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Fastloc-GPS data. However, the limited number of Argos 
class 1–3 locations obtained for all three turtles—an aver-
age of 14.6 times more Fastloc-GPS locations were obtained 
compared to Argos class 1–3 locations—resulted in blurred 
patterns of space use. In contrast, the high volume of Fast-
loc-GPS locations revealed fine-scale movements in striking 
detail (i.e., use of discrete patches separated by just a few 
100 m). We recommend careful consideration of the effects 
of location accuracy and data volume when developing sam-
pling regimes for marine tracking studies and make recom-
mendations regarding how sampling can be standardized to 
facilitate meaningful spatial and temporal comparisons of 
space use.

Introduction

Understanding patterns of space use by animals lies at the 
heart of many ecological studies and also underpins many 
efforts to make evidenced-based management decisions, 
for example as part of conservation planning (Cooke 2008). 
Thanks to increased accessibility of tracking technology 
(Kays et al. 2015; Hays et al. 2016), both the number of taxa 
tracked and the number of studies collecting movement data 
across different habitats are rapidly increasing. However, 
the ability to reliably detect differences in space use among 
individuals, species, and locations crucially depends on the 
sampling regime used including the accuracy and amount 
of location data obtained (Börger et al. 2006a, b; Frair et al. 
2010; Hebblewhite and Haydon 2010; Montgomery et al. 
2011; McClintock et al. 2015). While the importance of the 
quality and abundance of location data for studying animal 
movements has been well known for some time in certain 
fields, particularly terrestrial ecology (e.g., Harris et al. 
1995), in other fields with a shorter tracking history, the 

Abstract  The advent of Fastloc-GPS is helping to trans-
form marine animal tracking by allowing the collection 
of high-quality location data for species that surface only 
briefly. We show how the improved location accuracy of 
Fastloc-GPS compared to Argos tracking is expected to lead 
to far more accurate home range estimates, particularly for 
animals moving over the scale of a few km. We reach this 
conclusion using simulated data and home range estimates 
derived from empirical tracking data for green sea turtles 
(Chelonia mydas) equipped with Argos linked Fastloc-GPS 
tags at three different foraging areas (western Indian Ocean, 
Western Australia, and Caribbean). Poor-quality Argos 
locations (e.g., location classes A, B) produced home range 
estimates ranging from 10 to 100 times larger than those 
derived from Fastloc-GPS data, whereas high-quality Argos 
locations (location classes 1–3) produced home range esti-
mates that were generally comparable to those derived from 
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message is less well appreciated. As such, it is important to 
revisit some of the key messages in home range estimation 
to avoid methodological artefacts obscuring true differences 
in space use.

In the marine context, a major advance in recent years 
has been the advent of Fastloc-GPS tracking (Kuhn et al. 
2009; Hazen et al. 2012; Hoenner et al. 2012). Conventional 
GPS receivers need several seconds to generate a location 
estimate, which has precluded their use on marine species 
that only surface briefly. In contrast, Fastloc-GPS over-
comes this problem with the rapid (typically tens of mil-
liseconds) acquisition of GPS data when an animal surfaces 
and subsequent post-processing to derive position estimates. 
Fastloc-GPS has massively improved the accuracy of loca-
tion data compared to traditional Argos tracking and is now 
widely used to track diverse marine taxa including sea turtles 
(Hazel 2009; Schofield et al. 2010a, b), marine mammals 
(Costa et al. 2010), and fish (Sims et al. 2009). Fastloc-GPS 
tags can be deployed as data loggers, which store data for 
subsequent download when the unit is retrieved, or can be 
interfaced with an Argos tag (i.e., Argos linked Fastloc-GPS 
tags), so that data are received by the Fastloc-GPS receiver 
and then relayed via the Argos system.

Here, we consider the implications of high-resolution Fast-
loc-GPS tracking for home range estimation and fine-scale 
movement analysis in sea turtles. First, we use simulations to 
show the general importance of location accuracy for home 
range estimation. We then support these simulations with 
empirical data collected for green turtles (Chelonia mydas) 
tracked using Argos linked Fastloc-GPS tags, which allowed 
the utility of both the Argos and Fastloc-GPS data to be com-
pared for the same individuals. Finally, we provide recom-
mendations for how future work might proceed to identify 
fine-scale patterns of space use within and among individuals, 
species and study systems in the marine environment.

Materials and methods

Simulations

To evaluate the impact of location accuracy on home range 
estimation, we generated distributions of the location of 

simulated animals whose available habitat size varied by 
three orders of magnitude. For computational simplicity, we 
drew animal locations (N = 1000) from a bivariate normal 
distribution within square-shaped habitats of 1, 10, 100, 
and 1000 km2. We considered these to be the ‘true’ animal 
locations. We then used the package adehabitatHR (Calenge 
2006) in R v. 3.3.2 (R Core Team 2016) to estimate the 
95% home range of the animal in each habitat size via the 
fixed kernel method (Worton 1989). We used the reference 
bandwidth (href) as a smoothing parameter, which is suit-
able for bivariate normal data (Calenge 2006) and provides 
a conservative estimate thanks to oversmoothing (Bowman 
and Azzalini 1997).

We then introduced errors to the ‘true’ animal locations 
to obtain home range size estimates under different levels of 
location accuracy. We did so by drawing random errors from 
a bivariate normal distribution with a mean of 0 and a stand-
ard deviation (SD) ranging from 0 to 2 km in increments 
of 0.01. This range was selected, because it would encom-
pass Fastloc-GPS errors (Hazel 2009; Dujon et al. 2014) 
and most Argos location class errors excluding those with 
the highest uncertainty such as classes 0 and B (Costa et al. 
2010). Our aim here was not to evaluate specific location 
classes, because reported errors vary considerably among 
studies (Table 1). Rather, we sought to assess the impact 
of location accuracy along a gradient that would include 
location qualities commonly encountered in sea turtle home 
range studies. For simplicity, we assumed that latitudinal and 
longitudinal errors were equivalent. While we are aware that 
Argos error distributions tend to be elliptical, with longitu-
dinal exceeding latitudinal errors (Hays et al. 2001; Costa 
et al. 2010; Boyd and Brightsmith 2013), this does not affect 
our ability to illustrate the general impact of location qual-
ity on home range estimation across orders of magnitude of 
animal movements.

The random errors (N = 1000 for each theoretical animal) 
were added to the ‘true’ simulated animal locations to cre-
ate error-added location data sets. We then used the kernel 
method, as above, to estimate each animal’s 95% home range 
size using the error-added locations and calculated the per-
cent error between this value and the true home range size. 
This was repeated 10 times for each animal for a total of 
4 × 10 × 201 = 8040 iterations. We calculated the mean 

Table 1   Variation in Argos location class accuracies in three studies that reported the same statistics (68th percentile or 1 SD of a normal distri-
bution, in km) for latitudinal and longitudinal errors separately

Source Method Error (68th percentile, lat/long)

LC B LC A LC 0 LC 1 LC 2 LC 3

Hays et al. (2001) Stationary test on land 5.23/7.79 1.39/0.81 4.29/15.02 1.03/1.62 0.28/0.62 0.12/0.32
Vincent et al. (2002) On animals, study pool 4.596/7.214 0.762/1.244 2.271/3.308 0.494/1.021 0.259/0.485 0.157/0.295
Costa et al. (2010) On animals, at sea 4.642/8.253 2.788/4.373 1.795/2.855 0.574/0.879 0.468/0.729 0.225/0.340
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percent error at each increment of SD (location error) and 
smoothed the resulting curve for each simulated animal by 
calculating a running mean spanning three consecutive data 
points. For ease of visualization, percent error data were 
log10(x + 1)-transformed.

Empirical case study

We equipped green turtles with Argos linked Fastloc-GPS 
tags (SPLASH10-BF tags, Wildlife Computers, Seattle, 
Washington) at three sites around the world: the Chagos 
Archipelago (Indian Ocean) in 2012, Shark Bay (Western 
Australia) in 2016, and Bonaire (Caribbean Netherlands) 
in 2016. These units provided both Argos and Fastloc-GPS 
locations. To compare home range estimates from Argos 
versus Fastloc-GPS data, we selected one representative data 
set from each site: a green turtle tracked for 14 months in the 
Chagos Archipelago, one tracked for 3 months in Shark Bay, 
and one tracked for 5 months in Bonaire. To compare the 
number of Fastloc-GPS versus Argos locations obtained, we 
used data from all the turtles equipped in the Chagos Archi-
pelago and Shark Bay. Since the tags deployed in Bonaire 
were also programmed to relay other data (e.g., depth) at the 
expense of sending Fastloc-GPS data, we did not include 
these tags in the comparison of location data volume.

For Fastloc-GPS, we excluded locations with a residual 
value ≥35, which is a standard procedure for Fastloc-GPS 
data (Dujon et al. 2014). Then, using previously estab-
lished methods (Luschi et al. 1998; Dujon et al. 2014; Hays 
et al. 2014; Christiansen et al. 2017), we removed the most 
obvious Argos and Fastloc-GPS locations that were likely 
erroneous. To do this, we examined each track visually and 
identified locations that appeared inconsistent with adjacent 
points (i.e., they were off the path of previous and subsequent 
locations). Further analysis confirmed that these locations 
necessitated speeds of travel that were unrealistic for sea 
turtles (>200 km d−1). These steps were designed to reflect 
commonly used filtering procedures for both data types, and 
removed a very small proportion of locations (0.5% of Argos 
locations and 0.1% of Fastloc-GPS locations).

To remove the impact of fine-scale autocorrelation, 
we randomly selected a single location per day from each 
location class (see below) for each turtle prior to estimat-
ing home range sizes. We used the R package adehabi-
tatHR to estimate home range size, as above. However, 
we used a different smoothing approach, since the ‘real-
world’ latitude and longitude data were multi-modal (i.e., 
not bivariate normal) and using the reference bandwidth 
can cause a large amount of oversmoothing in such cases, 
leading to overestimation of home range size (Worton 
1989; Kie 2013). Instead, using a custom script in R, for 
each home range estimate, we identified the minimum h 
value below which the continuous home range contour 

breaks up into two or more polygons (the minimum h rule, 
see Fieberg and Börger 2012 and references therein). Due 
to low sample size in certain location classes, we pooled 
Argos classes 1, 2, and 3 together, lumped Fastloc-GPS 
locations derived from 9 satellites with those derived from 
8 satellites, and excluded Argos class 0 entirely.

Subsequently, to account for the possible impact of 
data volume on home range estimation, we standardized 
the number of locations used to estimate home range size 
across location classes. We did so for each individual by 
randomly selecting 75% of the smallest sample size avail-
able in a location class for all location classes for that 
turtle 10 times. We then estimated the 95% home range 
size at each iteration and calculated the mean and SE for 
each location class. Since our aim here was to evaluate the 
trend in home range size across location classes within 
each site/individual, as opposed to comparing turtle home 
range sizes among sites/individuals, it was not necessary 
to use the same volume of data for each turtle. Therefore, 
for our present purpose, we allowed the number of loca-
tions to vary from turtle-to-turtle based on the amount of 
data obtained by each tag. For the Chagos turtle, many 
fewer locations were available in Argos location classes 
1–3 compared to other classes, so we did not sub-sample 
this location class, instead producing a single estimate of 
home range size.

Results

Simulations

The degree of error in home range size estimates in our 
simulations depended strongly on location accuracy (SD) 
and habitat size (Fig.  1). Specifically, as habitat size 
increased, the accuracy of locations needed to reliably esti-
mate home range size decreased. For example, at a habitat 
size of 1000 km2, a location error distribution with an SD 
<1.67 km was necessary to produce <10% error in home 
range size estimates. In contrast, at a habitat size of 1 km2, 
a location error distribution with an SD of <0.06 km was 
necessary to achieve <10% error (Fig. 1). The former case 
would likely include Argos location classes 1–3 and all 
Fastloc-GPS locations, while the latter case would likely 
only include Fastloc-GPS locations derived from ≥5 
satellites.

Empirical case study

For green turtles in the Chagos Archipelago, Western Aus-
tralia, and the Caribbean, home range estimates declined by 
a factor of approximately 10, 12, and 100, respectively, when 
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moving from the poorest to the best location quality (Fig. 2). 
Argos location classes A and B dramatically overestimated 
home range size, whereas Argos location classes 1–3 provided 
generally comparable estimates to Fastloc-GPS data, with the 
exception of the Caribbean turtle (Fig. 2). However, Fastloc-
GPS tracking revealed much more restricted movements and 
a much higher degree of patchiness in space use compared to 
Argos tracking, which tended to blur the pattern of space use 
(Fig. 3). This was true even when considering only the best-
quality Argos data (i.e., location classes 1–3, Fig. 4). In this 
case, the sparseness of class 1–3 Argos locations meant that 
details of how multiple focal patches were used by each ani-
mal went unobserved. Compared to location accuracy, stand-
ardizing data volume across location classes had a relatively 
minor impact on the trend in home range size from the poorest 
to best location quality for both turtles (Fig. 2).

On average, there were 14.6 times (range 6.8–27.0) more 
Fastloc-GPS locations obtained compared to high-quality 
(location class 1–3) Argos locations, and this pattern for 
more Fastloc-GPS data occurred across all individu-
als (Fig. 5). This increased volume of locations underlies 
the much clearer pattern of space use that emerged when 

plotting the Fastloc-GPS data and the tendency of these 
data to reveal how multiple small patches were used by each 
individual.

Discussion

In recent years, technological advances have led to rapid 
improvement in the quality of locations obtainable for 

Fig. 1   Percent error between the true and error-added 95% home 
range estimates for simulated animals within square-shaped habitats 
of 1, 10, 100 and 1000 km2 across different location qualities includ-
ing all values of SD from 0 to 2 (a) and SD ≤0.3 (b). Percent error 
data are shown on a log10(x  +  1) scale due to large differences in 
these values at high SDs, although axis labels are untransformed for 
ease of interpretation. Values below the horizontal dashed line rep-
resent <10% error between the error-added and true home range size

Fig. 2   Estimated 95% home range sizes derived from different loca-
tion qualities for a green turtle tracked for 14 months in the Chagos 
Archipelago, western Indian Ocean (a), another tracked for 3 months 
in Shark Bay, Western Australia (b), and a third tracked for 5 months 
in Bonaire, Caribbean Netherlands. For (a) and (b), the dashed line 
with triangles represents home range estimates based on all available 
data (1 location per day) per location class, while the solid line with 
circles represents the mean (±SE) estimate based on sub-sampled 
data to standardize data volume across location classes (see “Materi-
als and Methods”). For the Chagos turtle, the estimate for Argos loca-
tion classes 1–3 is a single value based on all available locations due 
to low sample size
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air-breathing marine vertebrates and some fish and, 
hence, increased variability in track quality in the litera-
ture (e.g., Table 2 for sea turtles). As such, consideration 
of the impacts of location accuracy and data volume for 
home range estimation and fine-scale movement analysis 
for these species is timely. We have shown that location 
accuracy can profoundly impact estimated home range 
size, with exceedingly large errors likely to occur under a 
combination of low location accuracy and fine-scale ani-
mal movements. Furthermore, we have shown that Fastloc-
GPS tracking can reveal movement patterns in fine detail 
(i.e., patch use) in situations where Argos data cannot. 
In studies looking at space use, we emphasize that it is 
important to consider the level of location error inherent 
in the tracking system and how this error interacts with the 
scale of movement to impact the picture of space use that 
emerges (see also Montgomery et al. 2011 for terrestrial 
examples). Moreover, we urge caution when comparing 
home range estimates obtained from different tracking sys-
tems or tag configurations that provide locations of differ-
ent levels of accuracy.

Recent movement analyses for sea turtles have been 
made using light-based geolocation, radio telemetry, acous-
tic telemetry, Argos satellite tracking, and Fastloc-GPS 
tracking, which have a wide range of location accuracies 

Fig. 3   Argos (left panels) and Fastloc-GPS (right panels) location 
distributions for a green turtle tracked for 14  months in the Cha-
gos Archipelago, western Indian Ocean (a, b), another tracked for 
3 months in Shark Bay, Western Australia (c, d), and a third tracked 
for 5  months in Bonaire, Caribbean Netherlands (e, f). Argos plots 
include all location data (classes A, B, 0, 1, 2 and 3), while Fastloc-
GPS plots include locations derived from ≥4 satellites. Points have 
been made transparent to show location density. Note differences in 
scale among plots. To emphasize the differences in scale, hashed 
squares within Argos panels show the extent of the Fastloc-GPS data 
for that study site

Fig. 4   Differences in movement detail provided by the most accurate 
Argos data (classes 1–3, left panels) and Fastloc-GPS data (locations 
derived from ≥4 satellites, right panels) for the three green turtles. 
Points have been made transparent to show location density. Note 
minor differences in scale among plots

Fig. 5   For nine turtles tracked using Fastloc-GPS Argos transmitters, 
the proportion of Fastloc-GPS locations (derived from ≥4 satellites 
and with residual values <35, filled bars) compared to high-accuracy 
Argos locations (location class 1–3, open bars). Turtles 1–4 were 
equipped on Diego Garcia, Chagos Archipelago, while turtles 5–9 
were tagged in Shark Bay, Western Australia
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(Table 2). These studies all provide important space use data 
that are consistent within each study. For example, Schofield 
et al. (2010b) used Fastloc-GPS data from loggerhead turtles 
in the Mediterranean to show that oceanic foragers had home 
ranges >50 times larger than neritic foragers, while Este-
ban et al. (2017) used Fastloc-GPS to quantify the number 
of clutches individual green turtles laid in a single breed-
ing season. However, while Fastloc-GPS tracking has been 
available for several years, due to the lower cost of Argos 
tags, many studies still rely on Argos locations (e.g., Hawkes 
et al. 2011; Fujisaki et al. 2016; Shaver et al. 2016). Given 
the magnitude of error in home range estimates identified in 
our theoretical and empirical examples (see also Witt et al. 
2010), we argue that comparison of home range estimates, 
in addition to other movement metrics (e.g., Bradshaw et al. 
2007), should only be made after carefully accounting for 
differences in location quality between tracks. For exam-
ple, it might be of interest to examine variation in home 
range size over space or time using a combination of newer 
Fastloc-GPS and older Argos tracks. To do this reliably 
would require decaying the GPS data by introducing random 
Argos-level errors to the GPS data (similar to the approach 
taken in our theoretical home range analysis) and standard-
izing sample size among tracks.

In addition to highlighting the relationship between loca-
tion accuracy, the scale of animal movements, and home 
range estimation, we have demonstrated the potential for 
Fastloc-GPS data to yield valuable new insights into the 
patterns, drivers, and consequences of the movements of 
sea turtles at very fine spatial scales (e.g., patch use dynam-
ics). This utility of Fastloc-GPS for examining fine-scale 
movements will likely apply to other marine taxa that only 
surface briefly including some marine mammals, birds, and 
fish. As in our study, an increased number of Fastloc-GPS 
locations has been noted when Argos linked Fastloc-GPS 
tags have been attached to fish (Sims et al. 2009; Evans 

et al. 2011). The increased number of Fastloc-GPS loca-
tions which we found is likely due to the fact that data for 
a Fastloc-GPS location can be encoded in a single Argos 
uplink, while many uplinks in a single satellite overpass are 
required to generate an Argos location of class 1–3. As such, 
the finding of a vastly greater volume of Fastloc-GPS loca-
tions compared to Argos locations when using Argos linked 
Fastloc-GPS tags will likely be broadly consistent across 
taxa. Furthermore, Fastloc-GPS tags can be used in data 
loggers, which can increase data volume by a further order 
of magnitude compared to the data volumes recoverable by 
satellite (Schofield et al. 2010b).

Future comparative studies that analyze GPS-based tracks 
of foraging turtles in a standardized manner hold consider-
able potential to advance our understanding of turtle space 
use, trophic relationships and functional roles in coastal eco-
systems. It should be noted that, in addition to location accu-
racy and data volume (e.g., Seaman et al. 1999; Börger et al. 
2006a, b), other components of home range analysis are also 
known to influence estimates of home range size and should, 
therefore, be accounted for when designing comparative 
studies. For example, KDEs can be strongly influenced by 
the smoothing parameter used (Worton 1989; Kie 2013), and 
the choice of smoothing parameter will depend on the struc-
ture of the location data and the particular question being 
asked (Fieberg and Börger 2012). Similarly, Service Argos 
have been trying to improve the quality of their tracking 
data. Specifically, Service Argos introduced a new method 
of estimating platform locations which combines their tradi-
tional approach—using the Doppler shift in received uplink 
frequencies and a least-squares algorithm—with interpola-
tion between locations using Kalman filtering (Lopez et al. 
2014). This new method of processing tends to provide 
smoother tracks, but the autocorrelation between locations 
introduced by Kalman filtering will need to be considered 
if these data are used in home range estimation, especially 

Table 2   Summary of telemetry methods used to track sea turtle movements and their approximate location accuracy

Method Approximate location accuracy Typical movements revealed Examples

Light-based geolocation Tens to hundreds of km Long-term, coarse-scale movements 
(e.g., breeding migrations)

Fuller et al. (2008), Swimmer et al. 
(2009)

Radio telemetry Tens of m to >1 km Short-term, fine-scale movements in a 
spatially restricted area

Renaud et al. (1995), Whiting and Miller 
(1998)

Active acoustic telemetry <10 to hundreds of m Short-term, fine-scale movements in a 
spatially restricted area

Ogden et al. (1983), Seminoff and Jones 
(2006)

Passive acoustic telemetry <10 to hundreds of m Long-term, fine-scale movements in a 
spatially restricted area

Taquet et al. (2006), Thums et al. (2013)

Argos satellite tracking Hundreds of m to >10 km Long-term, coarse to medium-scale 
movements (e.g., breeding migra-
tions, transits between foraging sites)

Luschi et al. (1998), Papi et al. (1995), 
Godley et al. (2008) (review)

Fastloc-GPS tracking Tens to hundreds of m Long-term, fine-scale movements (e.g., 
foraging patch use, breeding migra-
tions, inter-nesting movements)

Hazel (2009), Schofield et al. (2010a, b), 
Dujon et al. (2014), Christiansen et al. 
(2017)
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when compared with tracks without Kalman filtering. It may, 
therefore, be advisable for researchers to obtain and store 
the Kalman-filtered locations as well as the underlying raw 
Argos locations, which may not both be provided automati-
cally by Service Argos. Doing so will create the potential to 
implement more sophisticated analyses accounting for the 
error of each single location. Refer also to McClintock et al. 
(2015) for arguments regarding the importance of using the 
error ellipse and not the error circle in movement analyses as 
well as the importance of not discarding more ‘inaccurate’ 
locations (see Ironside et al. 2017 for a similar remark for 
terrestrial GPS data).

Moreover, aspects of the movement pattern of animals 
may sometimes interact with methods of data processing to 
influence the picture of space use that emerges. For example, 
visual observations have shown that green turtles often rest 
in certain areas at night and then travel to foraging loca-
tions during the day (Bjorndal 1980). The specifics of these 
movements have recently been recorded in high resolution 
with Fastloc-GPS tracking (Christiansen et al. 2017), with 
the finding that nighttime resting and daytime foraging areas 
may be several km apart. Therefore, in this case, only using 
daytime or nighttime locations, even if they are of high 
resolution, would not capture the full extent of space use 
(see also general discussion in Fieberg and Börger 2012). 
Likewise, locations around dawn and dusk are needed to 
identify migration corridors between areas occupied during 
the night and day. Again, Fastloc-GPS opens up the potential 
of addressing these questions, but, at the same time, com-
parative studies of space use, across individuals and across 
studies, will require careful consideration of these sources 
of variability.

In conclusion, our results highlight an important yet 
underappreciated aspect of movement ecology study design 
for air-breathing marine vertebrates and some fish. Our 
understanding of the fine-scale movements of these taxa lags 
well behind that of terrestrial vertebrates, which have been 
tracked effectively using Argos and GPS systems for some 
time. For general considerations on study design, we recom-
mend consulting the framework that has grown out of that 
body of work (e.g., Seaman et al. 1999; Börger et al. 2006a, 
b; Frair et al. 2010; Hebblewhite and Haydon 2010; Mont-
gomery et al. 2011; Fieberg and Börger 2012; McClintock 
et al. 2015; Ironside et al. 2017). Here, we emphasize that 
location accuracy relative to the expected scale of animal 
movements should be a key methodological consideration 
and we recommend caution when comparing home range 
estimates and other movement metrics derived from tracking 
systems with different location qualities and data volumes.
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