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omnivorous to a carnivorous diet constitutes an additional 
critical step besides such as the shift from endogenous to 
exogenous nutrition.

Introduction

Survival rate during the larval stage is a major factor 
affecting year class strength in marine fish populations 
and mainly depends upon feeding conditions encountered 
during the larval development phase. While abiotic fac-
tors could play an important role (Anderson 1988; Bakun 
1996; Houde 2008), biotic factors such as prey availability 
(Cushing 1990; Payne et al. 2009) and trophic competition 
(Harden-Jones 1968; Houde 1987) could also affect larval 
condition (Grioche 1998; Harlay et al. 2001; Koubbi et al. 
2007; Giraldo 2012), survival, and growth (Hufnagl et  al. 
2015; Bils et al. 2016). Hence, most fish reproduce during 
spring and autumn (Russell 1976; Munk and Nielsen 2005) 
to maximize the temporal match between the larval occur-
rence and the plankton blooms (Cushing 1969).

Downs herring, however, are a North Sea herring sub-
population which reproduces during winter in the Eastern 
English Channel (EEC) and Southern Bight of the North 
Sea (SBNS; Maucorps 1969; Corten 1986; Heath et  al. 
1997). With a spawning stock biomass (SSB) estimated 
at approximately 2 million tonnes since 2012, North Sea 
herring has been one of the largest Northeast Atlantic fish 
stock in recent years (ICES 2015). Yet, despite sustainable 
levels of SSB and fishing pressure, the recruitment of the 
North Sea herring stock has been below average over a 
10-year period (2003–2013; ICES 2015). Increased preda-
tion by adult herring and poor hatching conditions (Corten 
2013; ICES 2015) shifts in the spatial–temporal distribu-
tion of North Sea plankton communities (Beaugrand et al. 
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2003; Payne et al. 2009; Alvarez-Fernandez et al. 2012) and 
higher larval mortality induced by increasing seawater tem-
perature (Hufnagl and Peck 2011; Fässler et al. 2011; Petit-
gas et al. 2013) have all been suggested as potential driv-
ers of this relatively low recruitment. Whereas the biomass 
and contribution of the Downs herring component to North 
Sea herring recently increased (ICES 2015), it still remains 
understudied compared to the other sub-populations. 
Recently, Denis et al. (2016) studied the feeding strategy of 
young larval Downs herring in a qualitative approach over 
a six-year period, and showed an ontogenetic shift in prey 
composition when larvae reached a size of 13 mm.

So far, fish larval condition has been evaluated using mul-
tiple methods (Ferron and Leggett 1994; Theilacker et  al. 
1996; Catalán 2003) including otolith microstructure (Pan-
nella 1971, 1974; Folkvord et  al. 2000), molecular (Clem-
mesen 1994, 1996; Chícharo and Chícharo 2008), biochemi-
cal (Bergeron 1997; Bergeron et  al. 1997; Giraldo et  al. 
2016), and histological indices (Grioche 1998; Koubbi et al. 
2007; Cohen et  al. 2013). These indices have contrasting 
integration times, i.e., they depict the condition experienced 
by fish larvae for time scales ranging from several hours (gut 
contents) or days (molecular, biochemical, and histological 
indices), up to months (otoliths) before their capture. The 
RNA/DNA ratio is used as a proxy of recent growth rate, 
i.e., of the relative activation of protein synthesis (Bulow 
1970; Bergeron 1997; Buckley et al. 2008), and shows meas-
urable responses within 3–4 days of a dietary shift (Clem-
mesen 1987). The DNA/C ratio was developed by Bergeron 
et al. (1991) and Bergeron (1997) as an alternative to RNA/
DNA ratio dedicated more specifically to young larvae. It is 
also a short-time response index (1–3 days; Bergeron 2000) 
which is used as a proxy of nutritional condition. Otoliths 
are the only known structures that consistently record daily 
events in early life stages of fish. Micro-increments provide 
measures of daily growth inferred from otolith and allow the 
assessment of the impact of larval feeding through assimi-
lation efficiency and metabolic rate (Kiørboe et  al. 1987; 
Mosegaard et al. 1988; Secor et al. 1993; Fablet et al. 2011).

Besides limited experimental studies (e.g., Peck et  al. 
2015), the different indices are typically estimated from 
different individuals, making results difficult to inter-
pret, where large inter-individual variation occurs. Hence, 
Clemmesen and Doan (1996) recommended that researcher 
should measure several indices on the same individuals to 
see if they provide similar results. In this study, we meas-
ured four independent condition indices of different nature 
and contrasted integration time on each herring larva col-
lected in winter 2015 in the English Channel and Southern 
North Sea. Ingestion rate was determined from the gut flu-
orescence method as a quantitative estimate of Downs lar-
vae ingestion over a short-time scale. The main objectives 
were (1) to characterize larval condition of Downs larvae 

during the first stages, (2) to compare the results obtained 
from different indices considering their different response 
time, and (3) to identify among environmental, spatial, and 
ontogenetic factors, those that influenced larval condition.

Materials and methods

Field sampling

Sampling was performed in winter 2015 (January–Feb-
ruary) during the French part of the International Bot-
tom Trawl Survey (IBTS), in the EEC and the SBNS 
(Fig. 1). The sampling strategy of the IBTS (ICES 2015) 
is stratified according to statistical rectangles of 1° longi-
tude ×  0.5° latitude. Each rectangle is sampled at night, 
either twice (SBNS) or four times (EEC) during the whole 
sea cruise to collect hydrological parameters (temperature, 
salinity, chlorophyll a, and phaeopigments concentra-
tions), mesozooplankton, and fish larvae. Temperature and 
salinity were continuously measured at 3–5 m below the 
sea surface using an SBE 21 SeaCAT thermosalinograph.

Chlorophyll concentration

Seawater samples were collected at 1 m depth using a 5 
L Niskin bottle. Two replicates (0.5–1 L) seawater were 

Fig. 1   Sampling location (open circles) of hydro-biological param-
eters, mesozooplankton and herring larvae in the Eastern English 
Channel (EEC), Dover Strait (DS), and the Southern Bight of the 
North Sea (SBNS) during the French IBTS in winter 2015 (January–
February). Crosses with associated numbers stand for stations, where 
the larval condition was analysed. ICES statistical rectangles are also 
depicted
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immediately filtered on glass-fibre filters of 47 mm diam-
eter and 1.2 µm mesh size (Whatman GF/C) and frozen 
at −20  °C. In  situ chlorophyll a (chl a) and phaeopig-
ments concentrations (Tpig, µg L−1) were estimated using 
the spectrochromatic monochromatic method (Lorenzen 
1967; Aminot and Kérouel 2004).

Mesozooplankton sampling and identification

Mesozooplankton samples were collected through oblique 
hauls using a WP2 net (200  µm mesh size; Tranter and 
Smith 1996) deployed from 3  m above the seabed to the 
surface at 0.75  m  s−1. Net contents were preserved in a 
0.9% buffered (sodium glycerophosphate) formalin seawa-
ter solution (Mastail and Battaglia 1978 modified by Bigot 
1979; Lelièvre et al. 2010).

Total mesozooplankton abundance was determined 
in the laboratory using the ZooScan system (Grosjean 
et  al. 2004; Gorsky et  al. 2010). Prior to scanning, sam-
ples were first separated into two size-fractions (>500 
and 200–500  µm) to prevent misrepresentation of large 
organisms. Each fraction was then divided with a Motoda 
splitter (Motoda 1959) until the subsample was diluted 
enough to contain about 1000–2000 objects. The subsam-
ples were poured onto the scanning cell (11 × 24 cm) and 
organisms were manually separated to minimize overlap. 
Image acquisition and processing were carried out fol-
lowing Lelièvre et  al. (2012). Automated recognition of 
objects was made using a classification model (classifier) 
built with the Random Forest supervised learning algo-
rithm (Breiman 2001), available in the Plankton Identifier 
free software (Gasparini and Antajan 2013; Version 1.3.4), 
and a learning set (a representative subset of objects clas-
sified manually into taxon categories or groups) dedicated 
to winter EEC and SBNS zooplankton. To correct for the 
residual error associated with the misclassification among 
groups, each sample was manually validated by sorting 
misidentified objects into the right categories. Results 
from the two size-fractions were summed to obtain total 
mesozooplankton abundance (ind m−3).

Downs herring larvae

Sampling and identification

Fish larvae were sampled during the night using a Mid-
water Ring Net (13  m long, 2  m diameter, 1.6  mm mesh 
size with a 500 µm cod end, ICES 2015). The ring net was 
deployed obliquely from 5 m above the seabed to the sur-
face for at least 10 min. A flowmeter was installed inside 
the net mouth opening to measure the filtered volume. In 
this study, only herring larvae located south of 54°N were 
considered as they were assumed to belong to the Downs 

herring sub-population (ICES 2015). At each of the 12 sta-
tions, approximately 30 herring larvae were visually sorted 
onboard and frozen in liquid nitrogen for condition analy-
ses. The remainder of the sample was preserved in a 0.9% 
buffered formalin seawater solution at room temperature 
for subsequent estimation of abundance.

Larval abundance and size distribution

Herring larvae abundance (ind m−3) was estimated from 
subsamples (from 1/2 to 1/256 of the original sample) 
using a Motoda splitter. A minimum of one hundred lar-
vae per subsample was counted (Motoda 1959), from 
which at least 50 were individually measured (stand-
ard length, SL  ±  1  mm). SL was corrected for poten-
tial shrinkage due to preservation using a linear model 
(ANOVA, P < 0.05) taking into account the length before 
(SL) and after preservation (Ls) in either formalin solu-
tion (SL  =  1.2064  ×  Ls  −  1.1224) or liquid nitrogen 
(SL =  0.9588 ×  Ls +  0.892). Counts and measurements 
in the subsamples were estimated for the total sample and 
divided by the filtered volume.

Condition

For each of the 12 stations (Fig. 1), 15 frozen larvae were 
placed in Petri dishes filled with milliQ water and exam-
ined on ice under cool light stereomicroscopy (×10 magni-
fication). They were measured ±0.1 mm (Campana 1990) 
and grouped into three size classes: 8–12, 13–14, and 
15–18  mm, following Denis et  al. (2016) who showed a 
diet shift occurring at 13 mm, and to have at least five indi-
viduals per size class. For each larva, the gut was removed 
and transferred into glass tubes with 4  ml of 90% ace-
tone for gut fluorescence measurement, and the head was 
removed and preserved in 95% ethanol for otolith extrac-
tion. The remainder of the sample was preserved at −80 °C 
for biochemical analyses (RNA/DNA and DNA/C ratios).

Gut fluorescence  Gut fluorescence was measured follow-
ing a method used for herbivorous copepods (Mackas and 
Bohrer 1976) adapted to herring larvae and used as a proxy 
of larval ingestion rate. Briefly, dissected guts were acetone 
extracted for 6 h at 4 °C in the dark. Fluorescence was meas-
ured before and after acidification with 10% HCl (Parsons 
et al. 1984) using a Trilogy Laboratory Fluorometer (Turner 
Designs EPA 445). “Blank guts” (Bgut) were set at each sta-
tion by emptying the guts of five randomly selected larvae 
with dissecting forceps. Larval gut content (Gfish, ng chl a 
eq ind−1) was estimated from the total amount of pigments 
(Tpig) recovered in the gut content after subtracting Bgut. 
Ingestion rate (Ifish, ng chl a eq ind−1 days−1) was estimated 
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from Gfish using the gut evacuation rate value of 40 min−1 
for herring larvae (Pedersen 1984).

RNA/DNA and DNA/C ratios  For each larva, body mus-
cle was crushed in cold distilled water (4 °C) with a glass 
rod and samples were prepared for quantification of nucleic 
acid and elemental carbon concentrations. Total RNA and 
DNA were extracted following Yandi and Altinok (2015), 
and their concentration was measured with QUBIT, using 
the RNA DNA HS assay Kits (Invitrogen, Life Technolo-
gies). For determination of % carbon, a fraction of the 
crushed larval tissue was placed into a tin capsule, dried in 
an oven (48 h at 60 °C), and subsequently processed using 
an elemental analyser (Thermo Finnigan Flash EA 1112). 
The multi-species larval fish growth model of Buckley et al. 
(2008) was used to calculate the instantaneous growth rate 
(Gi, days−1) accounting for spatial variation in seawater 
temperature (Eq. 1):

where sRD in the standardised RNA/DNA ratio follow-
ing Caldarone et  al. (2006) and T is the temperature (°C) 
at the sampling station. In this study, we used RD which 
is the non-standardised ratio instead of sRD, because the 
measurement protocol of Yandi and Altinok (2015) based 
on QUBIT differs from those of Caldarone et al. (2006) and 
the results obtained cannot be standardised following Cal-
darone et al. (2006). Instantaneous growth rate values of 0 
refer to no growth, while values of 1 reflect a doubling of 
larval mass per day. For the DNA/C ratio, larval starvation 
was determined based on a threshold derived from anchovy 
larvae in the Bay of Biscay for DNA/C (Bergeron 2000). 
Here, the lower the value of the ratio, the better the nutri-
tional condition of a given larva (Bergeron 2000).

Otolith microstructures  Micro-growth increments were 
assessed from sagittal otoliths extracted using fine nee-
dles. They were then examined under a microscope 
equipped with a polarized light and mounted on slides 
with Crystal Bond® thermoplastic cement. After polish-
ing with 0.05–3 µm micro-abrasive discs (LP Unalon®), 
otoliths were examined by microscopy at ×126 magnifi-
cation (oil-immersion, Olympus BX51). The location of 
the check corresponding to the complete absorption of the 
yolk sac (Geffen 1982; Høie et al. 1999; Fox et al. 2003) 
was located as a darker increment at the center of the oto-
lith. Otolith diameter (D, µm), increment number (Ninc), 
and mean increment width (MIW, µm) from the central 
zone (nucleus) to the edge of the otolith along the long-
est radius (Campana et  al. 1987) were measured using 
TNPC 7.0 package (www.tnpc.fr). MIW was calculated 
for each individual to estimate the individual growth from 
the check to the edge. Growth rate (mm days−1) was esti-

(1)Gi = 0.0145× RD+ 0.0044× (sRD× T) - 0.078

mated by a linear regression between larval length (TL) 
and Ninc. Micro-increments smaller than 1 µm were used 
to identify slow-growing periods (Campana et  al. 1987; 
Folkvord et al. 2000; Feet et al. 2002).

Mapping and statistical analyses

Larval distribution, ingestion rate, instantaneous growth 
rate, DNA/C ratio, and MIW were mapped using the map-
plots package of the R software (R Development Core 
Team 2005). Normality and homoscedasticity of these data 
were assessed using a Shapiro–Wilk test (P < 0.05) and a 
Levene’s F test (P  <  0.05), respectively. Parametric tests 
(ANOVA, HSD Tukey) were then used to assess spatial dif-
ferences in larval distribution, ingestion rate, instantaneous 
growth rates, DNA/C ratio, and MIW. Parametric tests were 
performed using the Stats package in R.

The gradient of the larval conditions matrix was deter-
mined as to be linear using a Detrended Correspondence 
Analysis (DCA; Legendre and Legendre 2012). A Redun-
dancy Analysis (RDA) was performed as a constrained 
ordination technique to determine how much the amount of 
the larval condition variability could be explained by envi-
ronmental, spatial, and biological factors. Amongst the 180 
larvae analysed, 15 were discarded from the analyses as 
they were either vateritic or had crystalline otoliths. There-
fore, analyses were carried out on a matrix of four condi-
tion indices ×  165 observations. Eight co-variables were 
used as environmental (seawater temperature, salinity, and 
in  situ chlorophyll a and phaeopigments concentrations), 
spatial (latitude and longitude), and biological (larval and 
mesozooplankton abundance, larval size) factors. The data 
were centered and reduced before analyses. Significant co-
variables were selected through forward selection using 
a Monte Carlo permutations test (n = 999; Borcard et  al. 
2011). Contribution of each selected co-variable to larval 
condition variation was finally assessed using a variance 
partitioning analysis and a permutation test (Borcard et al. 
2011).

A Hierarchical Classification Analysis (HCA) based 
on the first two RDA axes (explaining at least 60% of the 
total inertia) was finally performed to identify groups of 
individuals with similar larval condition. Euclidean dis-
tance was used and the individuals were grouped accord-
ing to the Ward criterion. The number of significant groups 
was determined as the one leading to the highest correla-
tion (Spearman coefficient) between the original distance 
matrix and the binary matrix calculated for each cutting 
level of the dendrogram (Borcard et al. 2011).

The DCA, RDA, variation partitioning, and HCA were 
performed using the vegan (Oksanen et al. 2013) and Fac-
toMineR (Lê et al. 2008) packages of the R software.

http://www.tnpc.fr
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Results

Environmental conditions, mesozooplankton, 
and herring larvae distribution

In 2015, the spatial distributions of temperature, salin-
ity, in  situ chl a and phaeopigment concentrations, and 
abundance of mesozooplankton were highly structured 
in the EEC and the SBNS (Table 1). Winter temperature 
and salinity were higher in the EEC (between 10.3 and 
10.9  °C and 35.2 and 35.3, respectively) and lower in 
the SBNS (between 6.7 and10.2  °C and 34.7 and 35.2, 
respectively). In situ chl a and phaeopigment concentra-
tions followed a reverse pattern with twice higher val-
ues in the SBNS (0.56–1.12 µg L−1, stations 6–12) com-
pared to the EEC (0.41–0.58 µg L−1; stations 1–5).

Mesozooplankton abundance distribution and in  situ 
chlorophyll a and phaeopigments concentrations were sig-
nificantly correlated (Spearman rank correlation, rs =  0.85, 
N = 12, P < 0.001) with values ranging from less than 200 
(EEC) to above 5500 ind m−3 (SBNS; Table  1). Markedly 
high abundance values (between 2095 and 5542 ind m−3) of 
mesozooplankton were recorded in the SBNS (stations 6–12).

Downs herring larvae showed a clear and significant south-
western–northeastern distribution gradient coinciding with 
an increase in larval size and a decrease in larval abundance 
[ANOVA, F(11,56) = 2.180, P = 0.02869; Fig. 2]. Smaller 
larvae (8–12  mm) were distributed overall the study area 
though more abundant in the EEC (between 5500 and 31,562 
ind m−3), whereas larger larvae were restricted to the SBNS.

Ingestion rate

For 8–18  mm larvae, ingestion rates varied significantly 
with size [ANOVA, F(8,171)  =  1.999, P  =  0.09248; 

Fig. 3a]. The ingestion rate decreased from 8–9 to 10 mm 
from 22.5 to 18.6 ng chl a eq ind−1 days−1, then remained 
almost constant at 19.5–20.1 ng chl a eq ind−1 days−1 until 
12  mm, with the lowest value being displayed by 13  mm 
individuals. For the largest larvae (13–18  mm), ingestion 
rate increased and was twice as high, reaching a maximum 
value of 26.9 ng chl a eq ind−1 days−1. Regarding spatial 
pattern of the size class 8–12 mm, the center SBNS (stations 
7–9) was characterized by larvae with lower ingestion rates 
(7.7–18 ng chl a eq ind−1 days−1; Fig. 3b) compared to the 
rest of the study area (19–46.6 ng chl a eq ind−1 days−1).

Table 1   Temperature (°C), 
salinity, in situ chlorophyll 
a, and phaeopigment 
concentrations (µg L−1) and 
mesozooplankton abundance 
(ind m−3) during winter 2015 
(January–February) in the 
Eastern English Channel (EEC), 
Dover Strait (DS), and the 
Southern Bight of the North Sea 
(SBNS)

See Fig. 1 for stations’ location

Areas Stations Temperature Salinity Chlorophyll a Phaeopigment Mezooplankton

EEC 1 10.9 35.2 0.32 0.19 192

2 10.3 35.2 0.36 0.20 1179

3 10.7 35.3 0.32 0.09 1153

4 10.5 35.3 0.28 0.17 614

DS 5 10.5 35.3 0.33 0.25 1865

6 9.2 34.9 0.52 0.07 1609

SBNS 7 9.1 34.8 0.44 0.49 2451

8 9.8 35.1 0.48 0.11 3205

9 10.2 35.1 0.44 0.12 2095

10 9.9 35.2 0.52 0.18 3913

11 7.8 35.2 0.88 0.24 2508

12 6.7 34.7 0.84 0.20 5542

Fig. 2   Size and abundance (ind m−3) distribution of Downs herring 
larvae during winter 2015 (January–February) in the Eastern English 
Channel, Dover Strait, and the Southern Bight of the North Sea. Only 
stations, where the larval condition was analysed, are depicted
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Instantaneous growth rate and DNA/C ratios

Instantaneous growth rate was significantly differ-
ent between size classes (ANOVA, F(8,171)  =  4.901, 
P = 1.83e−5; Fig. 3e). It decreased from 0.005 ± 0.031 
days−1 for smaller larvae (8–13  mm), down to 
−0.031  ±  0.025 days−1 for larger ones. From 14  mm 
onwards, the median and mean of the index were below 
zero. Instantaneous growth rate indicated that 57% 
of 8–12  mm larvae efficiently grew, even though they 
exhibited high inter-individual variability (from −0.059 
to 0.156  days−1). In contrast, only 19% of larger larvae 

(14–18  mm) were shown to be in growing condition. 
Individuals of the size class 8–12  mm from the EEC 
and Dover Strait (DS) had a significantly higher instan-
taneous growth rate (0.022–0.052 days−1) than those 
from the SBNS (−0.004 to 0.046 days−1; ANOVA, 
F(1,142) = 100.8, P = 2e−16; Fig. 3f).

DNA/C ratio decreased with larval size [ANOVA, 
F(8,171) =  2.498, P =  0.013692; Fig.  3i] and, on aver-
age, was higher for smaller larvae (8–13  mm) compared 
to larger individuals, despite showing strong inter-indi-
vidual variation (from 6 to 126). Around 83% of smaller 
(8–13) and 100% of larger larvae appeared to be in feeding 

Fig. 3   Larval condition analysis of Downs herring larvae in the East-
ern English Channel, Dover Strait, and the Southern Bight of the 
North Sea during winter 2015 (January–February). a–d Ingestion rate 
(Ifish, ng chl a eq ind−1 days−1), b–h instantaneous growth rate (Gi, 
days−1), i–l DNA/C ratio, and m–p mean increment width (MIW; 
µm). a, e, i, m, Boxplots which represent the minimum, first quartile, 
median, third quartile, and maximum of the four condition indices 

according to the larval size. Stars represent mean values. The num-
ber of larvae analysed for each size class is provided on the upper X 
axis. Horizontal lines (e, i, m) depict the thresholds used to determine 
starving (i; Bergeron 2000) and slow-growing (e, m; Campana et al. 
1987; Folkvord et  al. 2000; Feet et  al. 2002) larvae. Crosses on the 
map indicated the absence of larval size class for the station
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condition (Fig. 3i). Individuals of the size class 8–12 mm 
had a higher DNA/C in the SBNS than in the EEC (Fig. 3j).

Otolith microstructure

An average growth rate of 0.26 mm days−1 [Linear regres-
sion, r2 =  0.88, F(1,163) =  1195.7638, P  <  0.001] was 
estimated for 8–18 mm larvae (Fig. 4a). The highest incre-
ment widths were recorded for the first three increments 
with mean values of 1.4–1.6 µm. A linear decrease from 1.6 
to 0.9 µm was observed between the first and 35th incre-
ments (Fig.  4b). Increment width showed high inter-indi-
vidual variation between the 7th and 11th increments and 
lower ones between the 11th and the 35th. Thereafter, from 
the 35th to 43rd increments, corresponding to 16–18  mm 
larvae, increment width increased linearly to reach 1  µm. 
Beyond the 43rd increments, results were not interpretable 
due to the low number of larvae having a high number of 
increments.

The highest MIW (0.82 and 0.95  µm) was recorded 
for 8–12  mm larvae amongst which 67% were below the 
threshold and could be considered in a slow-growing state 
(Fig.  3m). For larger larvae, MIW were lower, ranging 
from 0.66 to 0.80 µm and 96% of these larvae were below 
the threshold corresponding to slow-growing state. There 
was no clear pattern in the spatial distribution of incre-
ments width (Fig. 3n–p).

Redundancy analysis

Within the eight co-variables, seven (temperature, salin-
ity, in situ chl a and phaeopigments concentrations, meso-
zooplankton abundance, latitude, longitude, and larval size) 
were finally determined as significant and selected (Fig. 5). 
Three groups of individuals were obtained from the HCA 
and distributed along the two first axes of the RDA (61.42% 
of the variation, Fig. 5). The adjusted r2 (variance explained 
by the selected co-variables) was of 32%. The first group 
of individuals was associated with high DNA/C ratio and 
mainly included small larvae from the SBNS. The second 
group of individuals was associated with high instantaneous 
growth rate and mean increment widths as well as high tem-
perature and salinity. It included smaller larvae (8–12 mm) 
belonging to the EEC and DS stations. The third group 
was associated with high ingestion rate and included most 
of larger larvae (13–18  mm) belonging mainly to DS and 
SBNS stations. The first and the third groups were also 
associated with high in  situ concentrations of chl a and 
phaeopigments and mesozooplankton abundance.

Overall, the variance partitioning analysis showed 
the main contribution of spatial variables (11%) to the 

explained variation of Downs larval condition (32%), fol-
lowed by biochemical variables (7%) and larval length 
(5%). Biochemical and spatial variables shared 6% of the 
explained variation.

Fig. 4   Otolith micro-increment analysis of Downs herring larvae in 
the Eastern English Channel, Dover Strait and the Southern Bight of 
the North Sea during winter 2015 (January–February). a Number of 
increments according to the larval size. Fitted linear regression and 
confidence interval (95%) are also indicated. b Boxplots which repre-
sent the minimum, first quartile, median, third quartile, and maximum 
of micro-increment width according to the increments number. Stars 
show mean values and the two vertical dotted lines indicate the check 
location of the complete yolk-sac absorption (Geffen 1982; Høie 
et al. 1997; Fox et al. 2003). The number of larvae analysed for each 
number of increments is indicated on the top (b)
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Discussion

The present study combines a multi-index approach 
employed at the scale of individual fish to evaluate the 
condition of Downs herring larvae in EEC and SBNS. Our 
results clearly showed that (1) in spite of their contrasting 
nature and integration time, the different indices led to a 
clear pattern in the larval condition according to the ontog-
eny, (2) a change in Downs larval condition occurred at a 
size of 13–14 mm both in terms of nutrition and growth, (3) 
smaller larvae (8–12 mm) fed and grew, 13 mm larvae had 
the poorest condition and larger larvae (14–18 mm) fed, but 

did not grow, and (4) EEC seemed to provide a better habi-
tat for smaller larvae to feed and grow than SBNS.

Robustness of the larval condition indices

The gut fluorescence method used to quantify prey inges-
tion is sensitive to potential sampling bias induced by gut 
content evacuation during larval capture or fixation (Lebour 
1924; Bjørke 1976; Hay 1981) as well as sampling periods 
(day vs. night; Munk et al. 1989; Haslob et al. 2009). As our 
larval sampling started after sunset, some larvae could have 
already fed several hours before (Blaxter 1965; Fossum and 

Fig. 5   Redundancy and variance partitioning (bottom left) analyses 
of the larval condition [ingestion rate (Ifish), instantaneous growth rate 
(Gi), DNA/C ratio, and mean increment width (MIW)] of Downs her-
ring larvae in the Eastern English Channel (EEC), Dover Strait (DS), 
and the Southern Bight of the North Sea (SBNS) during winter 2015 
(January–February) constrained by selected biochemical (tempera-
ture, salinity, in situ chlorophyll a and phaeopigment concentrations 

(Tpig), and mesozooplankton abundance), spatial (latitude and lon-
gitude), and larval size variables. Bars (top left and top right) give, 
for each of the three identified groups of the HCA (bottom right), 
the number of individuals belonging to the three areas (top left, see 
Table 1) and size classes (top right). Numbers in the circles (bottom 
left) represent the proportion of variance explained by each variable
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Johannessen 1979; Pedersen 1984). Since nothing can be 
done to prevent gut evacuation and considering these two 
potential sources of bias, ingestion rate values still remain 
comparable between larval size classes when considered as 
relative and minimum values of feeding activity.

While the RNA/DNA ratio has been widely used as 
a measure of recent growth and condition of fish larvae 
(Buckley et  al. 1999), potential sources of variation have 
been reported when comparing different larval lengths in 
contrasting environmental conditions. RNA/DNA ratios 
could be influenced by ontogenetic (Foley et al. 2016) and 
day–night differences in feeding habits and/or activity of 
the endocrine systems induced by the light/dark regime 
(Rooker and Holt 1996; Chícharo et al. 1998; Ching et al. 
2012). In our case, these effects were likely negligible as 
the RNA/DNA ratio was measured on larvae collected 
during the night, i.e., when the ratios were supposed to be 
the highest (Chícharo et  al. 1998). The DNA/C ratio was 
shown to be a temperature-independent index and bet-
ter adapted for small larvae (Bergeron et  al. 1997). Dur-
ing a starvation period, carbon concentrations decrease, 
while DNA concentration remains constant, which leads to 
a rapid and sharp increase of the DNA/C ratio (Bergeron 
2000). Observed DNA/C values from the present study 
were in accordance with other species (Bergeron 2000, 
2009). We used a threshold value of 60 for the DNA/C 
ratio to determine poorly-feeding larvae. Although this 
value, initially developed on anchovy of the Bay of Biscay 
(Bergeron 2000), might not be directly relevant for herring, 
it is the only value available in the literature, and highlights 
the pressing need to empirically estimate threshold values 
for herring larvae.

The use of otolith micro-increments as a condition index 
assumes a daily deposition rate. However, several studies 
have stressed that non-daily deposition rates (growth rates 
of less than 0.4 mm days−1) can occur under sub-optimal 
conditions (McGurk 1984; Moksness et al. 1987; Folkvord 
et al. 2000). Campana et al. (1987) argued that daily depo-
sition rate can be assumed if micro-increments of less than 
1 µm could be detected. This cannot always be achieved 
with optical microscopy (Campana et  al. 1987; Radtke 
et al. 1990; Feet et al. 2002; Fox et al. 2003), although Fox 
et al. (2003) suggest a resolution limit around 0.3 μm. In 
our study, since micro-increments smaller than 0.12  µm 
have been observed, a daily deposition rate was assumed to 
start after yolk-sac absorption (Campana and Neilson 1985; 
Moksness 1992; Arrhenius and Hansson 1996). Yolk-sac 
absorption is thought to be completed at 4–5 days at 10 °C 
(Lough et al. 1982). In our study, the check was observed at 
4–6 micro-increments (i.e., 4–6 day old larvae), which also 
supported the existence of a daily deposition rate.

The growth rate of Downs herring larvae observed in the 
present study was high and comparable (0.26 mm days−1) 

to previous studies at the same period either in the same 
area (0.165  mm  days−1; Hempel 1960), during autumn 
in the central of North Sea (0.13–0.24  mm  days−1; Kiør-
boe et  al. 1988) or during spring in the West of Scotland 
(0.17 mm days−1; Checkley 1984, 0.22 mm days−1; Cam-
pana and Moksness 1991). It is also comparable to field 
studies in other areas such as spring in the Baltic Sea (0.13–
0.26  mm days−1; Weber 1971, 0.21–0.29  mm  days−1; 
Waldman 1961), and in the Clyde (0.33 mm days−1; Geffen 
1986). This potentially suggests that these larvae were not 
more limited by winter conditions than autumn and spring 
larvae as already observed by Denis et  al. (2016) regard-
ing vacuity rates. Less suitable conditions in winter linked 
to lower food availability could be counterbalanced by a 
lower larval fish diversity and mesozooplankton abundance. 
In this sense, winter spawning could be an advantage for 
Downs herring larvae as it leads to less competition with 
other fish larvae and mesozooplankton. The other explana-
tion is that under sub-optimal trophic conditions like those 
found in winter, only fast growing individuals survived, 
leading to an observational bias. This was shown for juve-
niles by Le Pape and Bonhommeau (2015), but could occur 
with larval fish too. Still, we are quite confident that micro-
increments width could also be used for Downs larvae as a 
larval condition index as previously stated for other spring 
and autumn species (Geffen 1982; McGurk 1984; Suthers 
1998; Folkvord et al. 2000; Fox et al. 2003).

Ontogenetic shift in the larval condition

Despite their different integration time, three of the four 
indices (ingestion rate, Gi and MIW) clearly showed a 
change in larval condition at a size of 13–14  mm. Under 
a size threshold of 13 mm, Downs herring larvae appeared 
to feed and grow quite normally. Between 7 and 12  mm, 
MIW increased with size which is in accordance with pre-
vious studies (Campana et al. 1987; Folkvord et al. 1997, 
2000). This increase corresponded to the end of the yolk-
sac stage at 3–6 micro-increments and the transition to 
exogenous feeding. At 13 mm, larval condition exhibited a 
sharp decrease, particularly in ingestion rate and increment 
width, indicating difficulties in feeding and a reduction in 
growth rate. After 13  mm, larval ingestion rate started to 
increase and DNA/C ratio was lower, indicating the recov-
ery of a better nutritional status. Feeding activity for these 
larvae was even better than for smallest larvae. However, it 
appeared that this recovery was not sufficient to ensure lar-
val growth as displayed by instantaneous growth rate and 
mean increment width which were still largely under the 
thresholds. This was also observed by Mathers et al. (1994) 
on experimental herring larvae, while most of the studies 
rather showed an increase of condition with size (Pepin 
et al. 1999; Kimura 2000; Clemmesen et al. 2003).



	 Mar Biol (2017) 164:154

1 3

154  Page 10 of 14

Explaining factors of the ontogenetic shift

Both RDA and variance partitioning indicated that vari-
ability in the larval condition could be related to space, 
abiotic (temperature and salinity) and biotic parameters 
(phytoplankton and mesozooplankton), and larval length. 
Spatial variability was clearly showed from instantaneous 
growth rate and DNA/C ratio highlighting, respectively, 
higher and lower values in the EEC compared to the SBNS. 
Hence, with regard to feeding activity and growth, the EEC 
appeared as a more favourable environment for small lar-
vae compared to SBNS. This spatial pattern resulted from 
the cross effect of the southwest–northeast gradient in the 
larval size distribution with the ontogenetic variations in 
their condition.

Environmental conditions (temperature and prey con-
centration) were also determined as to be significant in the 
RDA. They are usually considered as the two most impor-
tant factors that strongly impact larval condition (Radtke 
and Fey 1996; John et al. 2001; Oeberst et al. 2009). Higher 
temperatures increase larval ingestion (Kiørboe et al. 1982; 
Irigoien et  al. 2008) and otolith growth of herring was 
described to be proportionally faster at higher tempera-
tures (Campana and Hurley 1989; Wright 1991; Hoff and 
Fuiman 1995). High prey density was reported to increase 
larval ingestion and assimilation (Boehlert and Yolklavich 
1984; Pasternak 1994; Fiksen and Folkvord 1999). It is 
unlikely that lower temperature in the SBNS could explain 
the spatial difference in terms of larval ingestion and 
growth we observed, as temperature differences were typi-
cally low (0.1–1 °C) (except for two stations) between EEC 
and SBNS. For prey density, our results are contradictory 
with previous studies, since we observed lower ingestion 
rates (8–12 mm larvae) and growth (8–18 mm larvae) in the 
SBNS, whereas prey density was higher compared to the 
EEC. Hence, we argue that spatial variation in environmen-
tal conditions could not explain on their own the ontoge-
netic shift in larval condition observed at 13 mm. It is more 
probable that their significant effect in the RDA has more 
to do with their spatial-covariation with the larval condition 
than with their direct impact on it.

Size was also detected by the RDA as to have a signifi-
cant effect on larval condition. We argue that the ontoge-
netic shift in larval condition observed at 13 mm has to be 
related to a diet shift occurring at this size. Indeed, Denis 
et al. (2016) found that, contrary to larger larvae which fed 
mostly on bigger and less diverse zooplanktonic prey, small 
herring larvae fed on a high diversity of small prey, includ-
ing a large quantity of protists. While they hypothesized 
that this also explained the higher vacuity rate observed for 
13 mm larvae, the present study tends to confirm that the 
more diversified diet of small larvae promotes their feeding 
activity and growth. Since mortality of early life stages of 

fish was determined to be size specific (McGurk 1986), a 
rapid increase in larval size of Downs herring can greatly 
reduce their mortality and predation pressure (McGurk 
1986; Bailey and Houde 1989; Houde 1997). A larval 
size of 13–14  mm also corresponds to the differentiation 
of the dorsal fin (Doyle 1977; Paulsen et  al. 2016) which 
could quickly improve their capacity to feed on larger prey 
by increasing their swimming capacity (Checkley 1982; 
Kiørboe et  al. 1985; Munk and Kiørboe 1985). Finally, it 
would reduce their trophic competition with copepods for 
phytoplankton resource as larvae greater than 13  mm are 
essentially carnivorous (Denis et  al. 2016). However, the 
shift from an omnivorous to a carnivorous diet occurring 
at 13 mm seems to have a negative impact on their short-
term feeding efficiency and is clearly made at the expense 
of larval growth. The rapid increase of ingestion rate after 
13  mm could suggest that Downs herring larvae start to 
improve their feeding activity through quick adaptation to 
their new diet. Indeed, it has been shown recently that the 
early stages of seabass (Dicentrarchus labrax) larvae are 
able to modulate their enzymatic synthesis according to the 
composition and quantity of ingested prey (Cahu and Zam-
bonino 2007). Pepin et al. (2015) showed that high feeding 
success and growth at a given time led to higher probabili-
ties of maintaining fast growth throughout larval life. In our 
case, since this was not reflected in terms of larval growth, 
it might also suggest that Downs larvae shifted to a more 
storage-oriented strategy of energy allocation once they 
had reached a sufficient size to increase their feeding suc-
cess and reduce the trophic competition and predation. This 
shift in the energy allocation strategy was also observed for 
larvae of Pleuragramma antarcticum (Giraldo et al. 2015), 
the herring-equivalent species in the Southern Ocean, and 
also for the icefish Chionodraco hamatus (Giraldo et  al. 
2016).

Conclusion

The multi-index approach used in the present study showed 
that the four indices, although of different nature and inte-
gration time, led to the same conclusive pattern that a shift 
in the larval condition occurred at a size of 13–14 mm. This 
shift corresponds to another major change displayed by 
Downs larvae when they shifted from an omnivorous to a 
carnivorous diet, potentially enhanced by the development 
of dorsal fins. We argue that this shift in terms of prey pref-
erences and swimming capabilities constitutes another crit-
ical period for Downs larvae beyond the shift from endog-
enous to exogenous nutrition. A complementary approach 
based in lipid contents could be used to test for the hypoth-
esis of a shift in energy allocation towards storage after 
13 mm. Downs larval condition should also be studied for 
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several years to detect the impact of inter-annual variation 
in environmental conditions during the critical period. Our 
results suggest that two of the four indices used might be 
sufficient to characterize larval condition, one reflecting 
nutrition and another growth. In this context, the ease and 
speed of estimating DNA/C and RNA/DNA ratios represent 
excellent options for the purpose of a multi-annual study.
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