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back-calculated to November and December 2010 and July 
2010, respectively, suggesting hatching times outside of the 
primary spawning seasons. These novel observations pro-
vide important information on the timing of spawning and 
larval growth characteristics of Atlantic eels, which would 
benefit from validation by additional otolith studies of 
leptocephali.

Introduction

The two Atlantic eel species of the genus Anguilla were 
both found to spawn in the southern Sargasso Sea about a 
century ago, through collection of their small larvae, called 
leptocephali (Schmidt 1922). Further collection of lep-
tocephali confirmed spawning of eels in the Sargasso Sea 
about 50 years later (Schoth and Tesch 1982; Kleckner and 
McCleave 1988) and then again more recently (Munk et al. 
2010; Hanel et al. 2014). All of these surveys collected lep-
tocephali of both the European eel Anguilla anguilla, and 
the American eel Anguilla rostrata in the same overlapping 
areas as documented by Schmidt (1922). The earlier his-
torical collections in the spawning area and throughout the 
North Atlantic or Mediterranean Sea were also re-examined 
(Boëtius and Harding 1985; Kleckner and McCleave 1985), 
and then all the historical collection data of leptocephali 
of the two species collected up to 2007 were analyzed 
(Miller et al. 2015). The collection locations of the small 
leptocephali indicate overlapping spawning areas (Fig. 1a) 
as was shown previously by McCleave et al. (1987). The 
leptocephali of both species then disperse outward from the 
spawning areas, with the larvae of European eel becoming 
distributed across the Atlantic basin as they are transported 
towards Europe and northern Africa (Schmidt 1922, 1925).

Abstract Several surveys and studies have examined the 
Atlantic anguillid eels’ larval distributions, but little is 
known about their larval growth rates. Otoliths of 17 Euro-
pean eel Anguilla anguilla (8.8–46.0 mm) and 19 Ameri-
can eel Anguilla rostrata (9.8–59.9 mm) leptocephali col-
lected in the Sargasso Sea (25–31°N, 58–70°W) in March 
and April 2011 were analyzed and their spawning times 
and larval growth rates were estimated. Ages calculated 
from the number of otolith increments of European and 
American eel larvae showed ranges of 10–127 days and 
14–233 days, respectively. Linear relationships between 
age and total length indicated early larval growth rates of 
0.31 mm/day for the European eel and 0.35 mm/day for the 
American eel. This suggested slower growth rates in low 
temperatures in the Sargasso Sea compared to other anguil-
lid species in the Indo-Pacific, where water temperatures 
are higher. The back-calculated hatching dates of small 
leptocephali (8.8–26.7 mm) were in February and March 
2011. More American eels hatched in February and more 
European eels hatched in March. The hatching times of 
two larger European eel leptocephali (38.7 and 46.0 mm) 
and a larger American eel leptocephalus (59.9 mm) were 
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Although the distributions and migratory routes of the 
Atlantic eel larvae were studied, few studies have focused 
specifically on the biology of leptocephali. The vertical 
distributions of leptocephali and those of marine eels were 
reported in the Sargasso Sea, which found that the small-
est sizes are present at various depths in the upper 250 m, 
and as they grow larger they are present in the upper 100 m 
at night and then deeper during the day (Castonguay and 
McCleave 1987). Only one study to date (Castonguay 
1987) has published the age and growth of anguillid eel 
leptocephali in the Sargasso Sea, based on analysis of 
their otolith microstructure. Castonguay (1987) analyzed 
the number of otolith increments of leptocephali that 
were almost all <60 mm in length and found an estimated 
somatic growth rate of 0.38 mm/day. However, not all of 
those leptocephali were distinguished into species. Sub-
stantially lower growth rates estimated from length fre-
quency data, at 0.14–0.24 mm/day (Boëtius and Harding 
1985; Kleckner and McCleave 1985; Righton et al. 2016), 
suggest that the larval growth rates of the Atlantic eels 
require further evaluation.

Larval growth is an important factor during the early 
life-history of fishes. The growth rates and larval character-
istics of anguillid eel leptocephali are different depending 
on the species and aspects of their life histories. Temperate 
eel leptocephali with slower growth and larger maximum 
size appear to be specialized for long migrations and dis-
persal over a wide range of distances to higher latitudes. 

By contrast, tropical eels with faster growth metamorphose 
earlier at smaller size and tend to have shorter migra-
tion distances at low latitudes (Kuroki et al. 2006, 2008a, 
2014). Studies on anguillid glass eels that recruited after 
metamorphosis have also indicated differences in the lar-
val durations and sizes at recruitment within and among 
species (Wang and Tzeng 2000; Shiao et al. 2001; Robi-
net et al. 2008; Kuroki et al. 2014). However, estimates of 
larval growth rates from back-calculations using glass eels 
or elvers are not accurate due to the leptocephalus body 
shrinking during metamorphosis (Kuroki et al. 2010). Fur-
thermore, the discrimination of otolith rings in glass eels 
that have experienced low water temperatures is difficult 
(Umezawa and Tsukamoto 1991; Fukuda et al. 2009).

The timing of spawning can also differ among anguillid 
eels. The length frequency data of small leptocephali sug-
gests that the peak spawning time of American eels (Feb-
ruary–March) is a little earlier than that of European eels 
(March–April) (Schmidt 1922, 1925; McCleave 2008). 
This temporal difference may contribute to reproductive 
isolation, although some hybridization between the two 
species does occur (Avise et al. 1990; Albert et al. 2006).

Our objectives here were to examine larval growth rates 
of European eel and American eel leptocephali collected 
within the Sargasso Sea in 2011, and to back-calculate 
hatching dates using their otolith microstructure. In doing 
so, we were able to directly compare our larval growth rate 
data to those of Castonguay’s (1987) study. Otolith-inferred 
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Fig. 1  Map of the sampling stations of the WH-342 survey for lep-
tocephali in the Sargasso Sea in March and April 2011 (open circles), 
showing the estimated spawning areas of A. anguilla (gray-scale) 
and A. rostrata (hatched) based on the distribution of all small lep-
tocephali collected in surveys up to 2007 (a) (modified from Miller 
et al. 2015). Stations where A. anguilla (b) and A. rostrata (c) lep-

tocephali were collected (closed symbols) and where specimens used 
for otolith analysis were caught (closed squares). A hybrid lepto-
cephalus between the two species is shown (closed diamond) in (c). 
Total lengths (mm) of the 3 large leptocephali are given at the stations 
where they were collected
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data of this nature can contribute species-specific insights 
into the reproductive ecology and larval biology of these 
eels.

Materials and methods

Collection and processing of leptocephali

The leptocephali were collected between 16 March and 
6 April 2011 during the WH-342 cruise of the Thünen 
Institute on board the fishery research vessel Walther Her-
wig III. An Isaacs-Kidd Midwater Trawl (IKMT) with a 
6.2 m2 mouth opening, a length of 10 m, and 0.5 mm mesh 
(Hydro-Bios Apparatebau GmbH) was used to collect the 
leptocephali. The IKMT was deployed to maximum depths 
of 300 m during night and day using a double oblique fish-
ing style following Kleckner and McCleave (1988). 52 
tows were made at 42 stations (Fig. 1a), distributed within 
five transects as described previously (Miller et al. 2013; 
Hanel et al. 2014). All stations also included the deploy-
ment of conductivity, temperature, depth (CTD) profiles to 
depths of 500 m.

The survey of the spawning area in March and April 
2011 found a low abundance of anguillid larvae, with 42 
A. anguilla (7.7–19.7, 38.7, 43.5, 46.0 mm) and 45 A. ros-
trata (7.4–26.7, 47.5, 59.9 mm) leptocephali collected at 33 
stations spread across the Subtropical Convergence Zone 
(Fig. 1b, c) as described previously (Hanel et al. 2014). 
Leptocephali were sorted fresh out of the IKMT plank-
ton samples and were measured from the tip of the teeth 
to the end of the tail to determine their total length (TL). 
All leptocephali were tentatively identified onboard based 
on their total myomere counts and then either preserved in 
ethanol or frozen. Genetic identification in the laboratory 
was then used to classify the leptocephali to a final species 
designation using their cytochrome b sequences (Trautner 
2013) and 18S rDNA RFLPs following the protocol of 
Frankowski and Bastrop (2010) along with some restriction 
enzymes modifications as described by Prigge et al. (2013). 
Leptocephali were selected for otolith analyses from sta-
tion locations spread across most of the areas where the lar-
vae of both species were collected (Fig. 1b, c).

Otolith analyses

Otolith analyses were conducted using the sagittal otoliths 
of 17 A. anguilla and 19 A. rostrata ethanol-preserved lep-
tocephali. The diameters of the otoliths were measured 
along the longest axis by optical microscopy (SMZ-1500, 
Nikon). The otoliths were subsequently embedded in epoxy 
resin, mounted on glass slides and ground to expose the 
core. After polishing, the otoliths were etched with 0.05 M 

HCl and vacuum coated with Pt–Pd in an ion-sputterer 
(E-1030, Hitachi) for observation with a scanning electron 
microscope (S-4500, Hitachi).

The successive otolith daily rings from the first feeding 
check to the edge were counted on the scanning electron 
microscope photographs to estimate the age of leptocephali. 
Because the daily rings between the hatching check and the 
first feeding check could not be clearly identified, this inter-
val was considered to have been deposited over a period of 
ten days. This assumption was based on the approximate 
time taken for yolk absorption in artificially spawned larvae 
of A. anguilla and A. rostrata (Oliveira and Hable 2010; 
Tomkiewicz 2012; Rindom et al. 2014) and first feeding 
observations in Japanese eel Anguilla japonica (Kurokawa 
et al. 1995; Tanaka et al. 2001). Some scanning electron 
microscope photographs of small otoliths did not show 
clear microstructure due to over etching or uneven ground 
surfaces of the otolith. In these cases, Pt–Pd coating for 
scanning electron microscopic observation was removed by 
slight grinding, then age was estimated by making at least 
two counts of the rings of the ground otoliths under the 
optical microscope while moving the focus of the objective 
lens between 50× and 100× magnifications.

The growth rates of the leptocephali based on the 
examination of their otolith microstructures were deter-
mined using their age as indicated by the total number 
of otolith rings and TL data. The slope of the regression 
analysis of the TL and number of increments were used 
to estimate the overall early growth rates of each species 
excluding the three largest specimens. The difference of 
the slope of linear regression lines between A. anguilla 
and A. rostrata was tested by analysis of covariance 
(ANCOVA). Individual growth rates for three large lep-
tocephali were determined as: (TL−3)/age, based on the 
total approximate length of 3 mm at hatching obtained 
for both artificial and wild eel larvae (Yamamoto and 
Yamauchi 1974; Oliveira and Hable 2010; Tsukamoto 
et al. 2011; Tomkiewicz 2012; Rindom et al. 2014), and 
following previous studies on the determination of age of 
anguillid leptocephali (Kuroki et al. 2006, 2008a).

Results

Leptocephali of A. anguilla (n = 17) ranging in size from 
8.8 to 46.0 mm (Fig. 1b) and A. rostrata (n = 19) from 
9.8 to 59.9 mm (Fig. 1c) collected across the Subtropi-
cal Convergence Zone in the Sargasso Sea (25–31°N, 
58–70°W) were examined in the analysis. Most were 
smaller than 30 mm except for three leptocephali (38.7 
and 46.0 mm of A. anguilla and 59.9 mm of A. rostrata). 
Sagittal otoliths of leptocephali observed with both opti-
cal and scanning electron microscopes had successive 
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rings from the core to the edge, which were regarded 
as daily increment rings (Fig. 2). Among them, four 
otoliths had atypical double cores as shown in Robinet 
et al. (2008). The otolith diameters showed a linear rela-
tionship with TL for both A. anguilla (y = 3.79x−18.4, 
p < 0.01, r2 = 0.97) and A. rostrata (y = 3.35x−8.79, 
p < 0.01, r2 = 0.94) despite a lack of intermediate sizes 
of larvae (Fig. 3a).

Estimated ages from otolith daily rings of leptocephali 
were 10–127 days in A. anguilla and 14–233 days in 
A. rostrata. The relationship between age and total 
length in the present and previous study (Castonguay 
1987) is shown in Fig. 3b. The data from both stud-
ies show similar patterns of larval growth. The data 
from the previous study complemented these new data 
in that they covered a wider size range, including lepto-
cephali collected in the summer season that had ages of 
around 50–100 days. Small A. anguilla (8.8–19.7 mm) 
and A. rostrata (10.0–26.7 mm) leptocephali from 
the 2011 cruise showed linear relationships between 
length and age (y = 0.31x + 7.58, p < 0.01, r2 = 0.74 
and y = 0.35x + 5.59, p < 0.01, r2 = 0.69), suggesting 
growth rates of 0.31 and 0.35 mm/day, respectively. The 
growth rate of A. anguilla was estimated to be margin-
ally slower than A. rostrata (ANCOVA, P = 0.015). The 
somatic growth rates of the three larger leptocephali were 
estimated separately. The individual growth rates of the 
two A. anguilla leptocephali of 38.7 and 46.0 mm were 
0.28 and 0.37 mm/day and that of the 59.9 mm A. ros-
trata leptocephalus was 0.24 mm/day.

The sampling period of the present study was too short 
to estimate the peak spawning times of the two species. 
However, the hatching dates of the small larvae overlapped 
in February and March 2011, with more A. rostrata hatch-
ing in February and more A. anguilla hatching in March 
(Fig. 4). The hatching times of larger leptocephali were in 
November and December 2010 for A. anguilla, and in July 
2010 for A. rostrata (Fig. 4).

Discussion

Several studies have examined the distribution of Atlan-
tic eel leptocephali in the Sargasso Sea (Schmidt 1922, 
1925; Schoth and Tesch 1982; Kleckner and McCleave 
1988; McCleave 2008; Miller et al. 2015), but only one 
work has previously published larval growth rates (Cas-
tonguay 1987). The otolith microstructures observed in 
the current study were comparable with those from lep-
tocephali, glass eels and elvers in previous studies (e.g. 
Lecomte-Finiger 1992; Castonguay 1987; Kuroki et al. 
2008b). The successive otolith rings of anguillid lepto-
cephali examined here were treated as daily increment 

rings, based on observations of daily incremental growth 
in reared leptocephali (Umezawa et al. 1989; Shinoda 
et al. 2004). Several days under- or over-estimation may 
result from unreadable rings between the hatch check and 
first feeding check in our study, however, the growth rates 
we observed were similar to those described by Caston-
guay (1987).

Our inferred somatic growth rates of A. anguilla 
(0.31 mm/day) and A. rostrata (0.35 mm/day) were mar-
ginally lower than previous observations (0.38 mm/day, 
Castonguay 1987) based on regression data from both 
species combined. This difference may be due to the size 

Fig. 2  Optical micrograph of a 15.0 mm A. rostrata leptocepha-
lus otolith (a) and scanning electron micrograph of a 19.7 mm A. 
anguilla leptocephalus otolith (b). Scale bars are 10 μm
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compositions of leptocephali being different between the 
two studies, the previous study has middle-sized larvae 
from 25 to 34 mm. In leptocephalus otoliths of Atlantic 

eels, daily rings corresponding to ages 40–60 days had 
the widest increments, after which they became narrow 
(Lecomte-Finiger 1992; Kuroki et al. 2014). Therefore, 
middle-sized leptocephali as examined by Castonguay 
(1987) may have higher growth rates than smaller individu-
als. Differing oceanic environmental conditions between 
1984 and 1985 for Castonguay (1987) and 2010–2011 in 
the present study, may also have influenced larval growth. 
This may have manifested through reductions in produc-
tivity and feeding success, although it is noted that the 
abundance of anguillid larvae appears to be lower in recent 
years (Castonguay et al. 1994; Bonhommeau et al. 2008; 
Hanel et al. 2014; Miller et al. 2016).

When the anguillid leptocephali approach their maxi-
mum size, the somatic growth rate appears to slow down 
in this and in previous studies (Kuroki et al. 2006). The 
mean recruitment size of glass eels of A. rostrata is about 
50–60 mm (Wang and Tzeng 2000; Sullivan et al. 2006) 
after they have experienced shrinkage during metamor-
phosis. Therefore, the oldest A. rostrata leptocephalus 
(59.9 mm, 233 days) in this study may have been approach-
ing its maximum size range, and consequently, grow-
ing slower, as has been suggested for other anguillid eels 
(Kuroki et al. 2014). It is also worth considering that these 
large larvae might have had slower growth than most lep-
tocephali due to protracted retention around the spawning 
area.

Both of our estimates of larval growth rates and those 
of Castonguay (1987) are slightly lower than has been 
observed in otolith microstructure studies of anguillid 
leptocephali on both temperate species such as Anguilla 
australis and A. japonica (0.4–0.5 mm/day) and tropical 
species such as Anguilla borneensis, Anguilla celebesen-
sis, and Anguilla reinhardtii (0.5–0.6 mm/day) (Kuroki 
et al. 2014). Compared to the other anguillids, the slower 
growth rates of both A. anguilla and A. rostrata lepto-
cephali might be related to the low temperatures (50–
150 m: 20–25 °C, unpublished CTD data) experienced by 
the larvae in the Sargasso Sea. The oceanic water temper-
atures experienced by our larvae were lower than those 
in other areas such as the A. japonica spawning area at 
a lower latitude in the North Pacific Ocean (50–150 m: 
25–28 °C, Tsukamoto et al. 2011). Leptocephali growth 
is influenced by water temperature in artificially spawned 
and reared anguillid eels (Okamura et al. 2007), although 
it is not known if genetic differences in larval somatic 
growth rates occur among anguillid species. The lower 
growth rate of A. anguilla compared to A. rostrata found 
in this study is consistent with the current hypothesis 
that larval growth rates are related to migration distances 
(Kuroki et al. 2006, 2014). Typical tropical anguillid spe-
cies such as A. borneensis and A. celebesensis with adja-
cent growth habitats and spawning areas have the fastest 
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larval growth rates, whereas temperate and some tropi-
cal species with protracted larval durations have slower 
growth rates. Leptocephali length frequency data also 
suggest that shorter migrating A. rostrata may grow faster 
than A. anguilla, that migrate further and have longer lar-
val durations and a larger maximum larval size (Wang 
and Tzeng 2000; Kuroki et al. 2008b; Miller et al. 2015).

Larval growth rates estimated from sizes of A. anguilla 
leptocephali collected in the Sargasso Sea have recently 
been used to estimate the peak spawning season in rela-
tion to when the maturing silver eels leave continen-
tal waters to migrate to the Sargasso Sea (Righton et al. 
2016). This latter study used a growth rate of 0.14 mm/
day, considerably lower than the growth rate estimated 
from otolith microstructure. It is possible, therefore, that 
the Righton et al. (2016) estimated peak spawning season 
may precede true peak spawning if the otolith-derived 
growth estimates are considered more accurate. Larval 
growth rate estimates from otolith analyses of lepto-
cephali are higher and probably more accurate than those 
made based on the analysis of length frequency data ver-
sus the collection dates of larvae as discussed in the anal-
ysis of historical A. japonica data in the Pacific Ocean 
(Shinoda et al. 2011). The lower growth rates from length 
frequency data may result from size-selective advection 
of fast growing larvae out of the spawning area, reten-
tion of slow growing individuals within the area, and the 
continuous addition of small larvae during the spawning 
season, which would reduce the perceived overall growth 
rates.

Our estimated hatching season of February–March was 
consistent with the typical estimated spawning seasons of 
both species and similar-sized larvae were collected dur-
ing those same months as in previous research surveys 
(Schmidt 1922, 1925; Schoth and Tesch 1982; Kleckner 
and McCleave 1988; McCleave 2008; Miller et al. 2015). 
However, the two larger A. anguilla larvae examined 
were back-calculated as having hatched in November and 
December 2010, suggesting that they originated from early 
season spawning. The larger A. rostrata larva appeared to 
have hatched in July 2010, which would equate to late-sea-
son spawning (McCleave and Kleckner 1987; Miller et al. 
2015). Spawning outside of the primary spawning season 
has not previously been documented and requires confirma-
tion through additional research efforts.

Further studies on the age, growth and hatching dates 
of the two species of Atlantic eel leptocephali are required 
to validate our observations on the early life history. The 
inclusion of larger larvae will provide valuable information 
about larval growth patterns up to the period of metamor-
phosis into glass eels, as the two species diverge from each 
other and migrate to either the eastern or western sides of 
the North Atlantic basin.
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