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no significant differences in invertebrate diversity and den-
sity between disturbed and undisturbed sandy sediments. 
In contrast, the invertebrate fauna differed significantly 
between disturbed and ambient muddy sediments, particu-
larly during the first 4 days after disturbance. Feeding pits 
in muddy sediments also took twice longer to fill up than 
pits in sandy sediments. These results were consistent with 
the comparison of disturbed and undisturbed muddy sedi-
ments in the MPA: at least at the local scale, the foraging 
by this invader significantly altered community structure. 
Ambient sediments had a higher number of species and 
nearly twice as many invertebrates compared to disturbed 
sediments. Overall, our results suggest that visual evidence 
of green crab feeding pits in muddy sediments can be used 
as a fairly reliable predictor of local-scale changes in inver-
tebrate communities. The persistence of these local-scale 
changes depends on the type of habitat in which the distur-
bance takes place.

Introduction

Some coastal predators have impacts that go beyond their 
own prey (Wilson 1991) and involve the recurrent altera-
tion of the habitat (e.g. Volkenborn et al. 2009; Lee 2010; 
Pacheco et al. 2013). By digging, they disturb the matrix 
of sediment as well as displace or cause mortality of non-
targeted species or remove and expose their prey to other 
predators (Botto and Iribarne 1999; Escapa et al. 2004). In 
the process, they also open up opportunities for other indi-
viduals to colonize and establish in areas previously not 
available to them (DePatra and Levin 1989; Dernie et al. 
2003; Flach 2003). In fact, the effects of these bioturba-
tors on habitats and communities can be multiple (Reise 
2002; Alvarez et al. 2015). Beyond potential changes to 

Abstract While digging and foraging, the non-indigenous 
green crab (Carcinus maenas) creates a landscape of dis-
tinctive pits or depressions in the sediment. Despite their 
visibility and widespread occurrence in Atlantic Canada 
and elsewhere, the community influence and persistence 
of this disturbance remain undocumented. This study 
addressed this gap in our knowledge using two approaches. 
First, in both sandy and muddy habitats, we monitored 
fresh feeding pits (disturbed sediments) for up to 9–11 days 
after their formation, recording their sediment properties 
and diversity and density of invertebrate fauna, and com-
paring these characteristics to those of ambient (undis-
turbed) sediments in similar habitat. Second, we quantified 
local-scale invertebrate diversity and density in feeding pits 
and ambient sediments in muddy habitat only, at three other 
sites within a Marine Protected Area (MPA). Grain size did 
not differ between disturbed and ambient sediments and 
did not change over time within habitats. We also found 
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sediment characteristics (e.g. Le Calvez 1987; Palanques 
et al. 2001), disturbance due to feeding may increase food 
and invertebrate patchiness (e.g. Griffiths et al. 2006) or 
make more uniform food or infaunal distributions (Thrush 
et al. 1991). The European green crab (Carcinus mae-
nas), a widespread coastal invader, is among the predators 
that are able to alter community structure while feeding 
(Schratzberger and Warwick 1999; Gregory and Quijón 
2011). In their search for prey, this species digs into the 
sediment and creates characteristic depressions (hereafter 
“feeding pits”) that remain visible for several days (Audet 
et al. 2003). A “landscape” of feeding pits is widespread 
in areas where the green crab is abundant and is likely to 
be a good indication of community alteration considering 
this species’ broad diet and high feeding rates (e.g. Elner 
and Hughes 1978; Cohen et al. 1995; Pickering and Qui-
jón 2011).

In addition to its effects on individual prey, green crab 
feeding is known to have significant effects on meio-ben-
thic (Cohen et al. 1995; Schratzberger and Warwick 1999) 
and macro-benthic communities (Gregory and Quijón 
2011). However, no studies have focused on the impact of 
feeding pits on infaunal communities nor on the persistence 
of these changes to the sediment over time. The question of 
whether visual evidence, such as feeding pits, can predict 
the occurrence of an impact on native invertebrate commu-
nities has not been addressed. Recolonization of sediments 
following disturbance by shellfish harvesting (Dernie et al. 
2003; Griffiths et al. 2006) or by feeding activities of large 
epibenthic predators such as rays and horseshoe crabs (e.g. 
Thrush et al. 1991) is well documented. However, recolo-
nization or short-term changes following smaller distur-
bances such as those created by green crabs are not. After 
the creation of a feeding pit, community changes should 
be expected to occur due to the temporary absence of at 
least some prey and the provision of open, under-populated 
patches of sediment (e.g. Volkenborn et al. 2009). The type 
of sediment influences the feeding rate of some decapod 
predators (e.g. the blue crab, Callinectes sapidus; Lipcius 
and Hines 1986), and in consequence, it may also influ-
ence the speed of recovery from disturbance (Dernie et al. 
2003) or the short-term variation in community structure. 
For instance, unstable, shifting habitats such as coarse 
sandy habitats are expected to recover faster from distur-
bance than more stable muddy habitats (Thrush et al. 1991; 
Dernie et al. 2003). This difference is not trivial consider-
ing the uneven distribution of different sediment types and 
the ongoing spread of populations of green crab into new 
locations and habitats in many parts of the world

This study combines two approaches to study the influ-
ence of green crab feeding pits on intertidal invertebrate 
communities located in Prince Edward Island (hereaf-
ter PEI), southern Gulf of St. Lawrence, Canada. First, it 

describes short-term community changes following the 
visual detection of green crab feeding pits in muddy and 
sandy habitats during a period of up to 11 consecutive 
days. Second, it documents local-scale differences between 
freshly disturbed (feeding pits) and undisturbed muddy 
sediments in three other intertidal communities. A priori 
expectations included potential differences in composi-
tion and abundance as a result of green crab feeding and 
sediment disturbance (cf. Levin 1984). In addition, native 
species mobility (cf. Frid 1989; Gray and Elliott 2009) or 
the presence of opportunistic species following disturbance 
was also expected to contribute to changes in community 
composition.

Methods

Study area

The study of short-term variation following green crab dis-
turbance was conducted in two locations (Fig. 1), character-
ized by different grain size composition: one was located in 
Basin Head (primarily muddy sediments) and one in Souris 
River estuary (sandy sediments). The sites are located 
~6 km apart and have similar tidal ranges (approximately 
1.4 m during spring tide conditions). During low tide, 
the upper limit of the feeding pits in both areas becomes 
exposed for up to 2.5 h. Height differences between those 
upper level and their corresponding low tide levels were 
approximately 0.5 m (see Gregory and Quijón 2011; Lutz-
Collins and Quijón 2014 for a detailed description of each 
study area). Water temperature and salinity were relatively 
uniform among sites and most of their variation was pri-
marily due to changes associated with tidal cycles (Sharp 
et al. 2003; DFO 2009). Both areas are also known to sup-
port green crab populations that have been well established 
for over a decade (Audet et al. 2003).

The chosen sites had clear visual signs of green crab 
foraging activity in the intertidal zone, i.e. large number 
of feeding pits. Relative abundance of green crabs (crabs 
trap−1 day−1) in each area (Basin Head and Souris) were 
considered fairly similar: estimations conducted before and 
after the study (June to August) with wire mesh traps baited 
with Atlantic mackerel (Scomber scombrus) and deployed 
for 24 h are presented in Table 1. Average number of green 
crab was as high as 41.5 and 37.4 crabs trap−1 day−1 in 
muddy (Basin Head) and sandy (Souris) sediments, respec-
tively. The overall size range of these crabs was 20–79 mm 
CW. With regard to the number of feeding pits, counts con-
ducted in the areas that were subsequently used for moni-
toring (10 × 30 m areas; see below) indicated that muddy 
sediments had almost twice as many feeding pits than 
sandy sediments. The diameter of 30 randomly selected pits 
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ranged between ~3 and 7 cm and their depth 0.5–4.5 cm 
(Table 1).

The collection of samples for the monitoring of feed-
ing pits was conducted during spring low tide conditions in 
July 2008 while the collection of samples for the snapshot 
comparison of disturbed and undisturbed sediments was 
conducted in August 2008. No substantial temporal changes 
in infaunal numbers were detected between the beginning 
and end of the study in both locations (July–August 2008). 
Thus, potential alterations due to seasonal events such as 
settlement/recruitment were not expected to severely influ-
ence the samples collected during this study. Harvester’s 
digging for shellfish (clamming) creates pits somewhat 
similar to those created by green crab foraging and could 
be considered a source of confusion. However, clamming 
is not allowed in Basin Head, one of the few Marine Pro-
tected Areas in the region. In Souris River, where clamming 
is allowed, no evidence of it was observed in or around the 
study site during the daily visits to monitor the feeding pits.

Sampling design and processing

Areas measuring 10 × 30 m located parallel to the low tide 
level were identified at a site with muddy sediments (Basin 
Head) and a site with sandy sediments (Souris). All the 
depressions found in these areas that were visually attribut-
able to green crab foraging pits (~3–7 cm diameter) were 
carefully tagged with thin straws of a standard colour and 
no longer considered for sampling. During low tide (LT) 
on the following day (day 1), all new (freshly dug) feed-
ing pits (>100 on each area) were tagged with straws of a 
different colour and were considered suitable for sampling. 
At each site, sediment samples were taken from randomly 
selected feeding pits (n = 6) using a 7-cm-diameter cylin-
der (38.5 cm2) inserted 5 cm into the sediment. Based on 
Lutz-Collins and Quijón (2014), these samples were con-
sidered representative of the infaunal communities of these 
sites. For comparison, six additional samples of the same 
size were taken simultaneously near each foraging pit in 
visually undisturbed sediments. Early during the process 
of recolonization, the collection of 5-cm-deep samples 
from disturbed sediments might have included relatively 
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Fig. 1  Map of Prince Edward Island (PEI) identifying the approxi-
mate location of Basin Head MPA and Souris River estuary. Sites 
used for sampling and the study of recovery in each location are iden-
tified by round symbols. The photograph illustrates green crab feed-
ing pits in the intertidal of Basin Head

Table 1  Range of green crab 
relative abundance and size in 
the muddy (Basin Head) and 
sandy (Souris) sites during 
June–August 2008

A total number of feeding pits counted in the two field sites (10 × 30 m) in which daily monitoring took 
place as well as their ranges in diameter and depth (based on n = 30) are also presented

Descriptive Muddy sediments Sandy sediments

Green crab number range (crabs trap−1 day−1) 7.5–41.5 5.6–37.4

Green crab size range (CW in mm) 26.1–74.5 20.2–78.5

Total number of feeding pits in 10 × 30 m sites 266 142

Diameter of feeding pits (cm) 3.1–6.8 2.9–7.0

Depth of feeding pits (cm) 0.5–4.3 0.5–4.5
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deep layers of sediment, known to be less populated than 
those located near the surface (e.g. Quijón and Jaramillo 
1996). We did not consider this a bias, as in our opinion 
this reflects the nature of the sediment disturbance we were 
studying; the sampling of 5-cm-deep samples was consist-
ent between disturbed and undisturbed sediments from 
both types of habitats.

Using straws of distinctive colours, the tagging protocol (to 
distinguish new feeding pits) continued at each site for up to 
11 days. During each day, another six random feeding pit sam-
ples were collected from the pits that were labelled on day 1 
and labelled as “2 day old”, “3 day old”, etc. As in day 1, these 
samples were matched with others collected from undisturbed 
sediments located in the immediate vicinity. No feeding pit 
or undisturbed sediment was sampled twice. Sediment sam-
ples for grain size analysis were collected in a less intensive 
timeline and a lower replication level (n = 4): Small sediment 
samples collected with a 2-cm-diameter cylinder (0–5 cm 
deep) were taken during days 1, 3, 5 and during the last day of 
the monitoring in each of the habitats (days 11 and 9 in muddy 
and sandy habitats, respectively). These samples were kept 
frozen until their analysis in the laboratory. In parallel, feeding 
pit sediment filling rates were visually estimated and recorded 
as empty (0 % of the pit was filled with sediment), 25, 50, 75 
and 100 % full (completely filled).

For the spatial comparison of disturbed and undisturbed 
sediments, three additional 10 × 30 m separate areas were 
located in muddy locations within Basin Head and all the 
feeding pits were tagged with coloured straws. Following 
the protocol described above, initial feeding pits were not 
considered for sampling, but those found the following 
day (freshly dug) pits and undisturbed sediments located 
nearby were sampled (n = 8 in each area). This sampling 
was conducted on day 1 only.

Samples collected for grain size analysis were unfrozen 
and processed using running distilled water and standard 
sieves to separate three sediment fractions: mud (<63 μm), 
sand (63 μm—2 mm) and gravel (>2 mm) (see Anderson 
et al. 1981). Samples collected for infauna analysis were 
sieved through a 500-μm mesh and the residual preserved 
in 70 % ethanol stained with Rose Bengal. All the organ-
isms retained were sorted under stereomicroscope and 
identified to the species level using standard keys for the 
region (e.g. Bousfield 1973; Appy et al. 1980; Bromley 
and Bleakney 1984). Only one taxon, juvenile Capitellids, 
could not be identified at the species level due to the dif-
ficulty in discerning morphological features in these small 
organisms (see Lutz-Collins and Quijón 2014).

Data analysis

Grain size data and data about infaunal richness and abun-
dance (total densities, densities of polychaetes, bivalves 

and several individual species) were used as response vari-
ables to assess differences between feeding pits and ambi-
ent sediments. Data on filling rates were considered semi-
quantitative and were not used for statistical comparisons. 
For the study of short-term variation following disturbance, 
separate one-way ANOVAs assessing daily differences 
between feeding pits and ambient sediments were con-
ducted for each of the response variables described above. 
Data were transformed when necessary to satisfy ANOVA 
assumptions (Sokal and Rohlf 2011). In the case of grain 
size data, comparisons refer to four dates only: days 1, 3, 5 
and final day. Summaries of p-values from all the ANOVA 
comparisons (including Two-way ANOVAs described 
below) are presented in separate tables, as part of an Elec-
tronic Supplementary Appendix to this article.

Information about species composition and density was 
also used to conduct multivariate analyses using PRIMER-5 
(Plymouth Routines In Multivariate Ecological Research). 
Patterns of community structure were visualized using mul-
tidimensional scaling (MDS) plots, and analyses of similar-
ity (ANOSIM) were used to test for differences between 
disturbed and undisturbed sediments. SIMPER analyses 
were also used to identify those species that were the most 
important drivers of the dissimilarity between disturbed and 
undisturbed sediments. Multivariate analyses were applied 
to data from the days in which most differences between 
disturbed and undisturbed sediments were detected with the 
ANOVAs (i.e. days 1–4 in muddy sediments). These analy-
ses were not applied to sandy sediments due to the lack of 
significant and consistent differences between disturbed and 
undisturbed sediments (see Results).

For spatial comparisons of disturbed and undisturbed 
sediments, two-way ANOVAs were conducted for each of 
the three sites separately. This ANOVA model included the 
following explanatory variables: “pit location” (to take into 
consideration spatial differences among pairs of pit/ambi-
ent samples), “disturbance” (pit versus ambient) and their 
interaction. Multivariate analyses (MDS, ANOSIM and 
SIMPER) were also applied for this data set to test for sig-
nificant community level differences between disturbed and 
undisturbed sediments at each site.

Results

Short‑term variation in muddy and sandy habitats

Muddy and sandy sediment was clearly different in terms 
of grain size characteristics, and these differences remained 
similar (unchanged) overtime (see Table 2). None of the 
statistical comparisons between disturbed and undisturbed 
sediments detected significant differences (all p values 
>0.293) in any of the grain size categories. With regard to 
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sediment filling rates in the muddy habitat, filling rate in an 
average feeding pit was near 70 % by day 5 and over 90 % 
by the end of the monitoring (day 11). In the sandy habitat, 
the filling rate in an average feeding pit was near 80 % by 
day 3 and 100 % by day 5 (Table 2).

In the muddy habitat, the average number of taxa col-
lected from ambient sediments was generally higher than 
from disturbed sediments (Fig. 2). This difference persisted 
up to 4 days after the disturbance event (p < 0.05 in one-
way comparisons conducted on days 1–4). Total density 
and total number of polychaetes followed the same trend, 
with significantly higher densities in ambient than in dis-
turbed sediments up to day 4 (total density) and up to day 5 
(polychaetes). Total densities declined by day 6: polychaete 
density was at its lowest in both disturbed and undisturbed 
sediments, but the reduction was more severe in undisturbed 
sediments; polychaete disturbed–undisturbed differences 
became non-significant (p > 0.05) (Fig. 2). Subsequently, 
some significant differences were again detected at least 
once during day 8 (total density) or days 8–9 (polychaetes). 
In contrast, the total number of bivalves did not significantly 
differ between ambient and disturbed sediments at any time 
during the daily monitoring of feeding pits (Fig. 2).

The four most abundant species in the muddy habitat (out 
of 34) showed different temporal patterns. The spionid poly-
chaetes Pygospio elegans and Streblospio benedicti exhib-
ited higher densities in ambient sediments than in disturbed 
sediments, particularly during the first 4 days following dis-
turbance, but due to high levels of variation, several of these 

differences were not significant (Fig. 3). The soft-shell clam 
(Mya arenaria) and the polychaete Eteone heteropoda did 
not show any clear, persistent difference between disturbed 
and undisturbed sediments, and only in the latter case, there 
was some evidence of higher density values in ambient sedi-
ments during the sampling period (Fig. 3).

In the sandy habitat, the average number of taxa was 
similar to the number recorded in the muddy habitat 
(roughly between 5 and 9), but the densities were higher, 
particularly due to the higher number of bivalves (Fig. 4). 
The number of taxa, the total density and the density of 
polychaetes and bivalves did change over time, but did 
not exhibit any significant differences between ambi-
ent and disturbed sediments (Fig. 4). With respect to the 
most abundant species (out of 39 taxa), significant differ-
ences between disturbed and ambient sediments were only 
observed at day 1 for the mud snail Hydrobia totteni and 
the spionid polychaete Streblospio benedicti. In both cases, 
densities in ambient sediments were almost double the den-
sities measured in disturbed sediments. The same occurred 
on days 4–5 for Hydrobia totteni (p < 0.05; Fig. 5). 

A comparison of species composition and abundance 
was conducted with an MDS plot at the muddy habitat, in 
which a substantial number of significant differences were 
detected, particularly during days 1–4 (Figure 6). Dif-
ferences in community structure were significant (ANO-
SIM’s p = 0.001). SIMPER analyses to determine which 
species were the most influential in driving the dissimi-
larity between disturbed and undisturbed sediments are 

Table 2  Mean (±SE) grain 
size characteristics and filling 
rates at the beginning (day 1) 
and days 3, 5 and end of the 
daily monitoring of feeding pits 
in each site (days 11 and 9 in 
muddy and sandy sediments, 
respectively)

Sediment filling rates are based on recorded field observations (originally described as empty = 0, ~25, 
~50, ~75 and ~100 %; see text for details)

NA not applicable

Habitat Treatment Day since disturbance Mud
(%)

Sand
(%)

Gravel
(%)

Filling
(%)

Muddy sediments Disturbed 1 32.3 (2.8) 57.3 (2.7) 10.5 (1.7) 6.3 (8.8)

3 31.3 (3.1) 56.5 (2.5) 12.3 (4.0) 25.0 (14.4)

5 31.8 (4.2) 57.0 (1.4) 11.3 (3.8) 68.8 (8.8)

11 32.5 (2.1) 56.0 (2.7) 11.5 (1.6) 93.8 (8.8)

Ambient 1 30.0 (2.2) 57.5 (3.3) 12.5 (3.5) N.A.

3 30.8 (4.1) 59.3 (4.0) 10.0 (5.7) N.A.

5 29.3 (4.1) 57.8 (2.7) 13.0 (6.7) N.A.

11 29.8 (3.8) 57.5 (2.5) 12.8 (2.8) N.A.

Sandy sediments Disturbed 1 3.5 (0.3) 87.8 (2.3) 8.8 (2.3) 12.5 (7.2)

3 3.8 (0.9) 85.8 (5.0) 10.5 (5.7) 81.3 (12.0)

5 2.8 (0.9) 88.3 (3.9) 9.0 (3.9) 100.0

9 3.5 (0.9) 85.3 (3.6) 11.3 (3.1) 100.0

Ambient 1 3.0 (0.9) 87.0 (3.9) 10.0 (3.1) N.A.

3 2.3 (0.9) 85.5 (2.5) 12.3 (3.0) N.A.

5 3.3 (0.8) 88.5 (4.5) 8.3 (3.8) N.A.

9 3.0 (0.8) 85.3 (3.2) 11.8 (4.0) N.A.
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summarized in Table 3. Pygospio elegans, Streblospio 
benedicti, Mya arenaria and Eteone heteropoda accounted 
for 66 % of the dissimilarity between disturbed and undis-
turbed sediments. Based on a large majority of the com-
parisons made (see Figs. 4 and 5), community structure in 
disturbed and undisturbed sandy sediments was similar. 

Spatial comparison of disturbed and undisturbed 
muddy sediments

The average number of taxa was consistently lower in 
disturbed sediments (associated to feeding pits) than in 

ambient sediments (Fig. 7), although these differences 
were significant only in one of the three sites surveyed. 
Total densities, total number of polychaetes and densities 
of the spionid polychaetes Pygospio elegans and Stre-
blospio benedicti were all higher in ambient than in dis-
turbed sediments (in most cases twice as many), and at 
the three sites these differences were significant (Fig. 7). 
Similarly, the largest-sized polychaete in the community, 
the rag worm Nereis diversicolor, showed higher densi-
ties in ambient sediments, but these differences were only 
significant in two of the three sites (Fig. 7). The number 
of juvenile capitellids showed significant differences on a 
single site while the total number of bivalves was not sig-
nificantly different between disturbed and ambient sedi-
ments (Fig. 7).
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The analysis of species composition and abundance in 
muddy sediments (multidimensional scaling plot, MDS; 
Fig. 8) identified significant differences between commu-
nities associated with disturbed and undisturbed sediments 
(Fig. 8; ANOSIM p = 0.001). SIMPER analyses identi-
fied the following four species as those that were most 
influential in driving the dissimilarity between disturbed 
and undisturbed sediments: Pygospio elegans, Streblos-
pio benedicti, juvenile capitellids and Nereis diversicolor 
(Table 4). Together, these species accounted for almost 
70 % of the dissimilarity between disturbed and ambient 
sediments. 

Discussion

Invasive species whose mobility, habits and feeding behav-
iour affect multiple features of their native habitats also 
have the potential to play significant roles in their expanded 
range of distribution. The green crab, for example, is an 
eager consumer of an array of species associated with natu-
ral or artificial shellfish beds (e.g. Le Calvez 1987; Cohen 
et al. 1995). This invader is also able to disrupt essential 
habitat by digging in the sediment, uprooting or consuming 
eelgrass (Davis et al. 1998; Malyshev and Quijón 2011), or 
consuming large amounts of reef-forming American oysters 
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open symbols, respectively. Asterisks identify days when significant 
differences between disturbed and ambient sediments were detected
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(Pickering and Quijón 2011). In less structured habitats 
such as mud or sand, only a few species of decapods such 
as the shrimp Callianassa kraussi or the burrowing crab 
Neohelice (Chasmagnathus) granulata alter the habitat in 
a consistent way (Pillay et al. 2007; Volkenborn et al. 2009; 
Alvarez et al. 2015). The European green crab belongs to 
that group because it is able to create relatively stable feed-
ing pits (that can persist for a number of days), while dig-
ging and foraging for prey (Audet et al. 2003; this study). 
We must be cautious though, as green crabs have also been 
observed feeding on bivalves and hydrobiid snails and leav-
ing no visible trails or pits in the sediment. This suggests 
that predation on certain prey not always implies the crea-
tion of a persistent trail or pit in the sediment. Despite the 
lack of temporal changes in grain size characteristics and 
potentially in sediment nutrient quality (the mud fraction 
typically reflects organic content) in disturbed areas, we did 
find significant changes in infaunal community structure. 
Considering the ongoing spread of this invasive species in 

Atlantic Canada and elsewhere, our results have implica-
tions for the local-scale impact of green crabs on infaunal 
communities associated with muddy sediments.

Short‑term variation from disturbance at muddy 
and sandy sites

Shortly after the detection of feeding pits in muddy sedi-
ments, the total abundance and the total number of poly-
chaetes were both significantly lower in disturbed than in 
undisturbed sediments. In general, these results are in line 
with those previously described for sediments affected by 
other sources of disturbance (e.g. Pearson and Rosenberg 
1978; Gray et al. 2002; Magni et al. 2009): the alteration 
of the sedimentary habitat induces mortality or displaces 
organisms and thus promotes the creation of a landscape 
of partially defaunated patches of sediment. Several related 
studies have described a disproportional increase in the 
number of opportunistic species following disturbance 
(e.g. VanBlaricom 1982; Oliver and Slattery 1985). For 
example, Thistle (1980) and Savidge and Taghon (1988) 
described an aggregation of opportunistic organisms in 
their disturbed plots, following increased deposition of fine 
particles and organics. However, unlike those studies, we 
did not observe a build up in fine sediments or an increase 
in opportunistic species. Although we detected short-term 
changes in abundance and community structure, those 
changes did not follow the typical recovery trend that fol-
lows defaunation of disturbed sediments (e.g. Pearson and 
Rosenberg 1978). In fact, organisms associated with dis-
turbed sediments remained at low densities or had incon-
sistent short-term variations. Although it is clear that green 
crab predation is not the only factor playing a role here, 
the changes detected and their persistence over time (~4 d) 
are consistent with the results of short-term experimental 
manipulations conducted in similar habitats (e.g. Quijón 
and Snelgrove 2008). Such experiments involved the inclu-
sion of green crabs within cages for periods of one week 
and found similar community changes to those detected by 
day 4 in our daily monitoring study.

Green crab feeding pits had no impact on communi-
ties associated with sandy sediments. Given that sandy 

Day 

1 2 3 4 

disturbed 
ambient 

Basin Head Stress=0.22 

Fig. 6  Multidimensional scaling plots (MDS) illustrating the level 
of similarity among muddy samples (Basin Head) based on species 
composition and density. Ambient and disturbed sediments are identi-
fied with open and filled symbols, respectively. Dashed lines identify 
significant differences between the corresponding groups of samples 
based on ANOSIM results (p < 0.05). The analyses include samples 
from days 1–4

Table 3  Results of SIMPER analyses identifying the species that contributed the most to the dissimilarity between ambient and disturbed sedi-
ments in the muddy habitat

The table summarizes mean densities and cumulative dissimilarities estimated for days 1–4

Taxa Mean density disturbed sediments Mean density ambient Cumulative dissimilarity (%)

Pygospio elegans 1.69 7.50 23.62

Streblospio benedicti 1.08 5.14 39.39

Mya arenaria 1.47 1.36 50.09

Eteone heteropoda 1.16 1.59 60.25
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habitats are exposed to a more intense current dynamics, 
these results support the notion that the impact of a distur-
bance depends on the background disturbance regime of 
a given habitat (cf. Dernie et al. 2003). In sandy habitats, 
recolonization occurs at faster rates because redistribution 
of organisms is more dynamic (Oliver and Slattery 1985). 
Indeed, differences in total densities between disturbed 
and undisturbed sediments were negligible 24 h after the 
creation of the pits. Unlike the results observed in the 
muddy habitat, polychaetes as a whole did not respond to 
green crab disturbance. Bivalves did not respond to distur-
bance in this habitat either, and only a couple of significant 

differences were detected in Hydrobia totteni’s abundance 
in day 1 and later on days 4 and 5. This contrast between 
habitats may be partly due to the higher number of 
bivalves in sandy sediments as opposed to the less promi-
nent density of polychaetes. Thrush et al. (1991) studied 
the recovery of eagle ray feeding pits in New Zealand 
sandflats and compared recolonization between bivalve- 
and polychaete-dominated communities. The arguments 
raised by these authors are likely applicable to our results: 
communities with abundant bivalves recolonize feeding 
pits faster than communities with abundant polychaetes, 
where disturbance effects are longer lasting (Thrush et al. 

Fig. 7  Average (±SE) taxa 
richness, total density, and 
density of polychaetes, bivalves, 
and four representative spe-
cies in ambient and disturbed 
sediments (open and filled 
bars, respectively) in three 
muddy sites sampled in Basin 
Head. Significant differences 
(p < 0.05) are identified with 
asterisks
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1991). As indicated before, feeding on bivalves and some 
species of hydrobiids, particularly on those living near the 
surface of the sediment, may not always leave visible pits 
in the sediment.

Rate of recovery from disturbance can be also related 
to the rate of sediment infilling of the feeding pits (Thrush 
et al. 1991; Dernie et al. 2003). Although such a relation-
ship might not be valid in every sedimentary habitat, it is 
likely applicable to our results. At the muddy site, a major-
ity of the feeding pits remained clearly visible for a few 
days, whereas in the sandy habitat they were filled much 
more quickly. Our filling rate estimations, although semi-
quantitative, do reflect those short-term changes. As indi-
cated in other studies (cf. Hall 1994; Kaiser 1998), com-
munity structure differences also seem to reflect the pace 
of the changes taking place in muddy and sandy sediments. 
The rapid recovery reported in coarser sediments may be 
also related to individual species strategies for coping with 
different disturbance regimes. Small mudsnails (Hydrobia 
spp.), for example, are common on sandy sediments such 
as those studied here and lead fast recolonization processes 
(e.g. Norkko and Bonsdorff 1996). In contrast, small poly-
chaete species rely on larval dispersal (undetectable with 

the sieves and the temporal scale of our study) and are rela-
tively slow post-settler colonizers, both of which seem to 
drive the slower pace of recovery.

Despite the significant differences detected between 
disturbed and undisturbed sediments in the muddy habitat, 
there was considerable variation that was not necessarily 
accounted for by crab predation. Among other factors, such 
variation may be related to undetected variability in feed-
ing pit size and depth (e.g. Smith and Brumsickle 1989). 
Green crab feeding pits were shallower than the semi-
permanent burrows built by species such as the burrowing 
crab Neohelice (Chasmagnathus) granulata (e.g. Iribarne 
et al. 1997) and were far from uniform in size (~4–7 cm 
diameter). Another source of variation could be related to 
faster than expected rates of recolonization exhibited by 
some species, which potentially enhanced feeding pit den-
sities shortly after their creation (see Thrush et al. 1991). 
As described above, individual species have various means 
to arrive and establish in a partially “vacant” patch (Levin 
1984; DePatra and Levin 1989). One additional (unex-
pected) event that likely prevented the detection of clearer 
differences in the muddy habitat occurred on day 6, when 
a drop in the abundance of polychaetes took place in both 
undisturbed and disturbed sediments. A different source of 
variation or type of disturbance, likely a weather-related 
event (rain before day 6 sampling), may have altered the 
sequence of change of these sediments at this time. In addi-
tion, high levels of patchiness which are typical in this type 
of habitats may have also contributed to short-term changes 
like these. Although the level of replication used (n = 6) 
seemed appropriate to us, it is plausible that our samples 
that day were collected from patches of sediment naturally 
poor in infauna.

Spatial comparisons and implications

Results from the spatial comparison of disturbed and undis-
turbed sediments indicate that the digging and foraging by 
green crabs have a rapid (within 24 h) impact upon soft-
sediment intertidal communities. Total density of inver-
tebrates was reduced by as much as ~50 % in disturbed 
patches, an effect that, regardless of the predator’s nature 

Stress = 0.11 

ambient 
disturbed 

1 2 3 
site 

Fig. 8  Multidimensional scaling plot (MDS) illustrating the level of 
similarity among samples from three muddy sites based on species 
composition and density. Ambient and disturbed sediments are identi-
fied with open and filled symbols, respectively. Dashed lines identify 
significant differences between the corresponding groups of samples 
based on ANOSIM results (p < 0.05)

Table 4  Results of SIMPER analyses identifying the species that contributed the most to the dissimilarity between ambient and disturbed sedi-
ments in three muddy sites

The table summarizes mean densities and cumulative dissimilarities

Species Mean density in disturbed sediments Mean density in ambient sediments Cumulative dissimilarity (%)

Pygospio elegans 8.67 29.50 36.47

Streblospio benedicti 2.25 8.71 48.97

Juvenile Capitellids 7.00 8.29 61.43

Nereis diversicolor 1.54 5.00 68.56
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(native or invasive), would qualify as “strong” in sedimen-
tary communities (cf. Ólafsson et al. 1994). Such an effect 
is also substantial when compared with those resulting 
from manipulative experiments reported for other preda-
tors in the region (e.g. snow crab and toad crab; Quijón 
and Snelgrove 2005) or comparable species elsewhere (e.g. 
Thrush 1986; Ólafsson et al. 1994 for a review). Our results 
suggest that, at least in the short term and at the local scale, 
green crabs play a significant role in structuring communi-
ties in muddy habitats. Hence, depending on the prevalence 
of muddy sediments, and the number and spatial extent of 
green crab feeding pits, they may explain at least a portion 
of the spatial variation in infaunal abundance and structure. 
Likely, other sources of variation can also contribute to the 
changes detected here: condition of the crabs (Tummon 
Flynn et al. 2015), weather events, infaunal patchiness, 
nutrient limitation or sediment characteristics (e.g. Lutz-
Collins and Quijón 2014).

As expected, species richness was lower in disturbed 
sediments, but this difference was not statistically sig-
nificant at every site. Although predation is undeniably 
important for the structure of sedimentary assemblages 
(e.g. Le Calvez 1987; Lenihan and Micheli 2001), diver-
sity declines are considerably less common than changes 
in prey population abundance, behaviour or size compo-
sition (e.g. Peterson 1979; Kvitek et al. 1992). Consistent 
with this, the abundance of polychaetes as a group or as 
individual species (e.g. Pygospio elegans and Streblospio 
benedicti) but not their diversity was lower in response to 
the digging by green crabs. In contrast, bivalves showed 
no response to green crab disturbance, despite the fact that 
they are known to be a preferred prey of this species (Elner 
and Hughes 1978; Grosholz and Ruiz 1996; Jamieson et al. 
1998). This unexpected result may be explained by the 
size and density of the bivalves. At all three sites bivalves 
were very small (≤1 mm SL; P. Quijón, Unpublished) and 
less abundant than polychaetes. It is therefore reasonable 
to assume that they were not a preferred prey for green 
crabs of the size (adults) that leaves noticeable feeding pits. 
Accordingly, green crabs may have dig for spionid poly-
chaetes or other species larger in size that were far more 
abundant than the small bivalves. This is also consistent 
with the results gathered from sandy sediments, where the 
mobility of Gemma gemma and Hydrobia totteni may have 
resulted in inconsistent (not significant) differences. And 
as indicated before, crab feeding on these species may in 
some cases leave no trails or clear pits behind.

Lack of predator effects on bivalves and a few other 
species may be also related to top-down indirect effects. 
Predators such as green crabs displace or prey heavily on 
relatively large prey including mobile predatory organisms 
(e.g. the ragworm Nereis diversicolor; Rosa et al. 2008; 
Volkenborn et al. 2009). By targeting these organisms, 

they may have cascading effects on other fractions of the 
community (Ambrose 1984; Ronn et al. 1988; Quijón and 
Snelgrove 2008). Nereid polychaetes, for example, are 
known to have the ability to reduce densities of smaller 
polychaetes and bivalves (Hiddink et al. 2002), so their 
consumption by green crabs may therefore have a positive 
effect on smaller species. Alternatively, passive transport 
due to currents and tides is an important facilitator of feed-
ing pit recolonization that has been demonstrated for small 
bivalves such as gem clams (Gemma gemma) (Grant 1981; 
Commito et al. 1995).

Our results are consistent with previous reports from 
field experiments (Quijón and Snelgrove 2008), which also 
found evidence that green crab feeding was a structural 
force in muddy habitats, where feeding pits lasted longer 
and differences were significant. In sandy sediments, the 
lack of effects we found in this study is not consistent with 
some other results: Gregory and Quijón (2011) conducted 
cage experiments in which green crabs did alter communi-
ties associated with sandy sediments. The changes in den-
sity observed in those experiments may indeed reflect the 
effects of recurrent (potentially daily) feeding pit forma-
tion. However, we prefer to be cautious since that particular 
study only focused on larger size infauna (>2 mm in size) 
and so may not be fully comparable to the communities 
studied here.

Altogether our results suggest that although feeding pits 
occur in most unstructured habitats, their actual impact and 
persistence depends considerably on the type of sediment. 
Community composition, which is heavily dependent on 
habitat characteristics (cf. Snelgrove and Butman 1994; 
Gray and Elliott 2009), also drives the rate of change in 
each habitat type and suggests that those associated with 
sandy sediments are more resilient. These habitat-related 
differences must be highlighted considering the continued 
spread of green crab populations in some parts of the region 
(e.g. PEI and Newfoundland) (Pickering and Quijón 2011; 
Blakeslee et al. 2010) as well as elsewhere. After all, it is in 
areas most recently invaded where green crabs seem more 
aggressive (Rossong et al. 2012) and their impacts more 
obvious (e.g. Garbary et al. 2014; Gehrels et al. in press). 
In this changing scenario, the scope and frequency of feed-
ing pits creation, and their potential impact on muddy habi-
tats, are likely to increase. The occurrence of feeding pits 
is associated with local community change in muddy habi-
tats, at least in the short term. So the presence of numerous 
feeding pits may be used as preliminary evidence of ongo-
ing local community changes on that habitat.
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