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Abstract The Arctic is facing major environmental
changes impacting marine biodiversity and ecosystem
functioning. One way of assessing the responses of an
ecosystem to these changes is to quantitatively study food
web dynamics. Here, we used stable isotope (3'°N and
813C) analyses of 39 Arctic marine species to investigate
trophic relationships and isotopic niches of the West Green-
land food web in 2000-2004. The lowest §'°N values were
found for suspension feeding blue mussel (Mytilus edulis;
6.1 %0) and the highest for polar bear (Ursus maritimus;,
20.2 %o). For 8'3C, copepods (Calanus spp.) had the lowest
values (—20.4 %o) and snow crab (Chionoecetes opilio) the
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highest values (—15.8 %o). Our results show that the three
trophic enrichment factor (TEF) approaches used to quan-
tify species trophic positions (fixed TEF of 3.8 and 3.4 %o
or scaled TEF) did not generally affect trophic modelling
and provided similar conclusions. Overall, the findings in
this study are in good agreement with previous investiga-
tions of other Arctic marine ecosystems. Interestingly, we
found little overlap of core isotopic niches used by the
four investigated functional groups (mammals, seabirds,
fish and invertebrates), except for seabirds and fish where
an overlap of 24 % was found. These results provide new
insights into species and functional group interactions, as
well as into the food web structure and ecosystem func-
tioning of an important Arctic region that can be used as a
template to guide future modelling of carbon, energy and
contaminant flow in the region.
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Introduction

Marine ecosystems are being affected by the combined
effects of climate change (Beaugrand et al. 2002) and
anthropogenic influences including fisheries (Halpern et al.
2008), non-native species invasions and release of contami-
nants (Wiese and Robertson 2004; Hooper et al. 2005). To
get a thorough understanding of how an ecosystem reacts
to these changes, information is needed on its ecology,
functioning and mechanisms of trophic transfer (Thompson
et al. 2012). One way of combining these approaches is to
study the food web dynamics within a system (Thompson
et al. 2012). However, there are major obstacles in deriv-
ing long-term information on food web dynamics in marine
food webs using conventional approaches such as stom-
ach content analysis (Votier et al. 2003; Polito et al. 2011).
A now well-established alternative method to study the
trophic structure and dynamics of a community is the appli-
cation of stable isotope analysis, as stable carbon (§!°C)
and nitrogen (3'°N) isotope ratios in tissues of animals pro-
vide information on their source of feeding and their rela-
tive trophic position, respectively (e.g. Hobson and Welch
1992; Boecklen et al. 2011; Middelburg 2014).

The marine ecosystem off the coast of West Greenland
is one of the most biologically productive areas across the
entire Arctic (Smidt 1979; Juul-Pedersen et al. 2015) and
supports large populations of fish, seabirds and marine
mammals (Born et al. 2003; Boertmann et al. 2004) as well
as important spawning and nursery grounds, especially
for northern shrimp (Pandalus borealis) and Greenlandic
halibut (Reinhardtius hippoglossoides) (Buch et al. 2004;
Simonsen et al. 2006). However, this region is undergoing
major environmental changes. For instance, in West Green-
land, as well as other parts of the Arctic, global warming
has resulted in a reduction in sea ice thickness, distribution
and seasonal duration (e.g. Comiso et al. 2008; Kwok and
Rothrock 2009; Swart et al. 2015). Locally, the reduction
in sea ice, as well as changes in the nutrient balance, has
already changed the length and initiation of the growth
season for primary producers and the distribution of fish,
thereby fundamentally influencing the structure and func-
tioning of the food web (Arrigo et al. 2008; Grebmeier
et al. 2006; Wassmann et al. 2011).

Compared to other marine systems in the Arctic, the
pelagic food web off West Greenland has been relatively
well studied (e.g. Nielsen and Hansen 1995; Munk et al.
2003; Arendt et al. 2010; Kjellerup et al. 2015). However,
substantial knowledge gaps remain, in particular on the
trophic coupling to the higher trophic levels. The spring
phytoplankton bloom develops immediately after the
breakup of sea ice (Diinweber et al. 2010). Sea ice condi-
tions are therefore important for the initiation of primary
production in spring which, in turn, needs to be matched by
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the arrival of overwintering copepods of the genus Calanus,
to get an efficient transfer of energy to higher trophic lev-
els (Swalethorp et al. 2011; Mgller et al. 2006, 2016). Cur-
rent knowledge of marine shellfish and fish in West Green-
land is based primarily on single species information (e.g.
Mgller et al. 2010; Hedeholm et al. 2012) and on research
related to fisheries and environmental impact assessments
related to hydrocarbon extraction and other anthropogenic
activities (e.g. Bergstrom and Vilhjalmarsson 2007; ABA
2013). Seabird and marine mammal distribution and abun-
dance have similarly been studied in relation to harvest
management and planning of oil activities (e.g. Boertmann
et al. 2013). However, in general, dietary and trophic infor-
mation is currently fragmentary in West Greenland, com-
plicating prediction on how species will respond to future
environmental changes.

Since climate and anthropogenic changes can readily
modify the ecosystem, it is of key importance to acquire
baseline knowledge about the trophic structure of this
marine ecosystem in order to provide a solid base for detec-
tion of the impacts of current and pending environmental
change. Furthermore, understanding the ecological niche
space occupied by species within an ecosystem, and the
extent to which they overlap with other species or func-
tional groups, is key for assessing their role in food web
structure and energy transfer (McMeans et al. 2013a; Quil-
lien et al. 2016). Here, we analysed isotopic data from key
components of the West Greenland marine food web col-
lected in 2000-2004 to provide a baseline against which
current and future isotopic studies can be contrasted. Using
these data, we describe the trophic relationships and iso-
topic niche space from invertebrate to marine mammals
and compare our data with that available from other high-
latitude marine food webs.

Materials and methods
Sample collections

Thirty-nine species were analysed (Table 1). Inverte-
brates, fish and seabirds were sampled between 62°00’ and
69°30’N, whereas marine mammals were sampled up to
71°30'N (Fig. 1). Twenty-six of the 39 species were col-
lected during July—October 2003 (northern summer/fall,
Table 1). Deviations from this main sampling period by
the following species were unavoidable due to seasonal
migrations. Copepods (Calanus spp.), little auks (Alle alle),
ringed seals (Phoca hispida), hooded seals (Cystophora
cristata) and polar bear (Ursus maritimus) were sampled
from March to June (northern spring/summer) in 2003
(polar bear in 2001), while the remaining three species
of seabirds [king eider (Somateria spectabilis), common
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eider (Somateria molissima) and Briinnich’s guillemot
(Uria lomvia)] were sampled during November—January
(northern winter) 2003/2004, and three species of marine
mammals [walrus (Odobenus rosmarus), beluga (Delphi-
napterus leucas) and narwhal (Monodon monoceros)] were
sampled during November—January (northern winter) in
2000/2002.

Copepods were sampled from the research vessel R.V.
Porsild (University of Copenhagen) at a permanent sta-
tion located 1 nautical mile off Qeqertarsuaq (69°15'N,
53°33'W) (Hansen et al. 2012b) and collected in the upper
50 m of the water column using a WP-2 net (mesh size
200 um). Samples were diluted in surface water in a 100-L
thermo box and brought to the laboratory where the domi-
nating Calanus species (Calanus hyperboreus, C. glacialis
and C. finmarchicus) were carefully sorted and rinsed in fil-
tered surface water before being transferred to a test tube
and deep frozen (—28 °C).

Samples of snow crab were collected during a routine
pot survey using squid as bait (Carl and Burmeister 2006).
Samples of northern shrimp, northern krill (Meganyc-
tiphanes norvegica), Boreoatlantic armhook squid (Gona-
tus fabricii), capelin (Mallotus villosus), polar cod (Bore-
ogadus saida), sandeel (Ammodytes sp.), deepwater redfish
(Sebastes mentella), golden redfish (Sebastes marinus),
Greenland halibut, great silver smelt (Argentina silus),
American plaice (Hippoglossoides platessoides), haddock
(Melanogrammus aeglefinus), Atlantic cod, daubed shanny
(Leptoclinus maculatus), Atlantic wolffish (Anarhichas
lupus), spotted wolffish (Anarhichas minor) and short-
horn sculpin (Myoxocephalus scorpius) were collected
by a 3000/20-mesh Skjervgy bottom trawl (Kanneworff
and Wieland 2003). All samples taken were deep frozen
(—50 °C) on board immediately after collection.

Samples of additional invertebrates [blue mussel (Myfi-
lus edulis), Iceland scallop (Chlamys islandica)], fish
[Atlantic salmon (Salmo salar)], seabirds [Briinnich’s
guillemot, black-legged kittiwake (Rissa tridactyla), com-
mon eider, king eider, black guillemot (Cepphus grylle)]
and marine mammals [harp seal (Pagophilus groenlandi-
cus) and minke whale (Balaenoptera acutorostrata)] along
with supplementary samples of spotted wolffish and Atlan-
tic wolffish were collected from coastal Inuit subsistence
catches. For marine mammals, tissue samples were deep
frozen (—28 °C/— 50 °C) 6-24 h postmortem.

All necessary permits to collect samples from the differ-
ent species of animals were obtained from the Ministry of
Fisheries, Hunting and Agriculture (APNN) in Greenland.

Stable isotope analysis

Muscle samples from all species [except blue mussels,
copepods and northern krill where the whole animal (minus

shell) was used] were prepared for !°C and 8'°N analyses
by the isotope laboratory at the Department of Soil Sci-
ence, University of Saskatchewan, Saskatoon, Canada.
Samples were washed in distilled water, freeze-dried, pow-
dered and treated with a 2:1 chloroform—methanol solution
to remove lipids. Our approach was to normalize sample
measurements in this way in order to compare our data
with other major isotopic food web studies conducted in
the region (e.g. the North Water Polynya and the Canadian
Arctic, Hobson et al. 1995, 2002a). We recognize that such
lipid extractions while controlling for differential lipid con-
tent in order to make 3'C measurements more easily inter-
preted, can have small (0 %o) to moderate (0.5 %o) effects
on tissue 8'°N values (Sgreide et al. 2006). However, we
favoured our approach over the use of calibrations based
on the elemental C:N ratios which have not been developed
specifically for our food web of interest. Our approach
thus provides key information on protein pathways and not
necessarily on lipid pathways and should be interpreted as
such. Samples were then dried under a fume hood. Addi-
tionally, zooplankton were soaked in 0.1 N HCI to remove
carbonates and then dried without rinsing. Homogenized
samples of 1 mg were loaded into tin cups and combusted
at 1200 °C in a Robo-Prep elemental analyser. Resultant
CO, and N, gases were then analysed using an interfaced
Europa 20:20 continuous-flow isotope ratio mass spec-
trometer (CFIRMS), with every five samples separated by
two laboratory standards (Bowhead whale baleen and egg
albumen). Stable isotope abundances were expressed in the
d-notation as the deviation from standards in parts per thou-
sand (%o) according to the following equation:

8X = ((Rsample/ Rstandard) — 1) * 1000 (1)

where X is '3C or N and R is the corresponding ratio
BC/1C or N/MN. The Ry, 4,4 Values were based on the
PeeDee Belemnite for '*C and atmospheric N, for '°N.
Replicate measurements of internal laboratory standards of
similar matrix (Bowhead whale baleen and egg albumin)
indicate within-run (n = 6) measurement errors of +0.1 %o
and £0.3 %o for 3'3C and 8'°N values, respectively.

Estimations of trophic positions

Stable isotope analysis has, over the past 20 years, increas-
ingly been used to study animal diets and trophic positions
(see review by Boecklen et al. 2011). One very important
aspect of using stable isotopes to describe the food web
structure of a community is determining the diet-tissue
discrimination factor (A'”N) or trophic enrichment factor
(TEF), namely the isotopic offset between a consumer tis-
sues and its diet (Hobson and Clark 1992; Post 2002). It
remains a challenge to choose the most appropriate TEF
value for any given system, especially those involving a

@ Springer
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Fig. 1 The sampling area in West Greenland. Invertebrates, fish and
seabirds were sampled between 62° and 69°30'N (dashed area),
whereas marine mammals had a sampling range up to 71°30'N
(dashed and solid line areas). Projection: equidistant conic with a
central meridian of —60 degrees

wide variety of trophic positions and taxa. A meta-analysis
conducted by Post (2002) suggests that a TEF of 3.4 %o is
a reasonable estimate (see also Minagawa and Wada 1984).
However, for Arctic marine systems, modelling based on
extensive food web isotopic assays suggests that a TEF of
3.8 %o is more appropriate (Hobson and Welch 1992; Hob-
son et al. 1994, 2002a, 2002b; Hobson and Bond 2012).
More recently, the idea of varying TEF values (Olive et al.
2003; Olin et al. 2013) has resulted in the suggestion of
using a scaled approach (Hussey et al. 2014a). Our pri-
mary motivation was to produce a dataset that could be
readily compared with previous work (i.e. by using a TEF
of 3.8 %o0). However, we also modelled our trophic posi-
tions based on the generalized TEF value of 3.4 %o and the
scaled approach suggested by Hussey et al. (2014a).

Trophic positions (TP) using the generalized estimated
TEF values were calculated according to the formula:

TPconsumer = TPprimary consumer

+ (8 15 Nconsumer - (S 15 Nprlmary consumer) / TEF
@)

We assigned the copepod Calanus finmarchicus (average
819N value 7.92 %o in our study area) to the second trophic
level (i.e. TP imary consumer = 2-0)-

To apply the scaled trophic estimates we used the for-
mula (see Hussey et al. 2014a, b for details):

@ Springer

_ log (‘SISNlim - 515Nprimaryconsumer> — log (515Nlim - 515NTP)

TP
k

+ TPprimary consumer (3)

where
Bo — 8 Niim
k= —1log (_515th 4)
—Bo

8" Njjm = 51 (5)

Values of B, (5.92) and B, (—0.27) were taken from
Hussey et al. (2014a, p. 243). Again we assigned copepod
Calanus finmarchicus (average 8N value 7.92 %o in our
study area) to the second trophic level (i.e. TP = 2.0).

Niche width and overlap

The position of a species in the 3-space is mainly driven
by resource use and foraging habitats. The isotopic niche
width (%c°) was measured for each species by calculating
the standard ellipse area SEA (40 %, SIAR default), cor-
rected for small sample sizes (SEA.) following Jackson
et al. (2011). The individual isotope niche width (SEA()
was calculated for all species except northern krill, great
silver smelt, Greenland shark, walrus and polar bear due to
too small sample sizes (Table 1). In addition, niche widths
and (semi-quantitative) niche overlaps were calculated for
the four functional groups (invertebrates, fish, seabirds and
marine mammals). Niche overlap is given as the proportion
of the overlapping area between the niches of groups A and
B out of the summed niche area of A and B. All analyses
were done using the package SIAR in R (R Development
Core Team 2011).

Results
Stable isotopes

The lowest 8'°N values sampled in our study were for
the suspension feeding blue mussel (6.1 £ 0.5 %o SD),
and the highest were for polar bear (20.2 %o¢) (Table 1,
Electronic Supplementary Material Figure S1). Groups
of invertebrates, fish, seabirds and marine mammals had
mean 5'°N values ranging from 6.1 to 13.1 %o, 10.0 to
17.0 %o, 11.3 to 13.8 %0 and 12.0 to 20.2 %o, respectively
(Table 1; Figs. 2, 3, 4, 5). Species having the lowest SN
values generally also had the lowest §!°C values, except
for marine mammals, where the opposite was the case.
The lowest 8'°C values were observed in Calanus finmar-
chicus (—20.4 £ 0.3 %o SD) and the highest in the snow
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crab (—15.8 £ 0.3 %0 SD). Groups of invertebrates, fish,
seabirds and marine mammals had mean 8'°C values rang-
ing from —20.4 to —15.8 %o, —19.7 to —16.4 %0, —19.5
to —17.3 %o and —19.5 to —16.8 %o, respectively (Table 1;
Electronic Supplementary Material Figure S1).

Food web length

With a TEF of 3.8 %o the mean TPs of all organisms ranged
from 1.5 to 5.2 indicating a food web in West Greenland
spanning 5 trophic levels (Table 1; Fig. 6). A TEF of 3.4 %o
showed similar results with mean TPs of organisms ranging
from 1.5 to 5.6, also indicating a food web of 5 trophic lev-
els (Table 1). Using a scaled TEF mean TPs ranged from 1.6
to 8.6 indicating a food web with 8 trophic levels (Table 1).

Isotopic niche width and overlap

The isotopic niche width of all individual invertebrate spe-
cies ranged from 0.3 %’ (Calanus glacialis and snow crab)
to 2.5 %o (Boreoatlantic armhook squid), with an overall
width for the group of 11.4 %c*. The niche width of the
individual fish species ranged from 0.2 %.* (Greenland
halibut — small) to 3.2 %¢* (Atlantic wolffish) with a group
niche width of 4.4 %c’. The individual seabird species
ranged in niche width from 0.4 %¢* (king eider) to 1.3 %>
(common eider) and an overall group width of 3.4 %¢*. The
individual marine mammal species ranged in isotopic niche
width from 0.3 %c” (ringed seal and narwhal) to 2.0 %¢*
(minke whale) and had a group size of 3.3 %0”.

We found the core isotopic niche areas used by seabirds
and fish to have an overlap of 24.3 % (Table 2; Fig. 7). Sea-
bird and invertebrate niches had an overlap of 9.9 % and
fish and invertebrate niches an overlap of 3.0 % (Table 2;
Fig. 7). The isotopic niche area of marine mammals and fish
had an overlap of 1.2 % (Table 2; Fig. 7), whereas no over-
lap was found between the core niche areas of marine mam-
mals and invertebrates. However, looking exclusively at the
Boreoatlantic armhook squid, where the wide niche width is
driven by high 8!°N values, we found the total niche area of
squid and marine mammals to have an overlap of 10.3 %.

Discussion

Our isotopic analysis of the marine food web of West
Greenland has provided a trophic model describing rela-
tionships among diverse organisms from herbivorous
zooplankton to polar bears. Our work based on a TEF
of 3.8 %o contributes to the circumpolar understanding
by allowing direct comparisons with models developed
for other Arctic regions such as the North Water Polynya
(Hobson et al. 2002a), North East Water Polynya (Hobson

— Squid
16 — === Blue mussel
Calanus finmarchicus
=== Calanus glacialis
e== (Calanus hyperboreus
14 — e=== Northern shrimp
e |celand scallop
e Northern krill
12 Snow crab
o
&
Z 10
= b

T T T T T T T T
21 -20 -19 -18 -17 -16 -15 -14
8'3C (%)

Fig. 2 Stable isotope biplot illustrating the isotopic niche of the
invertebrate community in West Greenland. Ellipses represent the iso-
topic niche width of 40 % (SIAR default) corrected for small sample
size (Jackson et al. 2011)

et al. 1995), Lancaster Sound (Hobson and Welch 1992)
and the sub-Arctic Gulf of Alaska (Hobson et al. 1997).
We acknowledge that our choice of TEF can clearly influ-
ence our interpretations of food web structure and so also
applied two other approaches. However, we found that
a trophic model using a TEF of 3.4 %o and the scaling
approach advocated by Hussey et al. (2014a) did not result
in substantial differences in our trophic estimates with
the exception of marine mammals. Polar bear, especially,
where the scaling approach estimated this species at a TP
of 8.6, while this value was 5.2 and 5.6 with TEF 3.8 %o
and 3.4 %o, respectively, seems to be clearly overestimated.
However, considering we only had one polar bear sam-
ple, this needs further investigation. To a lesser degree, we
also found the scaling approach provided higher TP esti-
mates for ringed seal (range between TEF 3.8 %o and scal-
ing method: 4.0—4.4), beluga (4.1-4.7), narwhal (4.2-4.8)
and hooded seal (4.8-5.3). With these exceptions noted,
our study confirmed an expected 5-5.5 trophic-level sys-
tem with considerable overlap between isotopic niches of
species at each level, as illustrated from other Arctic areas,
such as the North East Water Polynya (Hobson et al. 1995)
and Lancaster Sound (Hobson and Welch 1992). While we
fully recognize that the isotopic niche is not necessarily
equivalent to the ecological niche, the derivation of isotopic
niches can greatly assist in understanding food web struc-
ture and function (Newsone et al. 2007).

The relationships described here can now be used to
examine the existing structure within the food web and
serve as a template and baseline with which to compare
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Fig. 3 Stable isotope biplot
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Fig. 4 Stable isotope biplot illustrating the isotopic niche of the sea-
bird community in West Greenland. Ellipses represent the isotopic
niche width of 40 % (SIAR default) corrected for small sample size
(Jackson et al. 2011)

with other Arctic marine food webs and monitor the effects
of environmental changes underway in this and other
regions (e.g. Vizzini and Mazzola 2004). We advocate the
continued use of a generalized TEF value of 3.8 %o because
this makes for direct comparisons with other high Arctic
marine food webs. However, we recognize that for moni-
toring purposes, consistency is required and encourage
researchers to continually strive to improve TP estimates
based on the stable isotope approach.

West Greenland is continuously experiencing major
environmental challenges which affect the trophic ecology
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Fig. 5 Stable isotope biplot illustrating the isotopic niche of the
marine mammal (including shark) community in West Greenland.
Ellipses represent the isotopic niche width of 40 % (SIAR default)
corrected for small sample size (Jackson et al. 2011)

of organisms (diet and habitat) and could thereby impact
the whole marine food web structure. For instance, Green-
land has experienced a warming of the sea along its west
coast and a subsequent regime shift in the fish commu-
nity in the marine system in the 1920s and 1930s (Drink-
water 2006). The shift resulted in the retreat of cold-water
fish species to the north and at the same time in an expan-
sion of boreal species (most noticeably the Atlantic cod).
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Following this warm period, the last three decades of the
1900s experienced a series of anomalous cold years (Buch
et al. 2004; Drinkwater 2004; Stein 2004, 2005) before
a new regime shift during 1997 in Disko Bay. This latter
resulted in a noticeable change in water characteristics
and a change to a general warming trend in this century
(Hansen et al. 2012b; Cappelen and Vinther 2014). Accord-
ingly, a change in the diet of Greenland halibut has been
observed during the period 1978-2003 with increasing
importance of invertebrates (Dwyer et al. 2010). Similarly,
Falk and Durinck (1993) studied stomach contents in Briin-
nich’s guillemots during the winter 1988-89 and found
that they fed almost exclusively on fish from October to
December. Briinnich’s guillemots are opportunistic feed-
ers favouring fish when readily available. A TP of 3.1 for
Briinnich’s guillemots sampled in November 2003 in this
study suggests a diet mainly consisting of zooplankton in
the preceding month. This contrasts to the study from 1988
to 1989, possibly indicating a change in the availability of
fish. Conversely, little auks sampled for this study had a
TP of 3.0 and a similar TP value was found for little auks
wintering off Nuuk in 2007 (Fort et al. 2010a), suggesting
that the base of the food web had not changed considerably
between 2003 and 2007.

Invertebrates

The nine species of invertebrates analysed from West
Greenland showed a wide range of both !N and 8'3C val-
ues, reflected by a large isotopic niche width for this group
in comparison with fish, seabirds and marine mammals.
This result confirms that invertebrates show a wide range of
trophic ecologies, occupying various habitats and feeding
at several trophic levels. Furthermore, the calculated 40 %
isotopic niches for the different species of invertebrates did
not overlap, indicating a group mostly made up of special-
ists segregating in their environment. However, we need to
acknowledge that an absence of overlap between species in
this group could also be a result of a lack of species sam-
pled. Values of 3'5N for copepods ranged from 7.9 %o (TP
2) for Calanus finmarchicus to 9.2 %o for C. glacialis, sug-
gesting that C. finmarchicus were primarily herbivorous

Table 2 Isotopic niche overlap (%) between the four functional
groups in the West Greenland marine ecosystem expressed as the pro-
portion of the overlapping area between niches of groups A and B out
of the summed niche areas of A and B

Marine mammals Seabirds Fish Invertebrates

Marine mammals 0 1.2 0
Seabirds 243 99
Fish 3
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Fig. 7 Stable isotope biplot illustrating the isotopic niche of the four
functional groups (invertebrates, fish, seabirds and marine mammals)
in West Greenland. Ellipses represent the isotopic niche width of
40 % (SIAR default) corrected for small sample size (SEAc; Jackson
etal. 2011)

during the sampling period and supporting findings by Ste-
vens et al. (2004) and Campbell et al. (2009). This result
also supports our choice of this species as representative of
a primary herbivore at TP 2.

Being filter feeders, blue mussels play an important role
in harvesting the plankton and seston in the water column,
and thus we would have expected blue mussels to occupy
the same trophic level as C. finmarchicus and Iceland scal-
lop (Chlamys islandica) (i.e. at TP 2). Our model with a
TEF of 3.8 %o (as well as a TEF of 3.4 %o and the scaled
TEF), however, produced a TP of 1.5 (1.5 and 1.6, respec-
tively) for blue mussel, which is below that expected for
a filter feeder. Our model did not consider organisms that
void nitrogenous wastes in different ways and could there-
fore be inappropriate for these organisms. As reviewed by
Vanderklift and Ponsard (2003), molluscs and detritivores
show the lowest diet-tissue isotopic discrimination for
8!N. This is related to their excretion of ammonia. Such
lower discrimination would result in lower tissue 3'°N val-
ues and hence lower TP estimates. Future refinements of
marine TP models using 8'°N values should consider the
form of nitrogenous excretion and the relative dependence
of some organisms on detritus (Vanderklift and Ponsard
2003).

As expected, the predator Boreoatlantic armhook squid
foraged at the highest trophic level among invertebrates.
For some individuals, these levels reached those occupied
by some piscivorous marine mammals. In that respect, we
found the total niche area of squids and marine mammals
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to have an overlap of 10.3 %. All squid individuals sampled
were larger than 10 cm, which corresponds to an age of
1 year or older (Kristensen 1984). As with other predators,
the diet of Boreoatlantic armhook squids has been found to
change with size, with larger individuals having a more pis-
civorous diet (Wiborg 1980; Kristensen 1984). We did not
have accurate information on individual size, but the large
range in 8N values (10.7-16.5 %o) could be explained by
large difference in individual size. Future studies should
aim at collecting more species/age specific details in order
for us to improve our understanding of interactions at lower
trophic levels.

Fish

The fish community in West Greenland is characterized by
demersal species. These include Greenland halibut, Atlan-
tic and spotted wolffish, deepwater and golden redfish in
the deeper waters, whereas, on the banks, sandeel is more
prominent (Pedersen and Kanneworff 1995). Based on the
813C data, the demersal species did not exclusively feed on
benthic organisms, except for the two most '*C-enriched
species of wolffish and shorthorn sculpin (Pedersen and
Zeller 2001, Fig. 3; Table 1). As discussed for Boreoatlan-
tic armhook squids, isotope results for Greenland halibut,
polar cod and Atlantic cod showed these species to change
their diet with increasing size from crustaceans towards a
higher proportion of fish (Fig. 3, Pedersen and Riget 1993;
Hovde et al. 2002; Ramsvatn and Pedersen 2012).

Sharks play an important role in food webs as apex
predators by interacting at several trophic positions (Fer-
retti et al. 2010). The Greenland shark in this study had a
TP of 4.4. This position is similar to findings by McMeans
et al. (2013b) which revealed that Atlantic cod make up
a large proportion of the diet of Greenland sharks from
Kongsfjorden (Svalbard). Stable isotope results from our
study (Fig. 3; Table 1) suggest that this is likely the case in
West Greenland as well.

The sixteen species of fish analysed also showed a wide
range of both 3N and 8'3C values. However, the core iso-
topic niche width for the group was considerably smaller
than that of invertebrates and similar to that of marine
mammals and seabirds, indicating a lower diversity of
habitats and feeding ecologies. In contrast to the inverte-
brate group, all species except sandeel (and possibly great
silver smelt) overlapped in their isotopic niche area with
other species. This indicates a group consisting of many
generalists and confirms a highly productive West Green-
land ecosystem. Indeed, a higher degree of niche segrega-
tion would have been expected in a nutrient poor system
to reduce competition between species. Such information
is essential as it demonstrates that environmental change,

if modifying specific habitats or specific prey species like
Calanus copepods, could highly impact higher trophic lev-
els and the entire food chain.

Seabirds

Large numbers of common eiders, king eiders, Briinnich’s
guillemots, black guillemots and little auks winter in the
open water of the West Greenland ecosystem (Merkel et al.
2002; Boertmann et al. 2004, 2013) where species were
sampled in this study. The seabird community sampled
showed a high degree of grouping in their isotopic niche
areas (Fig. 4).

King and common eiders grouped together in their iso-
topic niches. They both occupied a TP of 2.9 and the most
benthic position compared to the four other seabird species
in West Greenland. Given the low TP found for mussels in
this study, the diet of the eiders suggests a mixed diet such
as polychaetes, echinoderms and crustaceans as found by
Merkel et al. (2007a; 2007b) in Southwest Greenland and
in West Iceland by Kristjansson et al. (2013). This is also
supported by the isotopic niche area for common eider,
which was the largest in the seabird group.

Little auks, Briinnich’s guillemots and black-legged kit-
tiwakes all overlapped in their isotopic niche area, but with
kittiwakes having a broader diet (according to the isotopic
niche width). The little auk feeds predominantly on cope-
pods during spring and summer (Stempniewicz 2001), but
has, based on stomach analyses, been found to feed pre-
dominantly on krill during winter in Southwest Green-
land (Rosing-Asvid et al. 2013), while isotopic analysis
in another study suggested that copepods were still impor-
tant during winter (Fort et al. 2010b). Little auks in our
study were collected in March, during the copepod feed-
ing phase, and our estimate of a TP of 3.0 supports this
expectation. Similar results have been found in the North
Water Polynya (TP 3.2, Hobson et al. 2002a) and in West
Greenland (TP 3.2 using Eq. 3, Fort et al. 2010a). A TP
of 3.1 found for Briinnich’s guillemots (November) and
black-legged kittiwakes (September) in contrast to the
higher values found in the North Water Polynya (Hobson
et al. 2002a; Karnovsky et al. 2008), suggests a mixed diet
of fish and crustaceans with more fish in the North Water
Polynya.

The diet of black guillemots generally consists of a
variety of fish and invertebrates (predominantly benthic
species, Ewins 1990; Byers et al. 2010). The TP of 3.5,
and the fact that the isotopic niche area of black guille-
mots did not overlap with any of the other species, is in
agreement with a diet consisting of a higher percentage
of fish than the other birds collected in this study. How-
ever, the 3'3C data indicated little use of benthic fish
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species in West Greenland. This is in accordance with
the winter and spring occurrence of black guillemots
dispersed in the offshore pack ice (Mosbech and John-
son 1999) feeding mainly on polar cod (Bradstreet and
Brown 1985).

Marine mammals

Due to the high productivity of West Greenland fjords,
banks and shelves (Smidt 1979; Juul-Pedersen et al. 2015),
this region is an important feeding area for marine mam-
mals with seasonal occurrence of high-quality food patches
(Heide-Jgrgensen and Teilmann 1994). In addition to polar
bear and walrus, at least 14 species of whale and five spe-
cies of seals occur in the area (Boertmann et al. 2013). In
this study we only sampled three whale species; thus, this
group is highly underrepresented. This could possibly be
an explanation for why we measured a relatively small
isotopic niche width for the group and only a small or no
overlap with the fish and seabird groups. Only narwhal
and beluga overlapped in their isotopic niche area, but, in
general, we expect that greater dietary overlap exist among
marine mammals excluding polar bears and encourage
more extensive sampling of this group.

Minke whale, harp seal and walrus were found to
occupy the lowest TP in the marine mammal group. Cape-
lin and sandeel have been found to be important food items
for minke whales (Larsen and Kapel 1981) and harp seals
(Kapel and Angantyr 1991; Boertmann et al. 2013) in West
Greenland waters. However, a TP of 3.5 for harp seals
and 3.1 for minke whales suggests a mixed diet of small
schooling fish and crustaceans, also found by Boertmann
et al. (2013). A TP of 3.6 is higher than expected for wal-
ruses if their sole diet was herbivorous clams but could be
explained by walruses occasionally feeding on vertebrates
like seals, birds and fish (Muir et al. 1995, Born 1997).

Ringed seals TP (4.0) was in good agreement with
prior estimates of diet consisting of polar cod, Arctic cod,
Liparis spp. and amphipods (Siegstad et al. 1998). Beluga
(TP = 4.1) and narwhals (TP = 4.2) were also in good
agreement as they are known to predominantly feed on fish
(polar cod and Greenland halibut, respectively). Squid and
shrimp have been found to contribute to their diet (Heide-
Jgrgensen and Teilmann 1994; Laidre and Heide-Jgrgensen
2005); however, during the sampling period of this study
fish appear to be the main prey items. Hooded seals occu-
pied a TP of 4.4 also suggesting forage fish to be the main
diet of the sampled individuals. A previous study analys-
ing stomach contents indicated that capelin was the most
important prey (ca. 93 % by weight) for hooded seals in
Southwest Greenland (Kapel 2000). Our data support a diet
consisting of capelin and/or other forage fish.
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Implications and future perspectives

Our study, to our knowledge, is the first extensive investi-
gation of the West Greenland marine food web structure. In
this respect, our model is important in assisting future stud-
ies of the effects of climatic and anthropogenic stressors
on West Greenland marine ecosystems, potentially causing
changes in the structure of marine food webs. Nonetheless,
future and expanded studies focused on additional species
should provide complementary data and allow long-term
investigations of modifications of Arctic marine food web
structure under rapid environmental change. Moreover, it
is well recognized that baseline isotopic values for primary
production can vary spatially and seasonally in isotopic
signals (e.g. Hansen et al. 2012a) and should be taken into
account, or the variance in resulting trophic estimates mod-
elled. To some degree, this can be accomplished by inves-
tigating a variety of tissues representing different periods
of dietary integration (Hobson 1993; Hobson et al. 2002a;
Hobson and Bond 2012). We recommend a generalized
approach where more species and especially those repre-
senting lower trophic levels (i.e. invertebrates) are included,
as they play a key role in transferring energy from primary
producers to upper-level predators in marine ecosystems
(McMeans et al. 2013a). An example is the amphipod
Themisto libellula that, through SI modelling, is considered
a keystone in the North Water Polynya high Arctic system
(Hobson et al. 2002a). Likewise, organisms involved in
the microbial loop (unicellular grazers such as ciliates and
dinoflagellates) are potential key species in marine Arctic
ecosystems (Levinsen and Nielsen 2002) and should there-
fore be considered in future investigations. In addition, we
recommend carefully designed collection schemes where
standard biological data (i.e. total length, weight, age, sex-
ual status) are recorded in order to allow for a full interpre-
tation of species stage-dependent diet within and between
regions.
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