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features), also including relationships between shoot NNd 
and shoot density counts. The raw data, provided as supple-
mentary material, are currently the first and the only source 
of information available about shoot spatial micro-distribu-
tion. In this regard, although our data set cannot represent 
the whole spectrum of variability in P. oceanica meadows, 
it can be regarded as a first step towards a better knowledge 
of small scale shoot point patterns in P. oceanica meadows.

Introduction

While seagrass meadows often appear as uniform land-
scapes, their inner structure, and, therefore, their dynam-
ics, can be very complex (Den Hartog 1971). Seagrass 
meadows, at any one time, consist of a nested structure of 
clones, possibly fragmented into different ramets, each sup-
porting a variable number of shoots (Duarte et  al. 2006). 
The shoots are borne by rhizomes growing either vertically 
(orthotropic rhizomes), thus preventing burial, or hori-
zontally (plagiotropic rhizomes), enabling colonization of 
surrounding substrates (Caye 1980). As the plagiotropic 
rhizomes grow horizontally, meadows expand themselves 
with wide spacing between vertical shoots and only a few 
horizontal apices (Boudouresque and Meinesz 1982; Bou-
douresque et  al. 2016). Thus, continuous recruitment of 
new clones to the meadow, shoots growth and shoots turno-
ver support the intense dynamics of seagrass ecosystems, 
results from the combination of processes operating at vari-
ous scales, which, if balanced, preserve the stability of the 
whole ecosystem (Duarte et al. 2006).

In the Mediterranean Sea, the seagrass Posidonia oceanica 
(L.) Delile forms monospecific meadows with different types 
of coverage pattern (continuous to patchy) (Molinier and 
Picard 1952; Boudouresque et al. 2012) with shoot densities 
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up to more than 1000 shoots  m−2. Density depends on depth 
and other factors and ranges in most cases from 150 to 300 
shoots  m−2(very sparse meadows) to more than 700 shoots 
 m−2 (very dense meadows) (Giraud 1977).

Research on P. oceanica meadow structure can be car-
ried out at different spatial scales (Van Rein et al. 2009). At 
larger spatial scales, the investigations usually focus on the 
way meadows cover the substrate, e.g. by mapping their lim-
its, while shoot density measurements are usually the main 
goal of studies at smaller spatial scales (Pergent-Martini et al. 
2005). However, density measurements are based on shoots 
counts and the spatial distribution of shoots is not uniform. 
Therefore, at very small spatial scales, density estimates 
become highly variable, depending on point patterns of shoot 
position (Panayotidis et al. 1981; Bacci et al. 2015).

While the latter depend on interactions between rhi-
zomes, there are very few scientific studies aimed at under-
standing this process in clonal growth of P. oceanica (Ken-
drick et al. 2005a), with particular reference to the growth 
rates of rhizomes and patterns of branching (Marba and 
Duarte 1998; Molenaar et al. 2000). Point patterns of shoot 
position are also relevant to simulations of the dynamics of 
plant growth related to expansion of plagiotropic rhizomes 
(Kendrick et al. 2005b) and to optimize strategies for trans-
plantation aimed at reforestation activities (Renton et  al. 
2011). No information is available about point patterns of 
P. oceanica shoots, neither on other marine seagrasses. In 
terrestrial ecology in contrast, there is an extensive history 
of observational research involving the analysis of spatial 
point patterns (for a review see Velasquez et al. 2016). In 
fact, several studies have sought to explain the formation 
of plant spatial patterns by connecting observed patterns 
to ecological processes (e.g. Haase et al. 1996; Tirado and 
Pugnaire 2003; Rayburn and Monaco 2011). While plant 
spatial patterns have been often analyzed as the outcome of 
underlying ecological processes, studies focusing on their 
effects on population and community dynamics are less 
common (Tilman and Kareiva 1997; Murrell et  al. 2001; 
Stoll and Prati 2001; Dunstan and Johnson 2003; Maestre 
et al. 2005; Turnbull et al. 2007).

The goal of this research is to investigate shoot distribu-
tion patterns of the Mediterranean seagrass P. oceanica at 
a very small spatial scale(i.e. in the  100–102 cm range), to 
reveal recurring patterns at the different spatial scales and 
to gain new insights into meadow structure.

Methods

Study area and sampling methods

Field activities were carried out in August 2011 at three 
sites in the Capo Rizzuto Marine Protected Area and 

in September 2012 at two sites in the Riviera dei Cedri 
Marine Park (Central Mediterranean, Italy, Fig. 1). As the 
field work demanded a large amount of underwater activity 
by SCUBA diving, we selected rather shallow sites (about 
5  m depth). Moreover, at all sites, P. oceanica was set-
tled on matte (i.e. the whole mass composed of rhizomes, 
sheaths, roots and the sediment that fills the interstices) 
and looked uniformly dense at repeated visual inspections. 
At each site, two 1 m × 1 m quadrats were randomly posi-
tioned a few meters apart from each other. Within each 
quadrat, we cut all the leaves right above the ligule (thus 
allowing regrowth) and took pictures to arrange a photomo-
saic of the whole quadrat.

Image pre-processing

Pictures from each quadrat were processed to correct dis-
tortion and stitched into a high-quality photomosaic. The 
exact position of the apical portion of each rhizome (i.e. at 
the leaf insertion) was then digitized (Fig. 2). This choice 
has a practical justification, because the green tissue of the 
leaves just above the ligule can be easily recognized in the 
photomosaics. In addition, this choice has also a theoretical 
justification. In fact, regardless of the point of insertion of 
the rhizome in the substrate, the location of the apical por-
tion plays a fundamental role in the way each shoot com-
petes for space with its neighbours.

Finally, a sensitivity analysis was carried out to test 
robustness of the resulting point patterns relative to digi-
tization errors. Each point in the pattern was subjected to a 
random displacement, uniformly distributed within a circle 
of radius 0.5 cm, and the resulting point pattern was com-
pared to the original one. The procedure was repeated 1000 
times.

Spatial point pattern analysis

Nearest neighbour statistics was computed for the whole 
data set as well as for each quadrat. Distances (r) from any 
shoot to its nearest neighbour were also analyzed in rela-
tion to shoot density values within independent subquadrats 
(20 cm × 20 cm) by means of the Spearman’s rank corre-
lation coefficient (Spearman 1904) and the observed rela-
tionship was then compared the one expected for a random 
(Poisson) point processes. In addition, we used the inho-
mogeneous J-function (van Lieshout 2010), which is the 
counterpart for inhomogeneous spatial point patterns of the 
J-function for homogeneous point patterns, to define the 
properties of the spatial distribution patterns of P. oceanica 
shoots in each quadrat.

The J-function is a distance-dependent function that is 
often applied to the analysis of spatial point patterns (Van 
Lieshout and Baddeley 2006). The rationale supporting 
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this function is to compare distances from points in the pat-
tern to their nearest neighbour (nearest-neighbour distance 
G-function) and distances from arbitrary points to their 
nearest neighbor in the pattern (empty space F-function). 
This can be written as:

where G(r) is the nearest-neighbour distance function and 
F(r) is the empty space function. Both functions show the 
cumulative distribution of these distances (r) in a point pat-
tern. In the inhomogeneous J-function, which was applied 

J(r) = [1 − G(r)]∕[1 − F(r)]

in our work, the G-function and the F-function are obvi-
ously of the inhomogeneous type. In this regard, an inho-
mogeneous Poisson process was chosen because our plots 
were partly influenced by first-order heterogeneity. Hence, 
the intensity λ is not approximately constant, but varies 
with the location (x, y) over the entire observation quad-
rat. To estimate the intensity function, which defines the 
expected number of shoots per unit area at each location, 
we used kernel estimators (Waller and Gotway 2004), 
which are among the best established nonparametric esti-
mation techniques (Efromovich 1999). An estimate of 

Fig. 1  Location of the study areas within the two study sites in 
Mediterranean Sea, Italy. a MPA-Capo Rizzuto (area I 38°55′10′′N, 
17°00′05′′E; area II N 38°53′56′′N, 17°05′24′′E; area III 38°54′53′′N, 

17°02′11′′E); b MP-Riviera dei Cedri (area IV 39°41′55′′N, 
15°48′13′′E); c MP-Riviera dei Cedri (area V 39°52′24′′N, 
15°46′53′′E)
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inhomogeneous J-functions derived from a spatial point 
pattern dataset can be used to support exploratory data 
analysis and formal inference about the pattern (Szmyt 
2014; Wiegand and Moloney 2014; Velazquez et al. 2016). 
In exploratory analyses, the shape of the function provides 
details about the way in which events (shoots, in our case) 
are spaced in a point pattern. Generally, if J(r) = 1, the dis-
tance distribution follows the inhomogeneous Poisson pro-
cess, while deviations from that value, i.e. J(r) >1 or J(r) 
<1, indicate spatial regularity or clustering, respectively 
(Fortin and Dale 2005; Van Lieshout and Baddeley 2006). 
For inferential purposes, the observed value of the inhomo-
geneous J-function was compared to the expected value of 
J-function for an inhomogeneous Poisson point process and 
deviations between the empirical and theoretical J curves 
suggested spatial clustering or spatial regularity. Signifi-
cance of the deviations from the heterogeneous null model 
hypothesis, assuming 0.05 as the p level in Monte Carlo 
tests, was tested using simulated confidence envelopes. The 
latter were computed by point-wise simulation (i.e. for each 
value of the distance argument r) of the inhomogeneous 
Poisson process, with the same intensity λ (mean number 
of shoots per unit area) from the study region. Finally, the 
position of the empirical function relative to the envelopes 
was checked (Bivandet al. 2008). The estimation of inho-
mogeneous J-functions is hampered by edge effects arising 
from the impossibility to observe points outside the quad-
rat. An edge correction is, therefore, needed to reduce this 
bias (Baddeley et al. 2000). The edge correction we applied 

was based on the border method (van Lieshout 2010). All 
the statistical analyses were performed using the package 
spatstat 1.24-2 (for full details about spatstat see Baddeley 
et al. 2015) in R Project for Statistical Computing, version 
2.13.2.

Results

Spatial point patterns were analyzed in ten quadrats for a 
total of 7828 shoots (Fig.  3), highlighting very different 
shoot density values among quadrats (min 566 shoots  m−2; 
max 1011 shoots  m−2).

Sensitivity analysis highlighted robustness of the shoot 
digitization process. In this regard, the lowest difference 
between medians of shoot Nearest neighbour distances 
(NNd) of the observed quadrat and the simulated quadrats 
was 0.003 cm (in quadrat d), while the highest difference 
between medians of shoot NNd of the observed quadrat and 
the simulated quadrats was 0.052  cm (in quadrat e). The 
frequency distribution of NNd of shoots is unimodal and 
positively skewed. The NNd median value was 1.85 cm and 
99% of the values fell between 0.45 and 4.38 cm (Fig. 4). 
In addition, a significant and negative Spearman’s rank 
correlation (rs  =  −0.51, N = 250, p < 0.001) was detected 
between median of shoot NNd and shoot density in the 
available subquadrats (size 20 cm × 20 cm, 250 subquad-
rats overall) (Fig.  5). In this regard, most of the points 
characterized by higher shoot density values fell above the 

Fig. 2  A sample image (left) and the shoot point pattern (right). Black dots mark the apical portion of each rhizome. The image (left) was cap-
tured from above and the elongated forms correspond to dead shed leaves
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interval of expected values for a Poisson point process, 
thus indicating regular patterns within those subquadrats. 
The shoot NNd are also shown separately by means of 
box plots (Fig. 6), one for each of the spatial point pattern 
shown in Fig. 3. In this regard, Kolmogorov–Smirnov test 
(with Bonferroni correction) detected significant statistical 
differences in shoot NNd between spatial point patterns in 
most cases (37 times out of 45 possible pairwise compari-
sons). Finally, in most spatial point patterns, the observed 
J(r) function was >1 and fell above the 95% Monte Carlo 
interval for small values of r up to 2–3  cm, indicating a 
regular pattern. At spatial scales larger then about 3 cm, the 
most frequent values of the J(r) function were <1 and fell 
below the 95% limit of the Monte Carlo interval, indicating 
aggregated shoot distribution. Quadrat a and quadrat g, can 
be regarded as exceptions to this rule, as at a spatial scale 
larger than about 3  cm, the observed J(r) function values 
fell within Monte Carlo interval, thus suggesting a random 
pattern (Fig.  7). Raw data are provided as supplementary 
material.

Discussion

Data collected in this research allowed to map the position 
of each single shoot in ten quadrats sampled at two Cen-
tral Mediterranean sites. As each quadrat was 1 m × 1 m, 
an overall area of 10 m2 of P. oceanica meadow has been 
mapped at the finest possible scale.

The lack of similar data in current literature and the 
amount of data collected in this study makes the presented 

Fig. 3  Shoot distribution of the Mediterranean seagrass Posidonia 
oceanica within 1 m × 1 m quadrats in meadows settled on matte and 
uniformly dense at repeated visual inspections. a, b Area I_ MPA-
Capo Rizzuto; c, d area II_ MPA-Capo Rizzuto; e, f area III_ MPA-
Capo Rizzuto; g, h area IV_MP-Riviera deiCedri; i–l area V_MP-
Riviera deiCedri

Fig. 4  Frequency distribution of nearest neighbour distances (NNd) 
of shoots. Very low frequency of nearest neighbour distances are 
shown in numbers in the 6–7 (cm), 7–8 (cm) and 8–9 (cm) intervals
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results of potential interest to scientists involved in seagrass 
research. Nevertheless, due to the complexity of the pro-
cesses involved in the generation of the patterns we ana-
lyzed, this study is to be regarded as a first step towards a 
broader understanding of the small scales spatial structure 
of P. oceanica meadows.

Although our data may not represent the full spectrum 
of small scale spatial structures in P. oceanica meadows, 

they provide considerable information about the potential 
variability of a very common type of meadows, i.e. those 
settled on matte, in shallow waters and in good health.

A meadow contains a huge number of shoots and its 
dynamics depends on the spatial distribution of those 
shoots. The variables that influence the shoot distribution 
depend on spatial scale and their number is presumably 
increasing in direct proportion to the spatial scale (Fig. 8).

First, the horizontal exploratory expansion of a meadow 
is controlled by species traits, such as rhizome elonga-
tion, branching patterns and clonal growth (Caye 1982; 
Marbà and Duarte 1998). In this regard, using the nearest 
neighbour statistics is justified by the role that interactions 
between neighbouring shoots play at very small spatial 
scale.

Second, dynamics of P. oceanica meadows depend on 
an extensive range of biological and physical variables such 
as those related to depth, currents, geomorphology and 
substrate type (e.g. Duarte 1991; Lorenti et al. 1995; Mon-
tefalcone et al. 2016) as well as irradiance, temperature and 
nutrient availability (e.g. Buia et al. 1992; Alcoverro et al. 
1995; Zupo et  al. 1997; Leoni et  al. 2007), detritus accu-
mulation and sedimentation (Boudouresque and Jeudy de 
Grissac 1983; Romero et al. 1992; Gacia and Duarte 2001) 
and also anthropogenic impacts (e.g. Pergent-Martini and 
Pergent 1996; Di Carlo et  al. 2011; Romero et  al. 2012; 
Bacci et al. 2016). While these biological and physical fea-
tures are generally relevant at large spatial scales, some of 
them can also play a role at smaller spatial scales.

Although the quadrats we analyzed have been set on 
matte in stands that looked uniformly dense at repeated 

Fig. 5  a Scatter plot of medians of shoot nearest neighbour dis-
tances (NNd) and shoot density in the available subquadrats 
(20 cm × 20 cm, 250 subquadrats overall). Expected median values 
for shoot NNd for a Poisson point process with 95% Monte Carlo 
intervals (grey line) (1000 simulations) are also shown in the plot. 
Shoot density values computed within 20  cm  ×  20  cm subquadrats 

were extrapolated to 1  m2. b Ternary plot showing, for each range 
of shoot density, the percentage of points of the adjacent scatterplot 
which fall above (indicating regular patterns), inside (indicating ran-
dom patterns) or below (indicating aggregated patterns) the expected 
median values for a Poisson point process

Fig. 6  Box-plot of nearest neighbour distances (NNd) for each of the 
ten quadrats (a–l). Number of shoots (N) and median NNd value are 
also shown
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visual inspections, in most cases, shoot distribution 
appeared less homogeneous within the sampling quadrats.

In particular, some roughly circular patches with no 
shoots (i.e. Fig. 3, quadrat i) could be connected to direct 

anthropogenic impacts (e.g. anchors) or to natural causes. 
In this regard, small patches of dead matte in a healthy P. 
oceanica meadow may result merely from the death of 
such vulnerable shoots. These structures, which are natural, 

Fig. 7  Two J(r) functions 
are shown for each of the ten 
quadrats. a–l Observed (thick 
line) and expected for an inho-
mogeneous random (Poisson) 
point process (dashed line) with 
95% Monte Carlo intervals (thin 
line). Observed patterns that 
fall above, below or within the 
Monte Carlo intervals indicate 
regular, aggregated or random 
patterns, respectively

a b

c d

e f

g h

i l
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have been termed autogenic dead matte patches (Boudour-
esque et al. 2009). In other cases (i.e. Fig. 3, quadrat f), in 
analogy with the autogenic dead matte patches, our results 
showed the influence of natural causes as the discontinui-
ties in matte surface on shoot distribution at small spatial 
scale: for instance, reduced density or absence of shoots 
was observed where the matte profile was locally steeper.

The reduced homogeneity in shoot distribution that was 
previously mentioned is to be understood as “site-specific” 
and strictly related to the quadrats inspected. Therefore, 
their spatial point patterns were treated as inhomogeneous, 
to remove any local spatial structure (i.e. when intensity λ 
is not approximately constant, but varies with location over 
the entire observation quadrat), thus highlighting recurring 
patterns, which are not “site-specific”, but likely to be a 
more general feature of P. oceanica meadows.

Our results showed three different spatial scales that are 
relevant to analyses aimed at studying shoot point patterns, 
which are affected by different factors at different spatial 
scales.

The first of those spatial scales roughly coincides with 
the quadrat size  (102  cm), where an important stochastic 
component, related to small scale features of the seafloor, 
affects distribution of shoots.

The second and the third spatial scales were smaller 
(roughly between  101 and  100 cm) and emerged from recur-
ring patterns that were highlighted by the inhomogeneous 
J-function. Patterns recognized in the investigated quadrats 
show that shoots tend to be regularly distributed at very 

small spatial scale (in the 2–3 cm range, close to the aver-
age nearest neighbour distance). At this spatial scale, com-
petition for space among shoots is the main factor affecting 
shoot spatial distribution, which is aimed at optimal pack-
ing. At spatial scales larger than about 3  cm, some “spe-
cies-specific” factors seem to become determining. These 
factors, strictly related to P. oceanica morphology, impose 
angles, distances, etc., and affect rhizome growth as well as 
the way shoots are arranged on each rhizome and the way 
different rhizomes interact with each other, thus determin-
ing aggregated shoot patterns.

The shoot point patterns analyzed by NNd in independ-
ent subquadrats (20 cm × 20 cm) revealed regular patterns 
in most cases, but regularity in point patterns was much 
more frequent where shoot density grew larger. In fact, at 
the highest density levels, no points were found under the 
curve that showed the expected NNd as a function of shoot 
density in case of random shoot distribution.

The analysis of shoot distribution patterns can be very 
useful to better understand the high degree of small scale 
variability in shoot density that has been reported in litera-
ture. In fact, although the existence of density patchiness 
within P. oceanica meadows has long been recognized 
(Panayotidis et al. 1980, 1981), small scale structural vari-
ability in P. oceanica meadows is poorly known and few 
authors have addressed the problem so far (Balestri et  al. 
2003; Gobert et  al. 2003; Zupo et  al. 2006; Bacci et  al. 
2015). This variability, however, is likely to be a general 
feature of P. oceanica meadows, as it depends on how 

Fig. 8  Point patterns of Posidonia oceanica shoots at different spatial scales. While inter-shoot relationships drive small scale dynamics, a 
broader set of environmental conditions play a role in shoot point patterns and in shoot density at mesoscale
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shoots grow, compete for space with each other, and on 
how they adapt their propagation to small scale features of 
the seafloor (Bacci et al. 2015). Our results highlight how 
patchiness (i.e. aggregation) in shoot distribution at small 
spatial scales (mainly at  101–102  cm scale) is the main 
responsible for the variability in shoot density estimates 
obtained from shoot counts. Differently, the recurring pat-
terns highlighted at the smallest spatial scale  (100–101 cm) 
revealed a homogeneous spacing among shoots, making 
it clear that most of the uncertainty on density estimates 
does not originate by uneven shoot distribution at this spa-
tial scale. Further assurances about the existence of recur-
ring patterns at the smallest spatial scales  (101 and 10° cm) 
derive from the nearest neighbor distances among shoots in 
each inspected quadrat. In this regard, although the quadrats 
differed in shoot density (from 566 to 1010 shoots  m−2), 
the median NNd value was always close to 2  cm. Never-
theless, the NNd among quadrats revealed small, but sig-
nificant differences from a formal point of view. However, 
neighbouring quadrats did not seem to show more similari-
ties between them than farther quadrats and the magnitude 
of the differences did not appear to be related to distance 
between quadrats. This might suggest that the observed 
level of spatial variability in the data is characteristic of 
the type of meadow selected for our study, i.e. in shallow 
water, in good health, settled on matte, regardless of site-
specific characteristics.

In the end, our findings seem consistent with those, 
entirely independently from this study, obtained by Bacci 
et  al. (2015). In fact, the latter paper suggested smaller 
quadrats (20  cm  ×  20  cm instead of 40  cm  ×  40  cm or 
larger) as the most effective solution for shoot density 
counts, playing down error in density estimates and opti-
mizing the monitoring methodology.

In the light of the role of P. oceanica meadows in the 
Mediterranean basin and their subsequent assumed rele-
vance under European Directives (Habitat Directive 92/43/
EEC; Water Framework Directive 2000/60/EC; Marine 
Strategy Framework Directive 08/56/EC) and national 
laws, monitoring is crucial to support environmental deci-
sion-making and management of the coastal zone. Our 
results as well as other sources (e.g. Pergent-Martini et al. 
2005) dealing with investigations in seagrass macrostruc-
ture agree in highlighting the importance of shoot density 
as a very useful descriptor in P. oceanica studies. At the 
same time, however, some limitations of this descriptor 
are becoming increasingly evident, especially when it is 
not appropriately measured (e.g. Bacci et al. 2015; Schultz 
et  al. 2015). Future studies could contribute with addi-
tional insights into these issues, providing useful details 
about shoot distribution patterns in P. oceanica meadows 
and about their potential use as additional macrostructure 
descriptors in seagrass monitoring. With this in mind, 

while shoot density is commonly used to assess environ-
mental quality, we wonder whether point patterns in shoot 
distribution can possibly reveal something more.

Independently of any potential diagnostic interpretation 
of shoot distribution patterns, small scale information about 
meadow structure might play a role in supporting develop-
ment and validation of models for growth and expansion 
of P. oceanica rhizomes. In this regard, a few models have 
been implemented to represent the dynamic development 
of the branching structure of a P. oceanica rhizome devel-
oping from a single shoot over time, as it slowly spreads 
out across the seafloor (Kendrick et al. 2005b; Renton et al. 
2011). Differently, no research has yet been carried out to 
model the dynamic development of plagiotropic and ortho-
tropic rhizomes in a three-dimensional space, i.e. in a way 
that more closely and more generally resembles the real 
processes.

In the framework of P. oceanica transplantation activi-
ties within restoration projects, the analysis of shoot micro-
distribution might also prove useful as a tool for comparing 
transplanted areas to surrounding natural meadows. After 
low density transplantation, rhizome growth is plagiotropic, 
but as soon as shoot density becomes high enough, rhizome 
growth turns to orthotropic and the resulting point patterns 
are expected to become more and more similar to those of 
the natural meadow as the matte builds up.

Although spatial point pattern analysis (SPPA) has 
become increasingly popular in terrestrial ecological 
research over the last two decades (Velasquez et al. 2016), 
most of these techniques are almost unknown in aquatic 
environments. This is partly understandable, since SPPA 
is not a standard technique to most ecologists and collect-
ing suitable point pattern data was not an easy task until 
recently, especially at large spatial scale. In today’s world, 
not only affordable underwater cameras, but also new 
instruments and technologies (i.e. drones, R.O.V.) allow to 
easily collect high resolution images, ready to be processed, 
above and below the water at any spatial scale. With this 
in mind, we hope that our work helps to stimulate the use 
of SPPA in marine ecology. In this regard, detailed knowl-
edge of the characteristics of spatial distribution patterns of 
animal and plant species are the key for developing a deep 
understanding in many branches of ecology (Velasquez 
et al. 2016).

In conclusion, although our data set is far from repre-
senting the whole spectrum of small scale variability in 
P. oceanica meadows, it has helped to shed light on shoot 
distribution patterns of the Mediterranean seagrass P. 
oceanica. We hope that it will be of use to other seagrass 
scientists too, thus promoting further SPPA-based stud-
ies in seagrass ecology. As far as we know, our raw data, 
here provided as supplementary material, are the first 
source of information available about point patterns of 
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shoot distribution. We hope that they will help to stimulate 
research activities aimed at studying shoot distribution pat-
terns in P. oceanica and other seagrasses at very small spa-
tial scale.
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