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Abstract
Mesopelagic myctophid fish are a key component of the world’s ocean food webs, linking primary consumers and predators. 
Among marine predators, seabirds are globally significant consumers, but the extent to which they feed on myctophids has 
been investigated only at the regional scale. This global-scale review of analyses of the stomach contents of 228 seabird 
species reveals that the occurrence of myctophids in seabird diets is extremely variable. However, myctophids do constitute 
a considerable amount of the food of penguins, the Procellariidae (shearwaters/petrels, etc.), and storm-petrels; in locations 
where birds are foraging in oceanic basin/shelf slope habitat; and among birds that feed at night. Recent analyses of the 
fatty acid signature of stomach oil emphasize that myctophids can be important prey also for seabirds exploiting oceanic 
habitats. Current efforts to survey seabirds’ distribution outside the breeding period, when they often become more oceanic, 
and their circadian activity may further support the global importance of myctophids as a pathway for carbon advection 
between marine compartments.

Introduction

The total biomass of mesopelagic fish at the global scale 
had previously been estimated to reach 109  t (Gjøsaeter 
and Kawaguchi 1980), but more recent estimates are even 
greater by at least an order of magnitude (Irigoien et al. 
2014). Among mesopelagic fish, myctophids (family Myct-
ophidae, also known as lanternfishes) are dominant (Collins 
et al. 2008), accounting for 75% of this biomass (reviewed 
in Catul et al. 2011). Myctophids are important predators 
of copepods and krill, which are themselves key primary 
consumers in pelagic ecosystems (Moku et al. 2000; Sassa 

and Kawaguchi 2004; Hopkins et al. 1996; Hill et al. 2006; 
Murphy et al. 2007). As such, myctophid fish are consid-
ered to be an essential component of the tertiary level of 
pelagic ecosystems (Pakhomov et al. 1996; Pusch et al. 
2004; Cherel et  al. 2010), transferring the energy from 
zooplankton to upper trophic levels (Saunders et al. 2015). 
Indeed myctophids are profitable prey in terms of energy 
content (Clarke and Prince 1980; Anthony and Roby 1996; 
Davis et al. 1998) and are consumed by a variety of under-
water predators, including tuna (Battaglia et al. 2013; Young 
et al. 2010), sharks (Pethybridge et al. 2011; Kubodera et al. 
2007; Markaida and Sosa-Nishizaki 2010), squid (Pethy-
bridge et al. 2012; Lorrain et al. 2011), dolphins (Ohizumi 
et al. 1998, 2000) and other marine mammals (Rodhouse 
and Nigmatullin 1996).

Among this wide array of marine predators, seabirds 
are notable as significant consumers of marine resources 
across the world’s oceans (Brooke 2004a). They are highly 
mobile, and they exploit a range of marine habitats through 
extremely diverse foraging adaptations, from the surface-
feeding specialists such as albatrosses (Diomedeidae) and 
gulls/terns (Laridae) to the deep-diving penguins (Sphenis-
cidae) and alcids (Alcidae) (Schealer 2002). As colonial and 
land-breeding species, seabirds are relatively convenient to 
study among marine predators, and their food has been well 
documented during the breeding season at many sites around 
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the world. Diet studies have revealed that several seabird 
species forage on myctophids, but this has been documented 
only at the regional scale (e.g., Connan et al. 2007a). It has 
thus been difficult so far to apprehend the overall signifi-
cance of myctophids as food for seabirds. In this paper, we 
review the food of all seabird species that we could find in 
the literature, with the aim of providing a global assessment 
of how much myctophid fish and seabirds are interconnected 
at the scale of the world’s oceans.

We also explore site-specific and species-specific fac-
tors which may explain variations in the consumption of 
myctophids by seabirds. Myctophid–seabird interactions 
may well be enhanced or prevented because seabirds would 
exploit, respectively, identical or different habitats to those 
of myctophids. First, myctophids are distributed mainly in 
the oceanic domain and over the shelf slope, rather than 
over the shelf itself and in coastal waters (Beamish et al. 
1999; Donnelly et al. 2004; Moteki et al. 2011; Pepin 2013; 
but see Vipin et al. 2012). In contrast, seabirds forage in a 
variety of marine habitats, including oceanic basin, shelf 
slope, shelf, coast, and inland brackish and freshwater bio-
topes (see SI Table 1). Thus, the marine habitat exploited 
could predict the extent to which seabirds feed on myct-
ophids. Specifically, we expected that seabirds exploiting 
the oceanic domain or areas over the shelf slope would feed 
on myctophids more than those foraging over the shelf or 
in coastal areas. Second, many species of myctophids have 
broadly tropical or subtropical distribution patterns (Hul-
ley 1995), but the largest biomass of myctophids is found 
in the Southern Ocean (Lubimova et al. 1987; reviewed in 
Catul et al. 2011). Indeed, the density of mesopelagic fish in 
the Pacific Ocean seems to be greater in subarctic and sub-
antarctic areas (4.5–6.5 g/m3) than in equatorial (2.6–3.0 g/
m3) and central areas (1.0–2.0 g/m3) (Gjøsaeter and Kawa-
guchi 1980). Thus, we expected that latitude would affect 
the importance of myctophids in seabirds’ diet. Third, an 
oceanic survey between 40° north and south showed that 
myctophids are more abundant in more productive waters 
(Irigoien et  al. 2014). Therefore, we expected also that 
marine primary production within the range of each seabird 
population would affect the consumption of myctophids.

We also investigated other factors related to seabird spe-
cies-specific foraging capacities. Most myctophids remain at 
200–1500 m depth during the daytime, while at night some 
(but not all) of them migrate to the upper 200-m euphotic 
zone to feed (Watanabe et al. 1999). In contrast, seabirds 
exploit mostly the surface layer and feed during daylight 
hours (with a few exceptions: see SI Table 1), as they gen-
erally need to see their prey to capture it. These traits may 
limit the opportunities for seabirds to feed on myctophids. 
Exceptions are king penguins, red-legged kittiwakes (Rissa 
brevirostris) and Kerguelen petrels (Pterodroma breviro-
stris). King penguins are able to dive deeply (150–250 m) 

and reach myctophids that remain in deep waters during the 
daytime (Bost et al. 2002). In contrast, red-legged kittiwakes 
and Kerguelen petrels actively feed on myctophids at the 
surface during the night (Harper 1987; Ainley et al. 1991, 
Kokubun et al. 2016). The red-legged kittiwake has notice-
ably larger eyes than the closely-related black-legged kit-
tiwake (Rissa tridactyla) (Storer 1987), and the Kerguelen 
petrel has a greater number of retinal ganglion cells than any 
other procellariiform species (Hayes and de Brooke 1990), 
and in both cases it is believed that these peculiarities enable 
nocturnal feeding. Thus, we expected that specialized feed-
ing on myctophids may be limited to those seabird species 
that dive deep or feed nocturnally. Further, as body mass 
might limit dive depth (Kooyman 1989; Schreer and Kovacs 
1997), we expected that larger seabird species would forage 
on myctophids more than smaller species.

In this paper, we review the proportion of myctophid fish 
found in the stomach, regurgitations or bill-loads of sea-
birds over the world’s oceans. Using these data, we examine 
whether seabird foraging habitat or behaviour would affect 
the importance of myctophids in their diet. We then discuss 
the potential bias inherent in samples collected in colonies 
using other sources of information such as chemical mark-
ers, and debate the possibility of nocturnal foraging by sur-
face feeders that consume myctophids. Finally, we discuss 
how recent studies of animal behaviour outside the breed-
ing season may change our view of seabird species’ trophic 
niche.

Materials and methods

Data sources

To evaluate the importance of myctophids in seabird diets, 
we first considered review papers (Croxall and Lishman 
1987; Prince and Morgan 1987), books (Brooke 2004b; 
Gaston and Jones 1998; Williams 1995; Nelson 2005) and 
papers analysing multiple seabird species in colonies (Crox-
all et al. 1988, 1997; Schneider and Hunt 1984; Harrison 
et al. 1983; Ridoux 1994) or at sea (Ainley et al. 1991; Spear 
et al. 2007). We then considered studies describing the diet 
of single species, using the Web of Science search engine 
(with “diet”, “seabird” and “myctophids” as key words) up to 
May 2016. Most diet studies of seabirds are based on exami-
nation of (1) the regurgitations (or pukes), (2) the contents of 
the oesophagus, proventriculus and gizzard, which we refer 
to collectively (though inaccurately) as stomach samples 
(Ratcliffe and Trathan 2011), or (3) the prey brought back 
to the chicks crosswise in the bills as bill-loads. From the 
diverse prey species identified in the stomach samples and 
bill-loads (see SI Table 1), we categorized the seabird diets 
as consisting mainly of copepods, krill, crustaceans, squid, 
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other marine invertebrates (including shellfish, sea stars and 
sea urchins), myctophids, or non-myctophid fish, including 
epipelagic schooling fish (sardine/anchovy), bottom-living 
fish (flatfish, blennies, sculpin), and fish eggs. Some seabirds 
also fed on carrion, eggs or chicks of other seabirds, terres-
trial animals (mammals or insects) or garbage. Hence, we 
assigned to each seabird population its main prey categories 
according to the literature (SI Table 1).

Analyses

To examine the importance of myctophids as prey among 
seabird families, we compared the number of confamilial 
species that fed on myctophids at at least one study site 
(based on all types of diet analyses from SI Table 1). For 
statistical analyses, we then used the percentage (by mass 
or volume) of myctophids given in the studies as a metric 
of their importance in the seabirds’ diet, for each species at 
each study site. If the values varied between years, seasons 
or studies for the same species at the same location, we used 
the mid point of the range. When values were reported as 
“< x%”, we used half of this range in statistical analyses 
(e.g., “< 11%” in SI Table 1 became 6%). The distribution 
of the response variable (percentage of myctophids in diets) 
was highly skewed to lower values (SI Fig. 1).

The marine habitat of the study site (colony or area 
at sea where seabirds were sampled) was categorized 
as oceanic basin and slope habitat (BE, encompassing 
both oceanic waters > 400 m deep and within 100 km of 
the shelf slope) or shelf and coastal habitat (SC, includ-
ing ≤ 200 m shelf waters, mainland coastal areas, and 
freshwater-related habitats (see SI Table 1). For effects 
of latitude, we used absolute values; for study areas with 
wide latitudinal ranges, we used middle values. To exam-
ine the relationship between biological productivity and 
the consumption of myctophids, we extracted sea-surface 
chlorophyll-a concentrations at each study site, using the 
function “xtracto_3D” from the package “xtractomatic” in 
R v. 3.4.2 software (R Core Team 2015), from the average 
value of all SeaWiFS satellite data (1997–2010, monthly 
composite, 0.0417° resolution) in a 5° × 5° box centred on 
the site’s coordinates. These long-term data are expected 
to limit the seasonal or annual effects in chlorophyll-a con-
centration patterns and facilitate comparisons among sites, 
although it is possible that the averages may be biased 
towards the summer values, given the potential reading 
limitations for the satellite during winter due to sea-ice 
and cloud coverage. The 5° × 5° spatial box was chosen as 
a compromise between measuring site-specific character-
istics in productivity and accounting for the movements of 
foraging seabirds around each site. In the case of studies 
with several sites that spread beyond the 5° × 5° box, a box 

was drawn for each site; in the case of studies covering 
a regional marine sector, the boundaries of the studied 
region were directly used to draw a single box.

The body masses of the seabird species were drawn from 
Schreiber and Burger (2001), Brooke (2004b), and Nelson 
(2005) (SI Table 1). Species-specific feeding techniques 
were previously assigned to pursuit dive (pd), surface dive 
(sd), surface plunge (sp), pursuit plunge (pp), aerial plunge 
(ap), surface seizure (ss), surface filtering (sf), dipping (dp), 
aerial catch (ac), scavenging (sv), and kleptoparasitism (kp) 
(Ashmole 1971; Gaston and Jones 1998; Williams 1995; 
Brooke 2004b; Nelson 2005) (SI Table 1). To evaluate the 
effect of a species’ diving capacity on its consumption of 
myctophids, we simplified these categories into two con-
trasting feeding techniques: diving (D; equivalent to pd) and 
surface feeding (S; comprising ss, sf, dp, ac, sv, kp, sd, sp, 
pp, and ap) (SI Table 1). Information about nocturnal feed-
ing was drawn from Harper (1987), Phalan et al. (2007) and 
the above-cited reviews. In the eastern tropical Pacific, anal-
ysis of otoliths in relation to the time of day when birds were 
collected showed that some procellariiform species caught 
prey primarily between 20:00 and 24:00 (Spear et al. 2007), 
and thus we assumed that these species were nocturnal feed-
ers. We categorized species as nocturnal (N) when signifi-
cant nocturnal feeding was determined from these studies, 
or non-nocturnal/unknown (U) otherwise.

We tested the statistical effect of these factors on the 
proportion by mass or volume of myctophids in each sea-
bird species’ diet using a Generalized Linear Mixed-effect 
Modelling (GLMM) approach, in which the proportion by 
mass or volume of myctophids in the seabirds’ diet was 
the response variable (assuming a binominal distribution); 
marine habitat (BE vs SC), latitude (absolute value), sea-sur-
face chlorophyll-a concentration of the sampling site, spe-
cies body mass, feeding technique (D vs S) and daily timing 
of feeding (N vs U) were explanatory factors; and seabird 
species was a random factor. The model selection procedure 
followed Akaike’s Information Criteria corrected for small 
samples (AICc), using the packages lme4 and MuMIn in R 
v. 3.2.1 software. Models with ΔAICc < 2.00 were denoted 
as equally supported. When multiple models were selected, 
parameter estimates were calculated using the model averag-
ing procedure for all equally supported models. All Variance 
Inflation Factor values were < 5, indicating no colinearity 
(Zuur et al. 2009).

Results

We reviewed 252 publications, encompassing 228 seabird 
species from 12 families studied at 174 sites or regions 
around the world (SI Table 1).
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Taxonomic comparison

The importance of myctophids in the diet varied exten-
sively among bird families. In six families, more than half 
of the reviewed species fed to some extent on myctophids, 
at at least one study site (SI Table 1): penguins (Sphe-
niscidae, 9/14, 64%); albatrosses (Diomedeidae, 6/11, 
55%); shearwaters/petrels/giant petrels/fulmars/prions 
(Procellariidae, 33/45, 73%); storm petrels (Hydrobati-
dae, 10/13, 77%); diving petrels (Pelecanoididae, 2/3, 
67%); and skuas and jaegers (Stercorariidae, 3/4, 75%). 
By contrast, a minority of species fed on myctophids 
among alcids (Alcidae, 2/18, 11%), boobies (Sulidae, 1/9, 
11%), and cormorants and shags (Phalacrocoracidae, 2/13, 
15%). Intermediate values were found for gulls and terns 
(Laridae, 10/32, 31%) and for tropicbirds (Phaethontidae, 
1/3, 33%). We found no evidence of any population of 
frigate birds (Fregatidae) for which myctophids would be 
significant prey. The percentage mass of myctophids in 
the diet (Fig. 1) also indicates that myctophids constitute 
a considerable amount of food for penguins, shearwaters/

petrels/giant petrels/fulmars/prions and storm petrels, but 
with large variation within each family.

Effects of foraging habitat and technique

Because of the inherent correlation of seabird family with 
feeding technique, habitat and latitude, effects of family 
could not be examined along with other factors. When all 
seabird data were used, habitat and timing of feeding are 
selected in all four equally supported models (all-species 
models in Table 1). The seabirds tend to feed on myctophids 
more in oceanic basin and slope than in shelf and coastal 
habitat (Fig. 2a, SI Table 2) and seabirds that feed at night 
tend to feed more on myctophids than those that do not feed 
at night (Fig. 2b, SI Table 2). Latitude, feeding technique 
and body mass, however, were selected in only one of the 
four equally supported models, and primary production was 
not selected. 

When the analysis was restricted to Procellariidae species 
only, which are all surface feeders and thus feeding tech-
nique was omitted as a potential factor, habitat and body 

Fig. 1   Proportion of myctophids 
(by mass) in seabirds’ diet 
across families (SPHE sphe-
niscidae, DIOM diomedeidae, 
PROC procellariidae, HYDR 
hydrobatidae, PELE peleca-
noididae, ALCI alcidae, STRC​ 
stercorariidae, LARI laridae, 
SULI sulidae, PHAL phalac-
rocoracidae, FREG fregatidae, 
PHAE phaethontidae). Values 
shown are for each site–species 
combination in open circle oce-
anic basin and slope habitat and 
filled circle shelf and coastal 
habitat

Table 1   Factors affecting the proportion of myctophids (by mass or volume) in the diet of all seabird species (n = 268 species–sites) and Procel-
lariidae (petrels/shearwaters, n = 73 species–sites)

Generalized linear mixed-effect models used the following explanatory variables: marine habitat (HAB: oceanic basin and shelf slope versus 
shelf and coastal), latitude (Lat, absolute value), sea surface primary production (PP), body mass (Mass), feeding surface technique (Ftec: div-
ing versus surface feeding), and timing of feeding (night: documented nocturnal feeding versus undocumented). Species was treated as a random 
factor. Model selection was based on ∆AICc. The five best models are shown, and equally supported models are in bold. Akaike weight (wt) is 
shown

All species model Procellariidae model

Model df logLik AICc ∆AICc wt Model df logLik AICc ∆AICc wt

HAB + night 4 − 68.1 144.4 0.00 0.25 HAB + mass 4 − 27.3 63.1 0.00 0.23
HAB + mass + night 5 − 67.9 146.0 1.60 0.11 HAB + mass + night 5 − 26.4 63.7 0.58 0.17
HAB + lat + night 5 − 68.0 146.1 1.77 0.10 HAB + PP + mass 5 − 27.0 64.8 1.68 0.10
HAB + ftech + night 5 − 68.1 146.4 1.99 0.09 HAB + PP + mass + night 6 − 26.0 65.3 2.21 0.08
HAB + PP + night 5 − 68.1 146.4 2.07 0.09 HAB + lat + mass 5 − 27.3 65.4 2.31 0.07
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mass were selected in all three equally supported models 
(Procellariidae models in Table 1). Although parameter 
estimates for all factors were not significant (SI Table 2), 
Procellariidae species tend to feed on a higher proportion 
of myctophids in oceanic basin and slope than in shelf and 
coastal habitat (Fig. 3a). Smaller species seem to feed on 
myctophids more (Fig. 3b), but when the two largest spe-
cies (northern giant petrel, Macronectes halli, and south-
ern giant petrel, M. giganteus) were excluded, body mass 
was not selected in the five equally supported models (SI 

Table 3). Primary production and timing of feeding were 
selected in only one of the three models, and latitude was 
not selected in any.

Discussion

Although we could not separate taxonomic effects from 
those of latitude, habitat and feeding techniques, our analy-
sis, accounting for species as a random factor, suggests that 

Fig. 2   Frequency distributions of the proportion (by mass) of myct-
ophids in the diet of a all sampled seabirds (n = 268 species–site com-
binations) in oceanic and basin versus shelf and coastal habitats and 

b species reported to feed nocturnally versus species not reported to 
feed nocturnally. Note that vertical axis uses log scale

Fig. 3   a Frequency distributions of the proportion (by mass) of myct-
ophids in the diet of Procellariidae seabirds (n = 73 species–site com-
binations) in oceanic and basin versus shelf and coastal habitats. Note 
that vertical axis uses log scale. b Effect of body mass on the propor-

tion (by mass) of myctophids in the diet. Values shown are for each 
site–species combination in open circle oceanic basin and slope habi-
tat and filled circle shelf and coastal habitat
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myctophids are important for some seabird species which 
exploit oceanic habitats with appropriate foraging behav-
iour. Latitude and primary production were not selected 
as important factors in any models. Sampling sites were 
biased in relation to both, which might partly explain why 
these environmental factors were not significant. Body mass 
and feeding technique (surface feeding vs diving) were not 
selected either. Surface feeders might feed on mesopelagic 
myctophids when the latter come close to the surface.

Foraging habitat

The all-seabirds models and the Procellariidae models indi-
cate that marine habitat explain the importance of myct-
ophids in the diet. Birds tend to feed more on myctophids 
in oceanic basin and slope than in shelf and coastal habitat. 
A comparison between the congeneric king (Aptenodytes 
patagonicus) and emperor penguins (A. forsteri) in the 
Southern Ocean illustrates this point. Both penguin species 
perform deep dives. During the breeding season, king pen-
guins, which typically forage in open oceanic waters (e.g., 
Bost et al. 1997), feed mainly on myctophids (Croxall and 
Lishman 1987; Ratcliffe and Trathan 2011), while emperor 
penguins, which forage mainly over the shelf or the shelf 
break areas around Antarctica (Kirkwood and Robertson 
1997; Raymond et al. 2016), do not. The latter, however, 
feed on some myctophids when they forage in oceanic waters 
(Ainley et al. 1991, 1992), which supports this inference.

Within-species variation in myctophid consumption also 
supports the effect of marine habitat. For example, chinstrap 
penguins (Pygoscelis antarctica) rearing chicks on Elephant 
Island feed mainly on krill over the shelf area, but they also 
bring back myctophids after long overnight foraging trips 
to offshore waters (Ichii et al. 2007). Similarly, short-tailed 
shearwaters (Puffinus tenuirostris) breeding in Tasmania for-
age both in neritic waters near their colonies (Tasman Sea, 
Bass Strait) and in remote oceanic waters (sub-Antarctic 
and Antarctic waters) (Klomp and Schultz 2000; Einoder 
et al. 2010; Cleeland et al. 2014). Stomach contents of this 
species sampled in the colonies commonly show krill, fish 
larvae, squid and copepods, but after long foraging trips (ca. 
a week), presumably to the Southern Ocean, myctophids 
may constitute ca. 10% by mass of the stomach contents 
(SI Table 1). In the Bering Sea, black-legged kittiwakes 
(Rissa tridactyla) have been consuming more myctophids 
and less walleye pollock (Theragra chalcogramma) since 
1970 (Renner et al. 2012). In response to decreasing pol-
lock stocks, black-legged kittiwakes have increased their 
foraging activity in the oceanic area and at night, targeting 
myctophids (Paredes et al. 2014). Red-legged kittiwakes 
also consume myctophids when they forage in the oceanic 
domain at night during the breeding season (Kokubun et al. 
2016), but when they remain over the shelf areas during the 

non-breeding period, they typically show diurnal feeding 
patterns, with hence little opportunity to capture myctophids 
(Orben et al. 2015). Finally, among breeding Cory’s shear-
waters (Calonectris diomedea), foraging activity becomes 
predominantly nocturnal when the birds are specifically 
exploiting the cold and deep oceanic waters, presumably 
because vertically migrating mesopelagic prey species are 
locally abundant during the night (Dias et al. 2012). These 
study cases all support the general conclusion that seabirds 
foraging in the oceanic domain feed more on myctophids, 
especially if they are able to forage at night, when these 
mesopelagic fish move closer to the surface.

Nocturnal foraging

Results from our all-seabirds models imply that the known 
nocturnal foragers tend to feed more on myctophids than 
species not known to forage nocturnally. Irrespective of 
their feeding technique, seabirds would feed on myctophids 
that come closer to the surface during the night. Yet recent 
studies using animal-borne data loggers revealed that at 
least some surface-feeding albatrosses, shearwaters/petrels/
giant petrels/fulmars/prions and gulls show more flexible 
circadian foraging patterns than previously known through 
direct observation (Table 2). The daily activity patterns of 
these birds are, therefore, difficult to categorize strictly. This 
may limit the ability of our review, based on conservative 
categorizations, to detect any linkage between nocturnal 
feeding and the importance of myctophids in the diet of the 
Procellariidae.

Studies of the amount of time spent on the water, the 
numbers of take-off/landing on the water, or the sinuosity 
of tracks have suggested nocturnal feeding in six species of 
albatrosses, four species of shearwaters/petrels, and two spe-
cies of kittiwakes/gulls (Table 2). Nocturnal prey ingestions 
were confirmed by measuring stomach temperature or body 
acceleration in two species of albatrosses and one species of 
kittiwake. Thus, nocturnal feeding may be more widespread 
among seabirds than previously thought, and may allow sur-
face feeders to further exploit mesopelagic myctophid fish, 
although direct evidence is still limited. Thus, at present, 
this review indicates that flexibility of seabirds’ foraging 
behaviour, especially in time, in surface-feeding species may 
promote myctophid consumption. Direct exploration of noc-
turnal feeding in surface feeders using animal-borne data 
loggers would be important for further understanding of the 
global trophic interactions between seabirds and myctophids.

Chemical markers

To look at the importance of myctophids in seabirds’ diets, 
we consider stomach contents, regurgitations and bill-
loads that reflect food that is consumed a few hours before 
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sampling (Wilson et al. 1985; Jackson and Ryan 1986; Hil-
ton et al. 2000), so the importance of prey items which are 
consumed well before the return to the colony tends to be 
underestimated (Barrett et al. 2007; Connan et al. 2007b). 
A comparison of the diet of Procellariiformes between the 
Scotia–Weddell Sea offshore area (57–62°S; Ainley et al. 
1986, 1991, 1992) and the Crozet Islands (46°S; Ridoux 
1994), both in the oceanic basin, illustrates how this diges-
tion bias masks the importance of myctophids in seabirds’ 
diets (SI Table 1). The stomach contents of breeding sea-
birds returning to the colony to feed chicks at Crozet, which 
reflect prey taken around the colony, contained few myct-
ophids (0–5%, 8 species; SI Table 1). However, myctophids 
were important prey items in the stomachs of birds (40–95% 
by mass, median value for each of seven species) that were 
collected in the Scotia–Weddell Sea, possibly reflecting prey 
taken in the oceanic basin. Elevated nitrogen-stable isotope 
values of the muscle tissues of seabirds collected in the 

Scotia–Weddell Sea (Rau et al. 1992) confirmed that these 
birds fed on high-trophic-level prey.

Determining the profile of fatty acids (FA) and fatty alco-
hols (FAlc) of seabirds’ stomach oil and body tissue may 
complement the information obtained by inspecting their 
stomach contents (Karnovsky et al. 2012). Comparison of 
the compositions of FA and FAlc in lipids with those of 
potential prey species using multi-variable statistical tech-
niques can estimate the most probable prey species in sam-
ples of predator tissue (Iverson et al. 2005, 2007), with some 
limitations (Wang et al. 2010; Williams and Buck 2010). 
Stomach oil, which consists of undigested lipids of prey spe-
cies [triacylglycerols (TAGs) and wax esters (WEs); Imber 
1976; Clarke and Prince 1976; Jacob 1982], is often found 
in adult Procellariiformes returning from long (ca. a week) 
foraging trips (Weimerskirch and Cherel 1998; Chaurand 
and Weimerskirch 1994; Matsumoto et al. 2012; Einoder 
et al. 2013). Therefore, the FA profile of WEs and TAGs in 

Table 2   Nocturnal feeding of seabird species, as suggested or confirmed through the use of animal-borne data recorders on surface-feeding sea-
bird species

Feeding was suggested from the time spent on water, successive take off/landing on water behaviour (using wet–dry sensors, temperature record-
ers or compass sensor), or the sinuosity of bird movement [tracked using GPS loggers or satellite transmitters (PTT)]. Food ingestion was con-
firmed using stomach temperature recorder (ST) or by the detailed recording of activity using acceleration data loggers (AC). Some on water 
activities were observed during the nights but were not determined as foraging (?). See SI Table 1 for scientific names of species

Species Method Device Nocturnal feeding Main foraging References

Wandering albatross Tracking, on water GPS, wet–dry Suggested Day Phalan et al. (2007)
Wandering albatross Tracking, prey ingestion PTT, ST Confirmed Day Weimerskirch et al. (2005)
Gray-headed albatross Tracking, on water GPS, wet–dry Suggested Day Phalan et al. (2007)
Gray-headed albatross Tracking, on water, prey 

ingestion
GPS, wet–dry, ST Confirmed Day Catry et al. (2004)

Gray-headed albatross Activity Temp Suggested Day and night Weimerskirch and Guionnet 
(2002)

Black-browed albatross Tracking, on water GPS, wet–dry Suggested Day Phalan et al. (2007)
Black-browed albatross Activity Temp Suggested Day and night Weimerskirch and Guionnet 

(2002)
Yellow-nosed albatross Activity Temp Suggested Day Weimerskirch and Guionnet 

(2002)
Shy albatross Tracking PTT ? Day Hedd et al. (2001)
Sooty albatross Activity Temp Suggested Day Weimerskirch and Guionnet 

(2002)
Light-mantled sooty 

albatross
Tracking, on water GPS, wet–dry Suggested Day Phalan et al. (2007)

Cory’s shearwater Tracking, on water wet–dry Suggested Day Dias et al. (2012)
Scopoli’s (Cory’s) shear-

water
Activity Compass Suggested Day Rubolini et al. (2015)

Streaked sheawater Activity, depth DT, AC ? Day Matsumoto et al. (2012)
Streaked sheawater Activity wet–dry Day Yamamoto et al. (2008)
White-chinned petrel Tracking, on water wet–dry Suggested Night? Mackley et al. (2011)
Barolo shearwater Tracking, on water, dive wet–dry, MDS Suggested Day and night Neves et al. (2012)
Red-legged kittiwake Tracking, activity GPS, AC Confirmed Night Kokubun et al. (2016)
Audouin’s gull Tracking GPS Suggested Day Bécares et al. (2015)
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stomach oil may reflect the prey which were consumed about 
a week earlier. Studies of FA profiles of stomach oil, thus 
clearly highlight digestion bias, and reveal that adult birds 
feed on myctophids in the oceanic basin (Table 3). For exam-
ple, stomach contents of breeding short-tailed shearwaters 
coming back from foraging trips consist mainly of krill, fish 

larvae, squid and copepods (Weimerskirch and Cherel 1998; 
Einoder et al. 2013), whereas the lipids of their stomach oil 
originated mainly from myctophids (Table 3; Connan et al. 
2005, 2007a). Similarly, stomach content analyses showed 
that adult blue petrels (Halobaena caerulea) at Kerguelen 
Island brought back mainly crustaceans (> 70% by mass) 

Table 3   Estimation of seabirds’ prey items based on the profile of 
fatty acids (FA) and fatty alcohol (FAlc) in triacylglycerols (TAGs) 
and wax esters (WEs) in the stomach oil of adult seabirds or chicks 

sampled at the colony after long at-sea trips, versus those in the lipids 
from the adipose, muscle or blood tissues

“NI” indicates that lipid type was not identified. Analytical methods used were discriminant function analysis (DF), principal component analy-
sis (PC), quantitative fatty acid signature analysis (QFASA), correspondence analysis (CA), or Similarity. See SI Table 1 for scientific name of 
species. For location, N and S indicates Northern Southern hemispher, respecyively

Species Location Material Lipids Fraction Method Prey (primary/sec-
ondary)

References

Adélie penguin Mawson Station (S) Adult blood NI FA DF Krill/fish Tierney et al. (2008)
King penguin Crozet Is (S) Chick adipose TAGs FA Similarity Myctophids Raclot et al. (1998)
King penguin Crozet Is (S) Stomach contents TAGs FA Similarity Myctophids Raclot et al. (1998)
King penguin Crozet Is (S) Adult adipose TAGs FA Similarity Myctophids Raclot et al. (1998)
White-chinned 

petrel
Crozet Is (S) Stomach oil WEs, TAGs FA, FAlc DF Myctophids/squids Connan et al. (2007a, 

b)
Blue petrel Kerguelen Is (S) Stomach oil WEs, TAGs FA, FAlc DF Myctophids/copep-

ods or notothenids
Connan et al. (2007b, 

2008)
Thin-billed prion Kerguelen Is (S) Stomach oil WEs, TAGs FA, FAlc DF Myctophids/copep-

ods or notothenids
Connan et al. (2007b)

Thin-billed prion Falkland Is (S) Stomach contents NI FA DF Squids or crusta-
ceans

Quillfeldt et al. 
(2011)

Antarctic prion Kerguelen Is (S) Stomach oil WEs, TAGs FA, FAlc DF Myctophids/copep-
ods or notothenids

Connan et al. (2007b)

Short-tailed 
sheawater

Bruny Is (S) Stomach oil WEs, TAGs FA, FAlc DF Myctophids/nototh-
enids

Connan et al. (2005, 
2007b)

Cape gannet South Africa (S) Adult blood NI FA CA Epipelagic school-
ing fish

Moseley et al. (2012)

Streaked shearwater Awashima Is (N) Stomach oil TAGs FA, FAlc PC Anchovy/pacific 
saury

Kurasawa et al. 
(2012)

Greater shearwater NW Atlantic (non-
breeding) (N)

Blood NI FA DF Krill/herring Ranconi et al. (2010)

Sooty shearwater NW Atlantic (non-
breeding) (N)

Blood NI FA DF Krill or herring Ranconi et al. (2010)

Balarctic sheawater Mediterranean (N) Adult blood NI FA PC Pelagic feeding Käkelä et al. (2010)
Red-legged kit-

tiwake
Pribilof Is (N) Adult adipose NI FA QFASA Myctophids (c 90% 

lipid mass)
Iverson et al. (2007)

Black-legged kit-
tiwake

Pribilof Is (N) Adult adipose NI FA QFASA Myctophids (c 60% 
lipid mass)

Iverson et al. (2007)

Common murre Pribilof Is (N) Adult adipose NI FA QFASA Non-myctophid fish Iverson et al. (2007)
Thick-billed murre Pribilof Is (N) Adult adipose NI FA QFASA Non-myctophid fish Iverson et al. (2007)
Little auk Svalbard Is (N) Adult muscle NI FA CA High level of 

Calanus marker
Wold et al. (2011)

Thick-billed murre Svalbard Is (N) Adult muscle NI FA CA Low level of 
Calanus marker

Wold et al. (2011)

Black-legged kit-
tiwake

Svalbard Is (N) Adult muscle NI FA CA High level of 
Calanus marker

Wold et al. (2011)

Northern fulmar Svalbard Is (N) Adult muscle NI FA CA High level of 
Calanus marker

Wold et al. (2011)

Glaucous gull Svalbard Is (N) Adult muscle NI FA CA Diverse diet Wold et al. (2011)
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and some fish, mostly myctophids, to feed their chicks, 
whereas the FA profile of their stomach oil indicated that 
myctophids were the major diet component (Connan et al. 
2008). These lines of information derived from the analysis 
of chemical markers also support the inference that pelagic 
seabirds feed on myctophids more often when foraging in 
the oceanic basin.

The FA profile of TAGs in subcutaneous fat reflects prey 
consumed over about a month (Iverson et al. 2004; Wang 
et al. 2010). FA signature analyses of the lipids in adipose 
tissue confirmed that king penguins and red-legged kitti-
wakes fed mainly on myctophids (Table 3), as determined 
by stomach content analyses (Cherel and Ridoux 1992; 
Ridoux 1994; Schneider and Hunt 1984; Sinclair et al. 2008; 
Kokubun et al. 2016), and revealed also that black-legged 
kittiwakes fed on myctophids to a larger extent than revealed 
by stomach content analyses (Iverson et al. 2007). However, 
excepting these two kittiwake species, the FA profile of 
lipids in the tissues does not indicate that myctophids are 
an important food resource for seabirds breeding or winter-
ing in the Northern Hemisphere (Table 3). Qualitative FA 
signature analysis of lipids from muscle tissues suggests that 
the little auk (Alle alle), black-legged kittiwake, thick-billed 
murre (Uria lomvia), northern fulmar (Fulmarus glacia-
lis) and glaucous gull (Larus hyperboreus) in Svalbard do 
not feed on myctophids (Table 3) as much as inferred from 
stomach content analyses (SI Table 1). Similarly, blood FA 
components, which allow the metabolic processes of prey 
consumption to be taken into account, also indicate that the 
Cape gannet (Morus capensis), balearic shearwater (Puffi-
nus mauretanicus), greater shearwater (P. gravis) and sooty 
shearwater (P. griseus) feed on krill and non-myctophid fish 
(Table 3).

Non‑breeding period

Our review indicates that seabirds exploiting oceanic basin 
and shelf slope habitats generally consume more myctophids 
than birds in other habitats. However, we based our analysis 
on diet relevant mainly to the breeding period. According 
to recent research (Marra et al. 2015), our understanding of 
the fundamental ecology of vertebrates, including seabirds, 
has been limited by a severe breeding-season research bias. 
In this regard, seabird ecologists are now trying to study 
individuals outside their breeding period, notably following 
the development of small, inexpensive light-based geoloca-
tion loggers, which can remain for over a year on birds with 
minimal disturbance (Bridge et al. 2011). One of the main 
outcomes of this research is the unexpected demonstration 
that seabirds are generally much more oceanic when they 
are not breeding, as they are freed from the typical nest-
centred constraints that limit their foraging range during the 
breeding period (Hamer et al. 2002). Indeed, examples of 

such a habitat shift have been observed in nearly all seabird 
families: the Spheniscidae (Raya Rey et al. 2007; Thiebot 
et al. 2011), Diomedeidae (Weimerskirch and Wilson 2000; 
Thiebot et al. 2014), Procellariidae (Thiers et al. 2014), Hyd-
robatidae (Pollet et al. 2014), Pelecanoididae (Navarro et al. 
2015), Alcidae (Jessopp et al. 2013), Laridae (Frederiksen 
et al. 2012; Egevang et al. 2010), Stercorariidae (Phillips 
et al. 2007), Phaethontidae (Le Corre et al. 2012) and Fre-
gatidae (Weimerskirch et  al. 2017). Although there are 
exceptions to this pattern, we suggest that throughout their 
life-cycle, most seabirds can hunt myctophids more often 
than indicated from the stomach contents of breeding birds. 
This is partly verified for the macaroni penguin, the sin-
gle largest avian consumer of marine resources worldwide 
(Brooke 2004a): during the Austral winter, non-breeding 
adults from Crozet Island have the option of heading south, 
where they feed more on fish (Cherel et al. 2007; Bost et al. 
2009).

Widened foraging range and foraging habitats may not 
be the only reasons why non-breeding birds would feed on 
myctophids more than during their breeding season. Indeed, 
profound ecological changes in the marine ecosystems 
across seasons may also support such prey switch. During 
the Austral winter, Antarctic seabirds feed on more ener-
getically valuable prey, such as myctophids or squid, than 
in summer (Ainley et al. 1991). In this situation, krill, one 
of the main components of the summer diet, must feed close 
to the ice undersides in winter (Daly 1990). Hence, myct-
ophids might provide an important alternative for normally 
krill-dependent avian predators, as illustrated when compar-
ing either inter-seasonal diets or within-summer diet during 
years of lower krill availability (Murphy et al. 2007; Collins 
et al. 2008; Waluda et al. 2012).

However, this prey switch may not be universal, because 
myctophids may live more deeply in winter (Sabourenkov 
1991; Cherel et al. 1993), restricting their availability to 
many of their predators, including seabirds. Feeding on 
myctophids to a greater extent during the non-breeding 
period would nevertheless still be achievable for those sea-
bird species which may be free of summer breeding con-
straints, namely winter breeders and biennial breeders. As 
the biomass-dominant myctophids can live year-round in 
ecosystems supporting a rich and abundant community of 
seabirds (e.g., Saunders et al. 2017), we thus support the 
call for a year-round approach to animal ecology, and more 
specifically in this case, to seabirds’ diet.

Conclusions and perspectives

Our review of the stomach contents in the global seabird 
community demonstrates global-scale contrasts in the 
importance of myctophids as food for seabirds. These mes-
opelagic fish seem to be especially consumed by seabirds 
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that exploit oceanic or shelf slope habitats or that feed at 
night, at least to some extent. The recent studies of FA in 
stomach oil in several species of Procellariiformes give 
additional support to this result. The general biomass of 
predators and prey, the relative availability of shelf versus 
oceanic domains to seabirds, and the proportion of noctur-
nally surfacing mesopelagic fish all vary between marine 
regions (Klevjer et al. 2016). Hence, it is understandable 
that our review highlights contrasts in seabirds’ consump-
tion of myctophids between marine regions. In addition, 
interannual variations in the availability of these fish may 
also be detected in the seabirds’ diet, with direct influ-
ence on the birds’ reproductive success, in relation to the 
high energy contents of myctophids (Connan et al. 2008; 
Paredes et al. 2014).

Finally, considering their extremely large biomass in 
marine ecosystems (Catul et al. 2011; Irigoien et al. 2014), 
myctophids have the potential to serve as a gigantic pathway 
of carbon advection between the sea surface and the deeper 
layers in the world’s oceans through their diel vertical migra-
tions (Pakhomov et al. 1996, but see Hudson et al. 2014). 
Hence, it seems crucial to collect additional information 
on (1) the distribution and behaviour of both myctophids 
and seabirds on a circadian and circannual basis, and (2) 
on seabirds’ diet through the use of a range of approaches, 
including chemical diet markers, to refine our estimates of 
the trophic relationships between these two groups at the 
global scale. Such estimates may bring a new perspective 
to clarify the role of myctophids in the active transport of 
carbon between marine compartments at the global scale.
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