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potential of microbes as early warning indicators for envi-
ronmental stress and coral reef health and proposes priori-
ties for future research.

Introduction

Coral reefs have flourished in tropical shallow water 
regions for over 240  million years (Stanley and Fautin 
2001). However, during the last 30 years coral reefs have 
faced severe threats due to anthropogenic climate change, 
crown of thorns starfish (COTS), disease, overfishing and 
pollution (Hoegh-Guldberg 2011; De‘ath et al. 2012). For 
instance, the emission of carbon dioxide (CO2) leads to a 
decrease in the ocean’s pH and adversely affects calcium 
carbonate deposition by calcifying organisms such as envi-
ronmentally susceptible coral species (Hoegh-Guldberg 
et  al. 2007; Putnam et  al. 2016). Increased ocean surface 
temperature as a consequence of global warming, not only 
result in more frequent and severe tropical storm events 
(reviewed by Knutson et  al. 2010) but also pushes the 
coral-Symbiodinium symbiosis towards its thermal toler-
ance limit (Hoegh-Guldberg 1999). Once the temperature 
exceeds the resistance threshold of the symbiosis, the inter-
action between corals and their photoautotrophic Symbiod-
inium breaks down and corals bleach (Brown 1997). Mass 
coral bleaching events have occurred more frequently over 
the last decades (Donner et al. 2005; Hoegh-Guldberg et al. 
2007; Baker et  al. 2008). The most recent global bleach-
ing episode in 2015–2016 was the longest bleaching event 
recorded in history (US National Oceanic and Atmospheric 
Administration) and has led to severe bleaching worldwide. 
In the northern sector of the Great Barrier Reef (GBR) in 
Australia, this bleaching event caused the mortality of up 
35% of all corals (GBRMPA 2016; Normile 2016; Hughes 
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et  al. 2017). In addition to the hazards emerging from 
global change, localized reef-scale anthropogenic impact 
can further influence the ecological resilience of corals 
and other reef organisms to global stressors (Knowlton 
and Jackson 2008). For example, overfishing has led to 
an alteration of the trophic food web (Valentine and Heck 
2005). With the removal of herbivorous fish from coral 
reefs, macroalgae and turf algae are less efficiently grazed. 
This can result in a phase shift from coral to macroalgae 
dominated reefs (Burkepile and Hay 2006; Vermeij et  al. 
2010). Changes in land-based practices can also impact 
reef ecosystems with land-clearing, coastal urbanization 
and intense agricultural practices contributing to decreased 
water quality on reefs, which in turn further contributes to 
declining reef health (De‘ath and Fabricius 2010).

Monitoring programs, such as ‘Reef Check’ and ‘The 
Global Coral Monitoring Network’ use visual surveys 
of reef associated fish, invertebrates, substrate composi-
tion, reef damage and disease impacts to assess reef health 
(Hodgson 2001; Hill and Wilkinson 2004). Most visual 
cues (e.g. tissue necrosis, mortality and shifts in commu-
nity composition) only become evident in the advanced 
stages of coral reef ecosystem stress, when ecosystem 
health and resistance are already compromised. At this 
stage the ability to recover is dependent on the resilience 
of the ecosystem and the success of management interven-
tions is jeopardized. Hence, the development of a reliable 

early warning system that facilitates management interven-
tion before severe damage occurs is clearly warranted.

Microorganisms are key drivers of large-scale biogeo-
chemical cycles in the oceans (Azam et al. 1983; Whitman 
et al. 1998; Falkowski et al. 2008) and also play a funda-
mental role in coral reef ecosystem functioning, through 
mediating nutrient cycling (Charpy et al. 2012; Tout et al. 
2014). Furthermore, microbes live in intimate relationships 
with benthos-dominating life forms such as corals, sponges 
and macroalgae, where they have a vital role in host fitness 
through additional nutrient provision, removal of waste 
products and the exclusion of opportunistic microbial path-
ogens (Egan et al. 2013; Blackall et al. 2015; Bourne et al. 
2016; Webster and Thomas 2016). However, disturbance 
events can alter the natural microbial community structure, 
abundance and metabolic functions either directly or indi-
rectly (Shade et  al. 2012). Disturbance-related deviations 
from the naturally occurring microbial communities may 
provide useful indications for coral reef ecosystem stability 
and facilitate sensitive predictions of environmental stress 
(Fig. 1).

This review aims to assess the utility of microorgan-
isms as a diagnostic tool for assessing water quality and 
climate-driven stress in the coral reef ecosystem. Insights 
are provided into (1) the implementation of biological indi-
cator approaches; (2) the potential role of microbial indi-
cators in coral reef monitoring programs; (3) the function 

Identification of 
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Prediction of environmental 
disturbances based on early 
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Development of efficient management strategies 
to improve water quality and coral reef health. 

microbiome

Fig. 1   Microbial indicator approach to assess coral reef health. Coral 
reefs are exposed to increased environmental pressures emerging 
from local (e.g. pollution, overfishing) and global impacts (e.g. rising 
sea surface temperature). This facilitates a shift from coral to algae 
dominated reef systems [adapted from Sandin et al. (2008)]. Accom-
panied by the increase in environmental pressures, the microbial com-
munity composition and function associated with coral reefs change 
along the gradient of disturbance from a beneficial and commensal 
microbiome towards microbial communities dominated by opportun-
ists and pathogens. Overall compositional and functional changes of 

microbial communities associated with seawater, sediment and habi-
tat forming taxa (corals, sponges and macroalgae) but also the occur-
rence or loss of specific microbial taxa/function can provide useful 
indications for the prevailing environmental condition. The applica-
tion of microbial indicator taxa, function and/or community assem-
blages will allow for a rapid prediction of environmental disturbance 
and the health state of a coral reef. This enhanced predictive capabil-
ity is paramount to efficiently monitor coral reef health and locally 
manage environmental pressures such as water quality
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and diversity of microbes associated with dominating ben-
thic life forms (corals, sponges and macroalgae) and their 
surrounding environments (seawater and sediment) and (4) 
how state-of-the-art methods used to study microbial com-
munity composition and function can be implemented into 
diagnostic tools to assess coral reef ecosystem health.

Biological indicators: definition, function 
and application

Biological indicators, also referred to as indicator species, 
are organisms that can be used to monitor habitat condi-
tions and environmental changes based on their niche 
preferences (McGeoch and Chown 1998; De Cáceres 
et al. 2010). The presence/absence or abundance values of 
selected organisms or communities at specific sampling 
sites are monitored, allowing conclusions to be drawn on 
the ecological integrity of a certain ecosystem (Carig-
nan and Villard 2002). Depending on the response time, 
bioindicators can either be used to detect severe short-term 
stress events or to better understand the long-term effect of 
chronic stress exposure (Cairns and Pratt 1993). The use 
of taxa with moderate tolerance towards environmental 
variability is favored against rare or ubiquitous taxa, which 
respectively show high sensitivity or high tolerance towards 
environmental perturbations (Holt and Miller 2011). 
Cooper et al. (2009) identified the following five selection 
criteria, to be considered when choosing bioindicators: 
specificity, monotonicity, natural variability, practicality 
and ecological relevance (see Table 1).

Kolkwitz and Marsson (1908) developed one of the first 
indicator approaches to evaluate the degree of pollution in 
rivers based on the occurrence of saprobic micro- (e.g. cili-
ates and flagellates) and macroorganisms (e.g. insect larvae, 
molluscs, bivalves, annelids and crustaceans). Since then, 
various biomonitoring programs have been developed and 
successfully applied in estuarine and freshwater ecosystems 
by assessing indicator species within the macrobenthic 
invertebrate community e.g. AUSRIVAS (Australian River 
Assessment Scheme; Smith et al. 1999), RIVPACS (River 
Invertebrate Prediction and Classification System; Wright 
1995), SIGNAL (Stream Invertebrate Grade Number Aver-
age Level; Chessman 1995) and WFD (European Union 
Water Framework Directive; European Parliament 2000). 
Biomonitoring approaches also find application in coral 
reef health monitoring (reviewed by Cooper et  al. 2009). 
For example, the FORAM index (Hallock et al. 2003) pro-
vides insights into the water quality of coral reefs by quan-
tifying size classes of Foraminifera in the upper sediment 
layer.

Although indicator approaches are frequently used 
in conservation biology, land management, landscape 

mapping and in the design of protected areas, standard-
ized approaches and statistical methods to identify suitable 
indicators are still scarce. Dufrêne and Legendre (1997) 
developed the Indicator Value Analysis (IndVal) as a sta-
tistically valid method for determining indicator species 
and species assemblages. IndVal considers the specific-
ity, which is the mean number of individuals of a species 
across sampling sites of a certain habitat in comparison 
with other habitats, and the fidelity, described as the rela-
tive frequency of occurrence of a species in the sampling 
sites of a specific habitat. The IndVal analysis represents 
an efficient method to identify indicator organisms and can 
provide critical information on the ecological integrity of 
an ecosystem (McGeoch and Chown 1998; Gardner 2010). 
The IndVal approach has found application in various ter-
restrial and aquatic studies to assess habitat quality based 
on both macro- (McGeoch et al. 2002; Muotka et al. 2002; 
Bazelet and Samways 2011) and microorganisms (Auguet 
et al. 2010; Fortunato et al. 2013; Glasl et al. 2016; Ziegler 
et al. 2017).

The integration of biological indicators into ecosystem 
monitoring programs can provide significant advantages. 
For example, by focusing on a targeted group of species, 
monitoring can become more cost and time efficient. Fur-
thermore, biological indicators can provide early warning 
of environmental stress and might directly reveal the cause 
rather than simply the existence of a disturbance event. 
However, the choice of appropriate species or species 
assemblages is crucial for the effectiveness of bioindicators 
and hence, the selection should be based on sound quan-
titative approaches including consideration of the natural 
in situ variability (Carignan and Villard 2002).

Microorganisms as bioindicators to assess 
ecosystem health

The potential value of microorganisms for efficiently 
monitoring ecosystem health remains largely unex-
plored, despite the fact that microbes show fast, specific 
responses to environmental perturbations (Teeling et  al. 
2012; Wemheuer et al. 2015; Haas et al. 2016) which are 
the desirable characteristics of bioindicators (Table 1). One 
area where microorganisms have been exploited as indica-
tors is in monitoring contamination of water supplies by 
coliform counts associated with feces from warm-blooded 
animals (Ashbolt et  al. 2001). Coliform counts are now 
used to monitor and manage drinking water supplies and 
recreational water qualities worldwide (Boehm and Sassou-
bre 2014), successfully enabling the prevention of numer-
ous human gastrointestinal illnesses (Wade et  al. 2010). 
In coral reef environments, coral mucus has been shown 
to be more efficient in trapping fecal indicator bacteria 
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and human enteric viruses than the surrounding seawater; 
hence, coral mucus provides an improved medium to moni-
tor sewage contamination (Lipp and Griffin 2004). Further-
more, seagrasses have recently been shown to reduce the 
abundance of microbial pathogens entering nearby coral 
reef and mitigate the disease risk in associated coral popu-
lations (Lamb et al. 2017).

Intensive research on the structural and functional 
capacity of the human microbiome has revealed its enor-
mous contribution to pathogenesis and immune system 
modulation of the host, as well as its influence on host 
development and physiology (Arrieta and Finlay 2012; 
Eloe-Fadrosh and Rasko 2013; Kostic et al. 2015; Ghaisas 
et al. 2016). This knowledge has revolutionized our current 
understanding of host–microbe interactions and has led to 
the development of diagnostic and therapeutic approaches 
targeting the human microbiome (Reardon 2014). For 
example, transplantation of faecal microbiomes has suc-
cessfully cured humans affected by recurrent Clostridium 
difficile infections and microbiome transplantation has been 
suggested as a therapeutic cure for inflammatory bowel 
disease and obesity (Gupta et  al. 2016). In the same way, 
it is feasible that microbiome manipulation and probiotic 
treatment could be used to increase the health and tolerance 
of other reef based host-associated systems (Reshef et  al. 
2006; van Oppen et al. 2014; Webster 2017). Also, similar 
to the approach in humans, the identification of imbalances 
in the microbial communities (dysbiosis) at the ecosystem 
level can facilitate diagnostic interpretations of environ-
mental health. For example, a bacterial community based 
index has recently been developed to assess the ecological 
status of estuarine and costal environments (Aylagas et al. 
2016). Another recent example applied to coral reef ecosys-
tems has been the development of microbialization scores, 
which attempt to assess human impacts on coral reefs based 
on the metabolic rates of microbial communities and reef-
associated fishes (McDole et al. 2012). While microbializa-
tion has been shown to occur on a global scale (Haas et al. 
2016), additional research is needed to adopt the approach 
to individual reef ecosystems. Microbial monitoring has 
also recently been introduced to the monthly sampling 
program of the National Mooring Network of IMOS (Inte-
grated Marine Observing System), which targets oceano-
graphic phenomena in Australian coastal waters (IMOS 
2016). Increased appreciation of microorganisms in host 
and/or ecosystem health, together with recent advances in 
molecular techniques, now allow for detailed in situ investi-
gations of the microbial community structure and functions 
and for standardized and efficient data analysis.

Changes in microbial communities due to disturbance 
may directly affect ecosystem processes. Therefore, it has 
been suggested to include microbial community compo-
sition (e.g. 16S ribosomal RNA gene sequencing) into 

process models that predict ecosystem responses to global 
change (Allison and Martiny 2008). Microbial functional 
redundancy is also of particular interest since metabolic 
capabilities can be decoupled from the phylogenetic posi-
tion of microorganisms due to convergent evolution, gene 
loss or horizontal gene transfer (Ochman et al. 2000; Mar-
tiny et al. 2013). Phylogenetic diversity is thought to posi-
tively affect the stability of an ecosystem, as it increases the 
probability that complementary functional traits are present 
(Yachi and Loreau 1999). However, ecosystem processes 
can remain constant after disturbances even when a compo-
sitional shift has been observed (Wohl et al. 2004; Allison 
and Martiny 2008; Banerjee et al. 2016). Hence, functional 
approaches (e.g. metagenomics, metatranscriptomics) 
are also required for monitoring and predicting ecosys-
tem changes. Functional and compositional changes can 
be assessed based on the entire community or on selected 
microbial indicator taxa.

Microbial life in the coral reef ecosystem

Within coral reefs, microorganisms colonize various habi-
tats including the water column, the sediment and the ben-
thic community, such as corals, sponges and macroalgae 
(Moriarty et al. 1985; Friedrich et al. 1999; Rohwer et al. 
2001; Hewson and Fuhrman 2006; Barott et  al. 2011; 
Bourne and Webster 2013). The enormous complexity of 
coral reefs and their associated microbial communities has 
resulted in studies focused on these specific compartments; 
however, these habitats should not be considered as iso-
lated from each other but rather seen as parts of a single 
ecosystem with a strong benthic-pelagic exchange (Lesser 
2006; Garren and Azam 2012). Holistic approaches that 
combine the different reef habitats are urgently required to 
better understand the function and contribution of microor-
ganisms to reef health and resilience.

Microbial diversity and function in coral reef waters

Microorganisms are moderately abundant (average densi-
ties of between 3 and 9 × 105 cells ml−1) in nutrient-poor 
coral reef waters, where they play diverse roles related to 
nutrient cycling that ultimately affect the entire reef eco-
system (Sorokin 1973, 1978; Ducklow 1990; Gast et  al. 
1998). For instance, photoautotrophic picophytoplank-
ton significantly contributes to the biomass and primary 
productivity of oligotrophic reef waters (Stockner 1988). 
Additionally, as part of the marine microbial-loop, hetero-
trophic bacteria utilize dissolved organic matter (DOM) in 
the water column, establishing an important recycling step 
that makes energy available to higher trophic levels (Azam 
et al. 1983). In marine environments DOM is primarily of 
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phytoplankton origin, as 2–50% of the photoautotrophi-
cally fixed carbon leaks into the water column (reviewed by 
Thornton 2014). Coral mucus, fueled by the photosynthetic 
activity of the coral’s algal symbionts, additionally con-
tributes to the DOM pool of coral reef waters (Wild et al. 
2004a). The fixation of inorganic nitrogen is another key 
microbial function in coral reef environments, where nutri-
ents are scarce and thus limit growth (Charpy et al. 2012).

Processes shaping the microbial communities associated 
with coral reef waters vary over space and time. Distinct 
microbial communities along different niches within coral 
reef waters are the result of habitat structure, the pres-
ence of benthic host organisms and local biogeochemi-
cal conditions (Tout et  al. 2014). Seasonal effects, such 
as temperature, rainfall and water quality affect microbial 
community composition in shallow water reef sites (Angly 
et al. 2016). Anthropogenic impact (e.g. land-use and fish-
ing) also affects coral reef microorganisms with disturbed 
reefs possessing higher microbial abundances and a larger 
proportion of microbial taxa related to potential pathogens 
(Dinsdale et  al. 2008). The replacement of macro- with 
microorganisms under increased human influence has been 
referred to as microbialization (Jackson et al. 2001). Based 
upon the microbialization concept, McDole et  al. (2012) 
developed the ‘microbialization score’, a metric to assess 
the level of human impact and compare the health of coral 
reefs across time and space.

Microbial diversity and function in coral reef sediments

Coral reef sediments are typically dominated by calcare-
ous sand, characterized by high permeability, porosity and 
surface area (Rasheed et al. 2003). This enables large num-
bers of microorganisms to settle and grow on the sediment 
grains with prokaryotic abundance estimated at between 
1 and 2 × 109 cells cm−2 of sediment surface (Wild et  al. 
2006). In addition, the microbial communities associated 
with reef sediments are highly diverse, with vertical com-
munity stratification caused by redox gradients (Rusch 
et al. 2009). The oxygenated upper sediment layer is domi-
nated by heterotrophic processes and provides an important 
recycling step for dissolved and particulate organic matter 
(Wild et al. 2004a). Wild et al. (2004b) demonstrated that 
sloughed coral mucus acts as an efficient particle trap in 
the water column and rapidly carries nutrients to reef sedi-
ments, where diverse microbial metabolisms successfully 
remineralize them. Fixation of inorganic nitrogen is also 
mediated by bacteria and archaea present within coral reef 
sediments and can substantially contribute to the overall 
coral reef nitrogen budget (Cardini et al. 2014).

Importantly, Uthicke and McGuire (2007) identified 
clear bacterial community differences in surface sediments 
collected from inshore and offshore locations on the GBR 

and proposed they be used as biological indicators for water 
quality. Furthermore, a study conducted in the Red Sea 
has shown a nutritional link between seasonal dynamics 
and sediment-associated bacterial communities (Schöttner 
et al. 2011). In addition to their metabolic functions, sedi-
ment associated microbes may also act as a seed-bank for 
microbes associated with coral mucus (Carlos et al. 2013; 
Glasl et  al. 2016), another example of the tight microbial 
connections established within the coral reef ecosystem.

Corals and their microbiomes

Coral holobionts (Rohwer et  al. 2002) comprise an array 
of microorganisms including fungi, endolithic algae, bac-
teria, archaea and viruses (Ritchie and Smith 1997; Shar-
shar et al. 1997; Rohwer et al. 2002; Koren and Rosenberg 
2006; Thurber et  al. 2008). The coral host itself provides 
several microhabitats for its microbial associates, such as 
the surface mucus layer (Rohwer et  al. 2002; Frade et  al. 
2016), the tissue (Bourne and Munn 2005), the skeleton 
(Sharshar et al. 1997) and the gastrovascular cavity (Herndl 
and Velimirov 1985). Each of the microhabitats within a 
coral colony is associated with a distinct microbial commu-
nity (Rohwer et al. 2002; Sweet et al. 2011; Bourne et al. 
2016).

Bacterial communities associated with corals are clearly 
distinct from the bacterial communities in the surrounding 
environment (Frias-Lopez et  al. 2002) and bacterial cell 
abundance within coral mucus is also 10-fold higher than 
in seawater (Garren and Azam 2010). Each coral species 
serves as a unique habitat and is associated with a spe-
cific microbial community (Sunagawa et  al. 2010), with 
some species maintaining stable microbiomes over large 
geographic scales (Rohwer et  al. 2002), suggesting that 
the coral host plays a key role in structuring its bacterial 
community.

To deal with the enormous diversity of microorgan-
isms associated with corals, and separate beneficial and 
opportunistic bacteria and archaea from the bulk microbial 
community, understanding coral holobiont stability and 
functionality is paramount. For instance, the mucus micro-
biome of healthy Porites astreoides colonies is dominated 
by Endozoicomonadaceae, whose loss is coupled to dete-
rioration in holobiont health (Meyer et al. 2014; Glasl et al. 
2016). Endozoicomonas also dominate the microbiome of 
Stylophora pistillata and Pocillopora verrucosa tissues; 
Endozoicomonas genotypes vary over geographic space in 
S. pistillata, whereas in P. verrucosa the genotype of these 
endosymbionts remains the same. The genotype specificity 
may relate to differences in the life history strategies of cor-
als (Neave et al. 2017). Based on meta-analysis of the core 
microbiomes of diverse coral species, members of Actino-
bacteria were recently identified as ubiquitous symbionts 
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of corals (Ainsworth et al. 2015). A decrease of Actinobac-
teria in coral microbiomes during periods of temperature 
and algal stress further suggests their beneficial role in the 
coral holobiont (Zaneveld et al. 2016).

Potential functions of the coral’s microbiome vary from 
nutrient supply and recycling (Lesser et al. 2004, 2007) to 
protection against pathogens (Rohwer et  al. 2002; Ritchie 
2006; Shnit-Orland and Kushmaro 2009; Raina et  al. 
2016). For example, the depletion of the coral’s beneficial 
mucus microbiome affected holobiont health under in situ 
conditions (Glasl et al. 2016). This suggests that major dis-
turbances of the surface mucus microbiome may open a 
niche for potentially opportunistic and/or pathogenic bac-
teria, which can further lead to diseases or host mortality. 
Recent investigation of the functional capabilities of the 
bacterial and archaeal community associated with corals 
revealed carbon fixation and degradation pathways and the 
presence of genes involved in sulfur and nitrogen cycling 
(Wegley et al. 2007; Siboni et al. 2008; Kimes et al. 2010; 
Yang et  al. 2013; Rädecker et  al. 2015). Nitrogen fixa-
tion capabilities are of particular interest as coral reefs are 
nitrogen-limited ecosystems (Falkowski et al. 1993). Until 
recently, Cyanobacteria were thought to be the primary 
suppliers of fixed nitrogen in the coral holobiont (Lesser 
et al. 2004, 2007). The discovery of the ubiquitous associa-
tion with highly host specific diazotrophs (nitrogen fixing 
microorganisms) suggests their important functional role in 
the nitrogen supplementation of the coral holobiont (Sib-
oni et  al. 2008; Lema et  al. 2012, 2014), especially when 
external nitrogen sources are limited (Cardini et al. 2015). 
Nitrifying, denitrifying and ammonia oxidizing microbes 
have also been described to be associated with corals; how-
ever, their precise functions within the holobiont remains 
understudied.

The microbiome of corals has been described as persis-
tent over space and time (Rohwer et  al. 2002). However, 
compositional and functional shifts have been observed in 
association with seasonal environmental variation (Li et al. 
2014), host mucus-shedding dynamics (Glasl et al. 2016), 
thermal stress (for example coral bleaching; Bourne et  al. 
2008), disease (Séré et al. 2013; Meyer et al. 2014), coral’s 
proximity to macroalgae (Barott et  al. 2012; Sweet et  al. 
2013) and increasing environmental pollution (Garren et al. 
2009; Kelly et al. 2014; Ziegler et al. 2016). For example, 
thermal stress leads to destabilization of coral-algae inter-
actions (Brown 1997) and a shift towards an opportunistic 
and/or pathogenic microbial community (Ainsworth et  al. 
2008; Bourne et al. 2008; Littman et al. 2011). Water qual-
ity changes associated with increased sediment and nutri-
ent run-off can increase microbial abundance (Dinsdale 
et  al. 2008; D’Angelo and Wiedenmann 2014), coral dis-
ease frequency (Bruno et  al. 2003; Thurber et  al. 2014) 
and higher macroalgal abundance on coral reefs (Kline 

et al. 2006). Macroalgae exudates stimulate bacterial activ-
ity and copiotrophic bacterial growth, and cause shifts in 
the coral microbiome attributed to increased labile DOC 
and toxic secondary metabolites (Morrow et  al. 2011; 
Barott et al. 2012; Vega Thurber et al. 2012; Nelson et al. 
2013; Sweet et  al. 2013; Haas et  al. 2016). Environmen-
tally induced changes in the coral microbiome generally 
result in higher microbial abundance and a shift away from 
beneficial microbes towards opportunistic and/or patho-
genic bacterial taxa, such as Vibrionaceae and Rhodobac-
teraceae (Vega Thurber et  al. 2009; Bourne et  al. 2016; 
Rothig et al. 2016; Ziegler et al. 2016). Increased nutrient 
run-off in combination with reduced grazers (hence higher 
algal abundance) destabilizes the coral microbiome with 
detrimental consequences for the host, particularly when 
exposed to additional stressors such as parrotfish bites and 
thermal stress (Zaneveld et al. 2016). The resulting imbal-
ance in the holobiont composition (dysbiosis) can lead to 
functional changes of the microbiome and facilitate disease 
development or alterations in metabolism and/or immunity 
that lead to bleaching and/or necrosis, and ultimately coral 
death (reviewed by Thompson et al. 2015).

Sponges and their microbiomes

Marine sponges (phylum: Porifera) are a highly diverse 
component of coral reefs, usually exceeding the diversity of 
corals and algae (Diaz and Rützler 2001). Sponges have the 
ability to filter up to 50,000 times their own volume every 
day (Reiswig 1971a) and due to this active suspension 
feeding they play a key role in benthic-pelagic coupling, 
thus providing a vital trophic link between the benthos 
and the ambient seawater (Gili and Coma 1998; Southwell 
et  al. 2008). Sponges are primarily considered to feed on 
picoplankton (0.2–2 µm) (Reiswig 1971b; Pile et al. 1997; 
Hanson et  al. 2009); however, several recent studies have 
shown that certain sponges are also able to assimilate dis-
solved organic matter (DOM) from the water column (De 
Goeij et  al. 2008; Mueller et  al. 2014; Rix et  al. 2016). 
Cryptic Caribbean sponges, for instance, transform DOM 
into particulate organic matter (POM) and thereby signifi-
cantly contribute to the recirculation of nutrients in coral 
reefs, a phenomenon known as the sponge-loop (De Goeij 
et  al. 2013), which is likely mediated by microbes living 
within the sponge.

Sponges generally live in close association with a wide 
variety of microorganisms including bacteria, archaea, uni-
cellular algae and protists. These microorganisms are often 
present in high abundance, accounting for up to 40–60% 
of the total sponge volume and reaching cell abundances 
that exceed those in the surrounding seawater by several 
orders of magnitude (Hentschel et al. 2006). Sponges with 
high microbial densities are referred to as ‘high microbial 
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abundance sponges’ (Vacelet and Donadey 1977; Hentschel 
et al. 2003), in contrast to marine sponges that harbor only a 
relatively small number of microorganisms and are referred 
to as ‘low-microbial abundance sponges’ (Hentschel et al. 
2003). The implications of these diversity differences for 
host resistance and resilience remain elusive. In addition to 
the importance of microorganisms as a sponge food source 
(Reiswig 1971b; Pile et al. 1996), microbial associates have 
also been reported to participate in a diverse range of inter-
actions, including parasitism, commensalism and mutual-
ism (reviewed by Taylor et al. 2007) with significant impli-
cations for the ecology, biology and physiology of sponges 
(Thacker and Freeman 2012; Bourne and Webster 2013).

Microbes are generally located in the sponge mesohyl 
region, a layer of connective tissue where microbial cells 
are either freely occurring or enclosed within specialized 
bacteriocyte cells (reviewed by Taylor et  al. 2007). The 
mesohyl is also the place where phagocytosis of food par-
ticles (e.g. picoplankton) takes place; hence, host-symbiont 
recognition mechanisms must be in action to prevent the 
phagocytosis of symbiont cells (Wilkinson et  al. 1984; 
Wehrl et  al. 2007; Nguyen et  al. 2014). Furthermore, 
archaea and Cyanobacteria have been found in the pina-
coderm, the outer surface of sponges formed by epithe-
lial cells (Wilkinson 1980; Webster et  al. 2001). Sponge-
symbionts generally show high host species-specificity and 
only a few bacterial species seem to be ubiquitously pre-
sent in sponges. Bacterial species associated with differ-
ent sponges are more closely related to each other than to 
bacteria from the ambient water column and, hence, these 
monophyletic groupings of sponge symbionts are often 
referred to as ‘sponge-specific sequence clusters’ (SCs) 
(Hentschel et al. 2002; Schmitt et al. 2012). Whereas about 
half of the SCs have been shown to be vertically transmit-
ted from adult sponges directly to their offspring, the other 
half is thought to be horizontally acquired by each genera-
tion from the surrounding seawater (Webster et  al. 2010). 
Interestingly, the candidate phyla Poribacteria, which is 
highly abundant in various marine sponges over a wide 
geographic range (Fieseler et  al. 2004), was recently 
described as part of the rare seawater biosphere (Webster 
et al. 2010). Webster et al. (2010) proposed that members 
of the rare seawater biosphere might act as seed organisms 
for widely occurring symbiont populations.

Sponge symbionts are capable of diverse metabolic 
functions. They play a crucial role in carbon, nitrogen, 
sulfur and phosphorous cycling and are also fundamental 
for the synthesis of essential vitamins within the sponge 
holobiont (reviewed by Webster and Thomas 2016). 
Examples of the mutualistic nature of sponge symbiont 
associations include the nitrifiying Thaumarchaeota and 
bacteria, which gain energy through the oxidation of 
ammonia, a sponge waste product (Webster et  al. 2001; 

Bayer et al. 2008; Mohamed et al. 2010). Besides nutri-
ent cycling capabilities within the host, symbionts are 
also shown to significantly contribute to host defense via 
the production of secondary metabolites (Hentschel et al. 
2001; Kennedy et al. 2007).

Research on the resistance and resilience of the 
sponge microbiome to environmental stressors includ-
ing local (e.g. sedimentation and nutrients) and global 
(e.g. elevated seawater temperature and ocean acidifi-
cation) pressures has shown that responses are highly 
species-specific. For instance, a number of studies have 
revealed no compositional changes in the sponge-associ-
ated microbiome upon short-term nitrogen, temperature 
or sediment pulses, suggesting a highly resistant associa-
tion between the sponge holobiont members (Luter et al. 
2012, 2014; Simister et  al. 2012). Similar observations 
were obtained during transplantation experiments of 
the sponge Aplysina cavernicola; light stressed sponges 
showed no changes in their bacterial community com-
position nor their production of secondary metabolites 
(Thoms et  al. 2003). More recent research has shown 
that whilst the microbiome of different heterotrophic 
sponge species remains stable under light attenuation, 
the microbiome of phototrophic species can be signifi-
cantly affected by light availability (Pineda et  al. 2016). 
The symbiotic community associated with Rhopaloeides 
odorabile, a common Great Barrier Reef sponge, under-
goes major changes in community structure, accompa-
nied by host tissue necrosis, upon exposure to tempera-
tures greater than 32 °C (Webster et  al. 2008). A more 
recent metagenomic and metaproteomic analysis revealed 
that R. odorabile symbionts lose their metabolic func-
tional potential during the early stages of heat stress and 
hence destabilize the sponge holobiont before visual 
signs of stress occur in the host animal (Fan et al. 2013). 
A comparison of healthy and diseased Ircinia fasticulata 
individuals revealed a significant shift in the microbi-
ome prior to mass mortality attributed to high seawater 
temperatures. The observed shift was suggested to nega-
tively affect host fitness and resistance to environmental 
stress (Blanquer et al. 2016). Numerous studies of sponge 
disease have reported a higher bacterial diversity in dis-
eased tissue (Webster et al. 2008, Angermeier et al. 2011, 
2012; Olson et  al. 2014; Blanquer et  al. 2016), suggest-
ing that a dysbiotic microbiome rather than infection by 
a specific pathogen also has a role in the disease process. 
It is also noteworthy that some instances of ‘sponge dis-
ease’, do not involve detectable shifts in the composition 
of the microbial community (Luter et al. 2010), although 
no studies have yet assessed whether symbiotic function 
is impacted during disease which may contribute to the 
observed declines in host health.
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Macroalgae and their microbiomes

Macroalgae have always been present in healthy coral 
reef ecosystems in relatively low abundance (Bruno et  al. 
2014). However, overfishing and eutrophication can facili-
tate a shift from coral dominated to algal dominated reefs 
(Hughes et  al. 2007). The increase of macroalgal abun-
dance on coral reefs is a threat for corals, not only because 
of direct competition for space but also because macroal-
gae have been shown to facilitate coral disease outbreaks, 
increase mortality and prevent larval settlement (Nugues 
et al. 2004; Smith et al. 2006; Sweet et al. 2013; Webster 
et  al. 2015). Furthermore, macroalgae significantly alter 
their ambient environment by releasing higher amounts of 
labile dissolved organic carbon (DOC) compared to cor-
als. This elevated DOC supports higher microbial growth 
rates, leads to a depletion of bioavailable DOC in seawater 
and facilitates the growth of copiotrophic and potentially 
pathogenic microbial taxa (Haas et  al. 2011, 2016; Nel-
son et al. 2013). These processes have been summarized in 
the DDAM model (DOC, disease, algae, microorganism; 
Barott and Rohwer 2012), which describes the feedback of 
macroalgae-derived labile DOC and how it fuels the less 
efficient metabolism of copiotrophic and pathogenic micro-
organisms in coral reefs thereby contributing to increased 
microbial respiration and the local acidification of seawater 
(Sweet et al. 2013; Haas et al. 2016).

Besides their influence on the seawater microbiome, 
macroalgae themselves are holobionts and are associated 
with a highly diverse microbiota (Barott et al. 2011). Bac-
terial densities on the algal surface vary between 102 and 
107 cells cm2 depending on the thallus section, host species 
and season (Armstrong et al. 2000). The epibacterial com-
munity composition significantly differs from the commu-
nity in the ambient seawater and shows high host specificity 
and temporal adaptation (Lachnit et al. 2009, 2011; Burke 
et al. 2011b; Goecke et al. 2013). In addition to the biofilm 
community on the surface of seaweeds, macroalgae harbor 
a specialized and stable endophytic bacterial community 
(Hollants et  al. 2011a, b). The specificity of epibacterial 
communities associated with different macroalgae is cur-
rently under reconsideration; microbial functioning, rather 
than phylogeny, seems to be consistent within the holobiont 
(Burke et al. 2011b, a).

The algal microbiome significantly contributes to host 
morphogenesis, health and defense. For example, mor-
phological abnormalities were observed in various Ulva 
species when grown under aposymbiotic conditions (Pro-
vasoli and Pintner 1980; Nakanishi et al. 1996; Singh et al. 
2011). Epiphytic bacteria, such as Vibrio sp. and Pseu-
doalteromonas sp., provide inhibitory properties against 
various biofouling organisms and hence contribute to 
host defense against unwanted colonization (reviewed by 

Egan et  al. 2013). Additionally, epiphytic bacteria supply 
the algal host with key nutrients. Heterotrophic bacteria 
provide CO2 to the photoautotrophic host, and Cyanobac-
teria, dominant members of the epibacterial community, 
provide fixed-nitrogen (Penhale and Capone 1981; Phlips 
and Zeman 1990; de Oliveira et al. 2012). Recent genomic 
and metagenomic studies of seaweed-associated bacterial 
communities revealed a diverse genetic repertoire includ-
ing genes for phosphorous, nitrogen and iron utilization 
(Thomas et al. 2008; Burke et al. 2011b; Fernandes et al. 
2011).

In general, little is known about the factors controlling 
the microbial communities in the surface biofilm of mac-
roalgae. Bacterial richness in the biofilm of the kelp Lami-
naria hyperborea is reported to increase as the kelp ages 
(Bengtsson et al. 2012) and microbial community succes-
sion seems to be influenced by stochastic processes (Burke 
et al. 2011a; Trias et al. 2012). Furthermore, disturbances 
such as temperature stress are shown to disrupt algal-hol-
obiont homeostasis, which can lead to a switch in bacte-
rial communities from surface-associated commensals to 
opportunistic pathogens (Case et al. 2011).

Methods to develop novel microbial indicators 
for coral ecosystem health assessment

High diversity, high functional complexity and low culti-
vability has historically limited our ability to understand 
the marine microbial realm. However, advances in cul-
ture-independent techniques along with next-generation 
sequencing (NGS) have revolutionized the study of micro-
bial ecology (Schuster 2008). Accompanied by meta’omic 
approaches, NGS provides a practical tool for the efficient 
analysis of microbial communities in situ which will facili-
tate the identification of microbial indicators.

The first step towards identification of microbial indica-
tors to assess coral reef health is analysis of the temporal 
and spatial variability of microbial communities associ-
ated with certain habitats and the subsequent definition of 
microbial baselines. Compositional baselines can be estab-
lished with high-throughput sequencing of the 16S riboso-
mal RNA (rRNA) taxonomic marker gene of bacteria and/
or archaea associated with environmental samples. This 
provides taxonomic insights and, when accompanied by 
functional prediction tools (e.g. PICRUST; Langille et  al. 
2013), may also help predict microbial functions within 
coral reef environments (Ainsworth et al. 2015; de Voogd 
et al. 2015). 16S rRNA gene sequencing is a ubiquitously 
applied technique in diverse fields of coral reef research 
(e.g. Webster et  al. 2010; Bourne et  al. 2013), provid-
ing an inexpensive tool to establish compositional base-
lines associated with coral reefs. In parallel, metagenomic 
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sequencing can be used to establish functional and compo-
sitional microbial baselines as this comprehensive approach 
uses shotgun sequencing to generate an overview of all 
genes present in an environmental sample (including 16S 
rRNA genes). Metagenomics has been successfully used 
to assess functional responses of the coral microbiome to 
various stressors (Vega Thurber et al. 2009; Littman et al. 
2011; Kelly et  al. 2014) and is also frequently applied to 
understand the fundamental basis of the sponge (Thomas 
et  al. 2010; Fan et  al. 2013), macroalgae (Burke et  al. 
2011a; Martin et al. 2014) and planktonic (Dinsdale et al. 
2008; Tout et al. 2014; Haas et al. 2016) microbiomes.

Once baselines are established, the compositional and 
functional response of the microbial communities upon dis-
turbance can be investigated. Taxonomic variation can be 
observed using 16S rRNA gene sequencing and composi-
tional and functional shifts can be detected using metagen-
omic sequencing. However, metagenomics is limited in its 
ability to describe functional variations upon disturbance 
because of the natural discrepancy between genes that are 
present and genes that are actually being expressed (Wang 
et al. 2015). Metatranscriptomic sequencing overcomes this 
limitation by assessing the function encoded by mRNA 
sequences. Metatranscriptomics involves analyzing near-
real-time gene expression patterns by sequencing mRNA 
molecules and has emerged as a state-of-the-art tool to 
study community metabolism of free-living microbes in 
the open ocean (Poretsky et al. 2009; Hewson et al. 2010) 
and to obtain insights in cell–cell signaling, development 
and immune response of symbiotic interactions (Chun 
et al. 2008; Ruby 2008; Stewart et al. 2011; Sanders et al. 
2013). It has also been used to elucidate nutrient cycling 
and vitamin production pathways of a sponge holobiont 
(Fiore et al. 2015). Furthermore, responses of the coral host 
and its associated microbiome to coral diseases have been 
investigated based on mRNA sequences (Daniels et  al. 
2015; Arotsker et  al. 2016). However, a clear limitation 
of this method is the short lifetime of mRNA molecules; 
it only takes a few minutes before mRNA molecules are 
degraded within the cell (Pedersen et al. 2011). Metaprot-
eomics can characterize the protein signatures from micro-
bial communities in situ and also provides a link between 
gene content and gene expression (von Bergen et al. 2013). 
Thus, metaproteomic studies are often complemented 
by metagenomic data. For example, the combination of 
metagenomic and metaproteomic data on the sponge 
microbiome provided novel insights in the activity, physiol-
ogy and interactions between sponge symbionts (Liu et al. 
2012) and revealed the functional role of microbes in the 
stability of the sponge holobiont under thermal stress (Fan 
et al. 2013).

Finally, a quantitative approach that establishes links 
between the composition / function of reef microbiomes 

and environmental metadata will be required to identify 
microbial indicators for coral reef health and water qual-
ity. Individual microbial taxa and/or functions significantly 
associated with healthy versus stressed reef systems can 
be identified using traditional statistical approaches such 
as the IndVal analysis (Dufrêne and Legendre 1997). An 
alternative approach to analyzing meta’omics data and dis-
criminating between healthy and stressed reef ecosystems 
is machine learning. Instead of the identification of individ-
ual microbial indicators, the entire microbial community 
and its function could be used to train a model to differenti-
ate between reef health stages or environmental stressors. 
Machine learning is a powerful tool and a current state-of-
the-art approach to identify dysbiosis of the human micro-
biome and to predict human diseases (Pasolli et al. 2016).

Conclusion and future research

Microorganisms are fundamental contributors to reef eco-
system health through their biogeochemical capabilities 
and intimate symbiotic partnerships. Shifts in the composi-
tion or function of bacterial and archaeal communities can 
therefore provide crucial diagnostic information for future 
coral reef monitoring. Before such approaches can be 
developed and implemented, the following basic questions 
need to be resolved (see Fig. 2): (1) which taxa and func-
tions form the microbial baseline of healthy coral reefs? (2) 
how does the microbial community respond to environmen-
tal change? (3) how does the microbiome influence holobi-
ont resistance and resilience upon disturbance? and (4) are 
environmental disturbances predicted by compositional and 
functional changes in the microbial community?

Regular monitoring is a fundamental tool for conser-
vation and resource management of marine ecosystems in 
both developed and developing countries. For example, 
in the Australian GBR extensive reef monitoring records 
coral abundance, disease prevalence and coral cover, 
with the overarching objective of determining the status 
of reef health and pinpointing changes in the distribution 
and abundance of the reef biota over large temporal and 
spatial scales (AIMS 2017). Extending already existing 
monitoring initiatives to include sample collections tar-
geting microbial biodiversity, composition and function 
would provide a cost-effective strategy to establish the 
first microbial reference datasets for individual reef loca-
tions (Phase 1). By combining microbial community data 
and other environmental parameters (e.g. water quality), 
microbial indicators (taxa or functions) can be identified 
allowing for reef health diagnosis (Phase 2). Once micro-
bial indicators have been determined, the development 
and testing of cost- and time-efficient microbial monitor-
ing protocols can begin (Phase 3). The ultimate goal of 
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Phase 3 is the establishment of reliable, fast, low-cost and 
easy-to-use diagnostic protocols based on microbial indi-
cators that can be integrated into current monitoring pro-
grams. Microbial monitoring protocols can be comprised 
of targeted PCR-based approaches (e.g. PCR screening 
for the occurrence of a specific microbial taxon/func-
tion, or quantification of its abundance) and/or commu-
nity sequencing approaches (e.g. amplicon sequencing to 
track shifts in microbial community composition). The 
final step (Phase 4) is the integration of microbial indi-
cators into standard reef monitoring procedures. A pro-
spective microbial indicator tool kit will offer streamlined 
procedures covering sample collection and processing, an 
online data analysis platform, and recommended guide-
lines for management interventions based on the diag-
nosed reef conditions.
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