diet was higher than avail-
ability indexed by trawls. There was no clear relationship 
between diet and availability for Pacific hake or sanddabs. 
Jack mackerel in the diet and trawls appeared to have been 
strongly related; however, in 5 of the 8 years there were 
no mackerel found in either source. For the years in which 
jack mackerel was present, in 1 year (2016) mackerel were 
higher in CSL diet vs. trawls, while in another year (2015), 
mackerel were lower in CSL diet vs. trawls.

Discussion

We observed a major shift in the diet of CSL in Central 
California and diet diversity increased significantly. Weise 
and Harvey (2008) identified 32 prey taxa in diet from the 
late 1990s, whereas data from the 2010s revealed 41 prey 
species, many of which were not reported in the earlier 
study. This increased diversity was also indicated by our 
cumulative species curves which showed that 60% more 
samples were needed to characterize diet composition 
in the 2010s than was needed in the 1990’s. The diet in 

Fig. 4   Yearly values of catch 
per unit effort calculated from 
Rockfish Recruitment and 
Ecosystem Assessment Survey 
trawls for the top eight prey 
items in California sea lion diet 
from Central California. There 
is a break in the line between 
1999 and 2010 to indicate non-
continuity
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1998–1999 was not only less diverse, but was dominated 
by one species, Pacific sardine, and to a lesser extent 
northern anchovy. Since that time, there was a substan-
tial decline in sardine and anchovy, with persistently low 
biomass of both species in recent years (Hill et al. 2017; 
Thayer et al. 2017). In the absence of these previously 
important forage stocks, CSL have apparently switched to 
other prey, primarily rockfishes, Pacific hake, and market 
squid. An alternate explanation for the increased diversity 
could be changing sex ratio, i.e., an increase in females 
sampled, given that adult females have been shown to con-
sume a greater diversity of prey than juveniles (Orr et al. 
2011). Comparisons of adult female and juvenile diets, 

however, have not been quantified in relation to that of 
adult and sub-adult males.

Past studies have identified CSL as a generalist predator 
of a wide range of fishes and cephalopod prey (21–58 taxa 
identified; Ainley et al. 1982; Lowry et al. 1990; Melin et al. 
2010, 2012). While our results do not disagree with previ-
ous findings that CSL consume many different prey, it is 
important to recognize that CSL diet has been shown to be 
dominated by three to five species which have been utilized 
in changing proportions through time (Lowry et al. 1991; 
Weise and Harvey 2008; Orr et al. 2011).

CSL diet may vary in terms of location, seasonality, and/
or interannual or decadal changes in ocean conditions that 

Fig. 5   Relationships between 
top eight prey taxa from Cali-
fornia sea lion diet (1998–1999, 
2010, 2012–2016), represented 
as percent number (%N) values, 
and prey availability, repre-
sented at catch per until effort 
(CPUE) estimations from Rock-
fish Recruitment and Ecosystem 
Assessment Survey trawls
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influence prey availability. In the earliest records for annual 
diet in Central California from the 1970s, CSL preyed 
almost exclusively on Pacific hake and rockfishes (Ainley 
et al. 1982; Bailey and Ainley 1982). These studies were 
conducted using only regurgitated prey remains (Ainley 
et al. 1982) or only reported data on Pacific hake (Bailey 
and Ainley 1982), and may represent a biased view of diet. 
Furthermore, these studies were based on diet from the Far-
allon Islands, located on the edge of the continental shelf 
with different prey fields than inshore (Santora et al. 2012). 
Central California CSL diet in the early 2000s was domi-
nated in various years by market squid, rockfish, northern 
anchovy, or Pacific sardine (Peterson et al. 2006; Weise et al. 
2006), although these annual data were only presented for 
those four species and only in units of percent mass. Studies 
from Southern California found that annual CSL diet from 
San Clemente and San Nicholas Islands in the 1980s was 
devoid of sardine (after collapse of that species; MacCall 
1979), but rich in anchovy, hake, and jack mackerel (Lowry 
et al. 1990, 1991). Melin et al. (2010, 2012) observed that 
during summer months in the 2000s CSL from San Miguel 
Island were frequently consuming Pacific hake, sardine, and 
anchovy, but that by the early 2010s had switched to rock-
fishes and market squid. Most of these studies, however, 
focused on frequency of occurrence (FO) diet estimations, 
which only indicate the presence/absence of a prey type, not 
how much was consumed. Information on relative consump-
tion is needed to relate diet composition to prey availability 
in the environment.

Prey switching and environmental conditions

Within the timeframe of this study, there have been extreme 
changes in ocean conditions. During the most recent decade, 
annual averages of the Central California Multivariate Ocean 
Climate Indicator (MOCI), an index which synthesizes a 
number of local and regional oceanic and atmospheric con-
ditions, calculated as summer year x − 1 to spring year x 
and labeled as year x (e.g., 2010 is summer 2009 to spring 
2010) to include El Niño events within the same annual 
value, showed 2 years of strong upwelling and cold condi-
tions (2012 and 2013), 2 years of moderate, non-anomalous 
conditions (2010 and 2014), and 2 years of extreme warm 
conditions (2015 and 2016; Fig. 6 taken with permission 
from http://www.faral​lonin​stitu​te.org/moci; García-Reyes 
and Sydeman 2017). During moderate and cold years, mar-
ket squid consistently made up roughly 25% of CSL diet in 
Central California, and during 2013 which contained the 
coldest point in the MOCI time series, over half of diet was 
composed of cephalopods. Similarly, Lowry and Carretta 
(1999) found fewer market squid in CSL diet in Southern 
California during warm El Niño years in the 1980s and 
1990s. Red octopus was another prominent cephalopod in 

CSL diet, contributing 12% and 22% to the diet in the recent 
cold years of 2012 and 2013, respectively. Weise and Harvey 
(2008) also reported an uptick in the number of red octopus 
in CSL diet during the 1998 El Niño. The increased use of 
cephalopods is likely indicative of CSL consuming which-
ever prey is most available when high-energy prey is reduced 
due to environmental conditions. Although consumption of 
red octopus did not mirror the prey availability indexed by 
the RREAS surveys, midwater trawls may not provide the 
best estimate of abundance for primarily benthic species.

During recent warm years, which resulted from the com-
bined effects of El Niño and the Blob (Bond et al. 2015; 
Gentemann et al. 2017), CSL preyed heavily on jack mack-
erel (2015) and rockfishes (2015 and 2016), the latter of 
which have recently had several years of high recruitment 
(Wells et al. 2017). Jack mackerel, an energy-dense prey 
source (Sidwell et al. 1974), can be found throughout the 
CCE, yet they are most abundant offshore and in the South-
ern California Bight (MacCall and Stauffer 1983). During 
the strong 1983–1984 El Niño, the jack mackerel fishery 
catch increased in northern regions (Mason 1989). Like-
wise, in 2015 and 2016, CPUE of jack mackerel in the 
RREAS trawls increased, indicating northward expansion 
and inshore movement, likely tracking warm waters. Even 
so, mackerel made up a much higher proportion of CSL diet 
than abundance indexed by trawls in 2015. Trawls may have 
missed patches of this irregularly distributed pelagic species, 
or CSL may have obtained mackerel further offshore than 

Fig. 6   Seasonal Multivariate Ocean Climate Indicator (MOCI; 
García-Reyes and Sydeman 2017) for Central California taken from 
http://www.faral​lonin​stitu​te.org/moci. MOCI synthesizes a number of 
local and regional oceanic and atmospheric conditions that represent 
the state of the Central California coastal ocean in a holistic and sea-
sonal manner. Red dots represent MOCI values one standard devia-
tion above the season’s mean (warm conditions and weak upwelling), 
while blue dots represent values one standard deviation below the 
seasonal mean (cold conditions and strong upwelling)

http://www.faralloninstitute.org/moci
http://www.faralloninstitute.org/moci
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trawls were conducted. In 2016, jack mackerel was available 
as indicated by trawls, yet CSL did not eat them as much as 
in 2015, possibly because of the higher availability of other 
prey on or near the shelf, such as juvenile rockfish and hake.

Although the Central California region of the Pacific 
Ocean experienced warm conditions in 2015–2016 and in 
1997–1998 (Fig. 6), small pelagic species such as anchovy 
and sardine were much less abundant during the recent 
event, part of declines which began in the mid-2000s (Mac-
Call et al. 2016; Hill et al. 2017). Numbers of Pacific hake 
caught in 2015–2016 surveys were the largest during our 
study period. Pacific hake, however, as well as sanddabs, 
exhibited no clear relationship between proportion in the diet 
and availability in the environment (Fig. 5), indicating that 
they were opportunistically consumed rather than selected 
by CSL. Pacific sardine, however, with its low availability 
during the majority of years in our study, appeared to be 
selected for.

Ecological significance of prey switching

The prey switching observed in this study indicates that 
CSL may now be consuming less energy-dense food, due 
to distribution and abundance of prey species (Österblom 
et al. 2008). Sardine and anchovy are high in protein and 
fat contents (Sidwell et al. 1974; Costa et al. 1991) which 
before their decline provided CSL with readily available 
and energy-rich food sources. The sardine and anchovy col-
lapse was followed by a rise of rockfishes, hake, and market 
squid in the diet, all of which are less energy rich (Costa 
et al. 1991). The consumption of these species is thought to 
have had deleterious effects on CSL throughout their range. 
In Central California, Weise et al. (2006) showed that with 
warmer waters and shifts in prey populations there were sig-
nificant changes in mean foraging distance and number of 
days spent at sea, indicating that male CSL were forced to 
forage longer and travel further offshore to find sufficient 
prey. Several studies in Southern California have shown that 
changes in prey abundance and quality also require breeding 
female CSL to increase forage trip durations which is linked 
to increased pup mortality (Feldkamp et al. 1989; Melin 
et al. 2008, 2010, 2012; McClatchie et al. 2016a, b; McHu-
ron et al. 2017). Further complicating this situation, Zwo-
linski and Demer (2012) have suggested that the possibility 
for a near-term sardine recovery is very limited, indicating 
access to energy-rich prey for CSL may remain restricted 
in the near future. However, in general, the CSL population 
has continued to grow over time (Lowry et al. 2017), which 
could indicate that prey-switching abilities could help buffer 
CSL from the effects of environmental variability.
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