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daily feeding excursions (mangrove forests) and spawning/
reproduction (proximity to ocean). Continuous, non-patchy 
seagrass beds are however vital to how individuals use a 
seagrass meadow, with beta diversity being higher in sea-
grass meadows that were less patchy. Identifying how habi-
tat attributes and context influence fish assemblages is vital 
for optimizing conservation initiatives. Therefore, we sug-
gest that monitoring populations with biodiversity metrics 
such as beta diversity can be effective in determining areas 
that are critical for conservation.

Introduction

Animal movement is influenced by dispersal capabilities, 
connectivity with adjacent habitats, abiotic variables and 
anthropogenic influences (Cloern 2007; Olds et al. 2016). 
Variations in land and seascapes (e.g. proximity to other 
habitats and the size of a habitat) influence assemblage 
composition and biodiversity, structuring the way animals 
use a landscape and the processes that underpin ecosystem 
resilience (Massol et al. 2011; Turner 1989). Many stud-
ies have focused on how marine ecosystems are influenced 
by the spatial context of a seascape, with many of these 
especially focusing on fish and invertebrates in seagrass 
meadows (Boström et al. 2011; Irlandi and Crawford 1997; 
Robbins and Bell 1994); however, many of these are yet to 
assess the different measures of fish assemblages and how 
these are influenced by variable seascape factors.

Variability in seascapes has clear effects on assemblage 
composition; however, variability in the complexity of hab-
itat patches changes the composition of organisms inhabit-
ing the patch (Anderson et al. 2011; Bell et al. 1988; Díaz 
et al. 2015; Jungerstam et al. 2014). Small-scale changes 
in habitat complexity within a habitat patch (e.g. habitat 

Abstract Variability in habitat positioning within sea-
scapes (over kilometres) influences fauna assemblage com-
position, but the characteristics of a habitat patch (10–100s 
of metres) influence how species use that patch and how 
variable assemblages are within habitats. Understanding 
the relative influence of these two contrasting scales is cru-
cial to improving the management of marine habitats. We 
used baited remote underwater video systems (BRUVS) 
to quantify seagrass fish assemblages, and took seagrass 
cores to quantify seagrass metrics, at ten sites across three 
seasons in Moreton Bay, Australia to determine if fish are 
influenced more by seascape context or metrics of sea-
grass habitat complexity. We found that fish species rich-
ness and assemblage composition are most influenced by 
large-scale variability in seascape (e.g. proximity to ocean 
and mangroves). However, variability in habitat complex-
ity (e.g. seagrass blade length and density) and proximity 
to mangrove forests had the greatest effect on assemblage 
beta diversity. Connectivity with other habitats plays a vital 
role in structuring the fish community, as it is crucial for 
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density, complexity or area) can interact with the way spe-
cies use a land or seascape, thereby further altering species 
composition and ecological functioning (Díaz et al. 2015; 
Graham and Nash 2012; McElhinny et al. 2005; Munday 
et al. 2008). Investigating how habitat complexity influ-
ences assemblage composition, species diversity and vari-
ability within a patch [e.g. beta diversity, (Anderson et al. 
2006, 2011)] is therefore important in many habitats, par-
ticularly in the context of anthropogenic effects which can 
cause large and small-scale changes in land or seascape 
context (Lindenmayer et al. 2000; Ward and Tockner 2001).

Seagrass ecosystems remain one of the most threatened 
ecosystems in the world, with rates of decline matching 
that of other threatened ecosystems such as mangroves, 
coral reefs# and tropical rainforests (Waycott et al. 2009). 
Seagrasses are highly productive, provide numerous eco-
system services to coastal regions# and act as a nursery 
for many harvested fish and invertebrate species (Boström 
et al. 2006; Nagelkerken et al. 2001; Unsworth et al. 2015). 
Seagrasses are often located within heterogeneous sea-
scapes, and a range of seascape factors are known to influ-
ence the composition of the fish assemblage (Bell et al. 
1988; Boström et al. 2011; Connolly and Hindell 2006). 
Similarly, as seagrasses are naturally influenced by light 
availability, depth# and sedimentation, seagrass beds can 
have a naturally variable structure within individual sea-
grass meadows (Maxwell et al. 2014). Despite the ecologi-
cal and economic importance of seagrass ecosystems, the 
influence of small- and large-scale variability in the struc-
ture of seagrass ecosystems on fish assemblages remains 
poorly understood.

In this study, we compare the relative influence of sea-
grass meadow positioning within seascapes to small-scale 
changes in seagrass complexity on seagrass fish assem-
blages. We used measures of fish species richness; beta 
dispersion (a distance-based multivariate measure of beta 
diversity or variation within a community (Anderson et al. 
2006), and henceforth referred to as beta diversity) and 
composition of the seagrass fish assemblage to determine 
the main factors influencing fish in seagrass meadows in 
Moreton Bay, Eastern Australia. These measures provide 
an understanding of diversity between (e.g. species diver-
sity) and within [e.g. beta diversity, (Anderson et al. 2006)] 
seagrass meadows, which is crucial for the continued man-
agement of fish communities within seagrass meadows. 
Beta diversity has become a central theme for determining 
priority areas for conservation as it provides the mechanism 
for determining how individual habitat patches deal with a 
range of factors (Anderson et al. 2011; Barboza et al. 2015). 
Moreton Bay offers an ideal location to test these aims as it 
presents a heterogeneous seascape of multiple subtropical 
habitats (especially marginal coral reefs and mangroves) 
(Gilby et al. 2016) and seagrass meadows that are highly 

variable in structural complexity (i.e. shoot length, den-
sity# and seagrass biomass) due to a gradient from estua-
rine-dominated water to oceanic (Maxwell et al. 2014). We 
therefore expect that large-scale variations in seascape con-
text will drive the changes in fish assemblage composition 
and species richness, as seen elsewhere in Moreton Bay 
[e.g. coral reefs, see (Olds et al. 2012)], while variability 
in the structural complexity within seagrass meadows will 
influence beta diversity more (Gullström et al. 2008). It is 
becoming more important for managers to understand the 
factors that influence the distribution of faunal communi-
ties within and between habitat patches and here, we pro-
vide a simple method to determine these drivers of change 
in seagrass ecosystems.

Methods

Study site

We surveyed fish assemblages and seagrass meadow vari-
ables at ten seagrass meadows in Moreton Bay, Queens-
land, a subtropical embayment in eastern Australia (Fig. 1). 
Moreton Bay is bordered to the east by three large sand 
islands, with oceanic water exchanging through three pas-
sages, and to the west by mainland Australia, where mul-
tiple estuaries discharge into the Bay (Gibbes et al. 2014). 
Sites within Moreton Bay were located along a gradient of 
distances from the ocean, with larger seagrass beds located 
closer to oceanic input and nearby coral reefs and seagrass 
beds further from the ocean were nearer to mangroves. A 
water quality gradient was also present between near-ocean 
sites in clear water, high salinity# and low nutrients, while 
those further away from oceanic input have higher nutri-
ent levels, reduced salinity and higher turbidity (Maxwell 
et al. 2014). All meadows studied were comprised of eel-
grass Zostera muelleri. The ambient water quality gradient 
influences seagrass growth, in that those seagrass meadows 
closer to the ocean have smaller shoots, higher shoot den-
sity and a larger proportion of their biomass located under-
neath the sediment (Maxwell et al. 2014). Each seagrass 
meadow was sampled three times, in the austral winter 
(August 2014), spring (November 2014) and summer (Feb-
ruary 2015). The intention of this was to include the full 
range of temporal variability that is experienced in this sub-
tropical system, but as season was not a replicated factor, 
no conclusions will be made regarding seasonality.

Fish assemblage surveys

Fish assemblages were surveyed using eight baited remote 
underwater video stations (BRUVS) at each of the ten sites 
during each of the three sampling periods cross one year 



Mar Biol (2017) 164:117 

1 3

Page 3 of 9 117

(Harvey et al. 2007; Malcolm et al. 2007). All BRUVS 
were deployed in ~1.5 m of water at high tide and were 
all spaced at least 200 m apart to avoid sampling the same 
individuals on multiple cameras. A spacing of at least 
200 m between each BRUVS deployment was used so that 
no individual fish was counted on multiple BRUVS there 
making BRUVS deployments independent of one another, 
meaning there is no need to have each individual BRUVS 
nested inside each seagrass meadow (Malcolm et al. 2007). 
BRUVS consisted of a GoPro video camera recording in 
high definition fixed to a 5 kg weight with a bait bag (500 g 
of chopped pilchards) positioned 0.5 m from the cam-
era (Bernard and Götz 2012). Each BRUVS deployment 
lasted for one hour, giving a total of 240 h of sampling time 
from the entire study (Harvey et al. 2007; Santana-Garcon 
et al. 2014). Fish abundance, species richness and fish 

community composition were recorded from video footage 
using the MaxN statistic (Willis and Babcock 2000).

Seascape and seagrass variables

Seascape variables included in the study were seagrass 
meadow area  (km2) and proximity to the nearest coral 
reef (km), mangrove forest (km) and the open ocean (km). 
These variables were all calculated in ArcGIS (ESRI, Red-
lands, CA, USA). Distance to the open ocean was used 
as many species make spawning migrations that include 
movements outside of Moreton Bay, but it also incorporates 
a salinity, nutrient and turbidity gradient (Henderson et al. 
2017). Seagrass metrics were calculated from ten replicate 
cores (15 cm diameter, 10 cm deep) taken at each seagrass 
meadow location during each season, taken directly after 

Fig. 1  Seagrass habitats in 
Moreton Bay, Australia (c. 
27°18’S; 153°17’E), where 
BRUVS were used for sampling 
fish community composition 
and seagrass metrics were 
surveyed
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fish assemblage surveys. Shoot density, length and above/
below ground biomass were calculated for each site.

Statistical analysis

A range of diversity metrics was calculated from the fish 
assemblage data, including species richness, beta diversity 
and community composition. Species richness was repre-
sented as the total number of species recorded at each site 
using BRUVS. Beta diversity was calculated for each site 
during each season using a distance-based test for homo-
geneity of multivariate dispersions (Anderson et al. 2006, 
2011; Anderson and Santana-Garcon 2015). Here, beta 
diversity is the average distance from a group centroid (cal-
culated using a Modified Gower Log2 resemblance matrix) 
of the composition of the assemblages recorded from 
each BRUVS replicate at each site (Anderson et al. 2011). 
Therefore, a greater average distance from the centroid cor-
responds to greater variability in species composition, and 
vice versa. Consequently, we obtained only one value for 
beta diversity for each seagrass meadow during each sea-
son, resulting in thirty observations for analysis. To keep 
this consistent between analyses, we calculated only one 
value per site, per season, for species richness also; again 
from each of the eight BRUVS replicates at each site.

Generalized additive models (GAMs) were used to 
determine which seascape and seagrass metrics most influ-
enced the species richness and beta diversity measured. All 
GAMs were fitted in the R statistical environment using 
the packages mgcv and MuMIn (Bartoń 2013). Season was 
tested as part of the GAM analysis for both species rich-
ness and beta diversity to ensure it had no impact on fish 
assemblages. However, for the GAM on beta diversity, the 
standard errors for seagrass blade length and shoot den-
sity samples taken in each meadow were used instead of 
the average measurements as beta diversity is a measure of 
variability within a site. GAMs were preferred, as we could 
not assume linearity for all the factors used in the analysis 
(Gilby et al. 2015). Thirty observations were used in each 
model and due to this, models were restricted to four or less 
factors and the models were compared using the Akaike 
information criterion corrected (AICc), with best-fit mod-
els having the lowest AICc. Model selection for GAMs was 
done using the dredge function in the MuMIn package in 
the R statistical environment, which selects the best model 
from all possible combinations of factors. GAMs were fit-
ted using a Gaussian distribution with all temporal factors 
being represented by the average seasonal value for each 
site (i.e. the average values for shoot density, length and 
biomass during each of the three seasons). All models were 
checked for homogeneity and normality to ensure model 
performance. GAMs return a best-fit model for each of the 
measures and also a relative importance value. Relative 

factor importance was calculated by the summed weighted 
AICc value for each model containing that factor, with the 
highest values being those that contribute the most to the 
models (Burnham and Anderson 2002).

In order to determine which of seascape context and 
seagrass metrics most influenced the entire fish community 
composition between sites, a BIOENV was used (Clarke 
and Ainsworth 1993). Matrices of fish community com-
position (Bray Curtis similarity) and the environmental 
factors (Euclidean distance) were compared to determine 
which factors correlated the most with the fish community, 
and a principle coordinates ordination (PCO) was used to 
visualize significant factors (Anderson and Willis 2003). 
The same PCO was then used to visualize which species 
correlated most with changes in fish communities. The 
BIOENV analysis was restricted to include no more than 
four factors in the best model and returns a correlation 
value. All factors were compared prior to analysis to ensure 
no autocorrelation, with no factors being removed from the 
analysis.

Results

We recorded 61 fish species within seagrass meadows in 
Moreton Bay. The lowest number of species was recorded 
at the site furthest from the ocean during summer, with 
only two species being present across all BRUV replicates 
(See Table S1). The highest number of species recorded on 
BRUVS within a single seagrass meadow was 25, which 
was recorded during summer at site 3. Fish species rich-
ness was found to be highest at sites with large seagrass 
beds (Fig. 2a; Table S1) and was generally higher at sites 
further away from mangroves (Fig. 2c, e). The two best-
fit models for species richness were both found to contain 
total seagrass area and distance to mangroves, while one 
also contained shoot density (Table 1). GAM plots for spe-
cies richness show that total seagrass area and distance to 
mangroves have a positive relationship with species rich-
ness (Fig. 3).

Beta diversity was influenced most by seagrass met-
rics as opposed to the seascape context that the seagrass 
meadow was present in. Distance to mangroves and vari-
ation in shoot length (Fig. 2b) and to a lesser extent shoot 
density (Fig. 2d) had the largest influence on the measures 
of beta diversity (Fig. 2f). Similar to the best-fit models 
for species richness, the best-fit model for beta diversity 
included distance to mangroves and shoot length stand-
ard error (Table 1). All remaining best-fit models for beta 
diversity included seagrass metrics; with shoot density, 
length and seagrass biomass all being included (Table 1). 
GAM plots for beta diversity show that distance to man-
groves and shoot length standard error have a negative 
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relationship with beta diversity (Fig. 3). Season was not 
present in any of the top models for either species richness 
or beta diversity.

Fish community composition was most influenced 
by seascape factors; distance to coral reefs (r = 0.515) 
and distance to mangroves (r = 0.555) correlating most 
(Fig. 4; Table 2). Fish communities across the bay were 
dominated numerically by omnivorous fish species 
Pelates sexlineatus and Acanthopagrus australis, herbivo-
rous species Siganus fuscescens and multiple carnivorous 

Lethrinus species. Changes in the abundances of these 
species between seagrass meadow locations are the main 
driver in differences in seagrass fish community compo-
sition. A. australis abundances correlated highest with 
changes in total seagrass area (Fig. 4). S. fuscescens and 
Lethrinus species correlated the highest with changes in 
distance to mangroves (Fig. 4). Similarly, P. sexlineatus 
abundance changes correlated most with changes in man-
grove distance, reef distance and shoot length (Fig. 4).

Fig. 2  Species richness in sea-
grass meadows of Moreton Bay, 
Australia, is highest in seagrass 
meadows that are larger (a) and 
further away from mangrove 
forests (c). Beta diversity was 
found to be higher in individual 
seagrass meadows that are more 
uniform throughout, with lower 
variation in shoot length (b) and 
shoot density (d) being the most 
influential factors along with 
distance from mangrove forests. 
In plots e (Species richness) and 
f (Beta diversity), values nearer 
to one indicate a higher correla-
tion between that factor and the 
dependent variable of interest. 
± indicates the direction of the 
relationship for each factor. 
These numbers represent the 
relative importance values that 
are calculated from summed 
weighted AICc values from 
each model that each individual 
variable is present in

Table 1  Best-fit models using a GAM on species richness and beta diversity. All models are within 2 AICc values of the top model

Values in the brackets represent the individual R2 for factors in the best-fit model when no other factors are present

Best-fit model df AICc R2

SpeciesRichness Distance to mangroves(0.64) + total seagrass area(0.68) 5 156.8 0.784

Distance to mangroves + total seagrass area + shoot density 6 157.9 0.799

Betadiversity Distance to mangroves(0.18) + shoot length SE(0.25) 4 −32.6 0.368

Distance to mangroves + shoot length SE +shoot density SE 5 −32.1 0.416

Distance to mangroves + shoot length SE +seagrass biomass 5 −31.4 0.403

Distance to mangroves + Shoot length SE +seagrass biomass + shoot density SE 6 −30.6 0.448
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Fig. 3  Correlation plots from GAM outputs for species richness and 
beta diversity. ‘s’ on the y-axis indicate the application of a smoother 
in the GAM function, and numbers indicate the estimated degrees of 

freedom of the smooth function. Shaded grey regions indicate 95% 
confidence intervals

Fig. 4  Principle coordinates ordination (PCO) displaying fish com-
munity composition recorded at each seagrass meadow, the effects of 
seascape context and seagrass metrics and which species were most 
impacted by changes in community composition. The length of a vec-

tor overlay indicates the strength of the correlation. Replicate points 
represent the three different seasons each site was sampled during the 
study

Table 2  BIOENV results 
assessing how small-scale 
seagrass metrics and seascape 
context influence seagrass fish 
community composition

Individual variable Corr. Models Corr.

Distance to mangrove 0.555 Distance to mangrove + distance to coral 0.668

Distance to coral 0.515 Distance to mangrove + distance to coral + shoot length 0.610

Distance to ocean 0.165 Distance to mangrove + distance to coral + seagrass biomass 0.604

Shoot length 0.118 Distance to mangrove + distance to coral + total seagrass area 0.603

Total seagrass area 0.089

Seagrass biomass 0.016

Shoot length −0.09
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Discussion

Large-scale variability in habitat context drives species 
assemblages in many different terrestrial and marine sys-
tems around the world (Olds et al. 2012; Rudnick et al. 
2012). We show that variability in seascape context 
drives differences in fish species richness and assemblage 
composition between seagrass meadows, but variations 
in beta diversity are driven more by small-scale changes 
in the structural complexity (e.g. seagrass blade length 
and density) of seagrass meadows and proximity to man-
groves. Proximity to a mangrove forest was found to 
decrease species diversity and alter community composi-
tion, namely the abundances of species such as S. fusce-
scens and multiple Lethrinus species (Olds et al. 2012), 
while the size of seagrass meadows was similarly impor-
tant for species diversity and the abundance of A. aus-
tralis, but not overall community composition (Boström 
et al. 2006). This is important for the management of sea-
grass ecosystems as this allows managers to determine 
what factors influence species turnover and variability 
(beta diversity) and species diversity (species richness), 
therefore furthering the understanding of the ideal man-
agement for this ecosystem.

The location of a seagrass meadow within the broader 
seascape was a major factor in determining the composi-
tion of fish assemblages and diversity. Seagrass meadows 
that were large and further away from mangroves sup-
ported a more diverse fish assemblage, with those sea-
grass meadows also being within close proximity to coral 
reefs and the open ocean (Connolly and Hindell 2006; 
Nagelkerken et al. 2000). Numerous fish species associ-
ated to seagrass or coral reefs make daily excursions to 
other habitats, resulting in their abundance and species 
richness being higher in seagrass meadows with close 
proximity to coral reefs (Olds et al. 2012). This likely 
peaks at high tide when all habitats, coral reefs, man-
grove forests and seagrass meadows, are fully inundated, 
possibly resulting in some individuals being missed 
by the BRUVS sampling as they were in other habitats 
(Olds et al. 2012). Similarly, proximity to the open ocean 
can have a significant effect on the composition of fish 
species, with the seagrass beds receiving a greater sup-
ply of larvae (Ford et al. 2010), but also support species 
that make ontogenetic movements from inshore areas to 
deeper offshore reefs (Henderson et al. 2017; Kimirei 
et al. 2011; Sumpton et al. 2008). Here, our results show 
that changes in seagrass fish assemblage composition are 
likely a result of seascape context and connectivity with 
other habitats.

We used beta diversity to determine how similar 
assemblage composition is within different seagrass 

patches and how they are compared to others (Anderson 
et al. 2006, 2011; Anderson and Santana-Garcon 2015), 
looking further into the factors between these patches 
that cause different seagrass beds to be heterogeneous 
or homogeneous. Variability in seagrass complexity (e.g. 
shoot density, length and seagrass biomass) was the most 
important factor in determining how beta diversity var-
ied between seagrass beds in this study (Bennett and Gil-
bert 2016). The patchiness of seagrass meadows across 
Moreton Bay had a clear influence on the heterogeneity 
of fish species within a meadow (Barboza et al. 2015). 
Seagrass meadows with more variable blade height meas-
urements contained lower levels of beta diversity among 
fish assemblages throughout the entire meadow. Due 
to the poor water quality that is experienced in More-
ton Bay, particularly within the southern portions of the 
bay, seagrass beds are often fragmented and heterogene-
ous in their structure (Maxwell et al. 2014). These het-
erogeneous, patchy seagrass beds appear to be decreas-
ing the variability within fish communities at the seagrass 
meadow level. While this result seems counterintuitive 
to how complexity drives species abundances in many 
habitats, here we expect that heterogeneity in seagrass 
meadows is linked to the patchiness experienced in these 
meadows (Gullström et al. 2008). However, these effects 
of habitat heterogeneity are unable to be separated from 
that of the poor environmental conditions experienced in 
these seagrass meadows. Changes in habitat complexity 
can be highly important for heterogeneous seagrass fish 
communities. With beta diversity increasingly being used 
as a monitoring tool for assessing variability in faunal 
communities (Anderson et al. 2011; Barboza et al. 2015), 
it is important to monitor both fish communities and hab-
itat structure so that we can improve the understanding 
of the factors that drive variability within marine systems 
(Barboza et al. 2015; Jiang et al. 2015).

Large, well-connected seagrass beds provide habitat for 
a more diverse seagrass fish community. However, within 
this context, seagrass meadows with smaller and consist-
ently dense seagrass blades are responsible for increased 
variability in fish community composition of individual 
seagrass meadows. These large seagrass meadows are 
likely to be less patchy and therefore provide more con-
sistent habitat for seagrass fish assemblages. Our results 
show a strong effect of connectivity, with richness being 
higher closest to the ocean, where seagrass meadows have 
a high proximity to inshore coral reefs and are generally 
larger. We highlight the influences that drive variability 
within seagrass meadows and also the factors that influence 
changes at a larger scale. We suggest that empirical data 
on what factors influence these different scales of variation 
are critical to improved conservation initiatives in seagrass 
ecosystems and elsewhere.
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