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potential for N and P stoichiometry to influence “cultiva-
tion grazing” in marine carbonate environments. Sea-
grasses apparently responded positively to trimming when 
the foliar N:P balance did not exceed the “seagrass Red-
field ratio” of 30:1. This P-sensitive outcome of herbivory 
should be evaluated at larger spatial scales and may have 
important implications for estimating C. mydas carrying 
capacity of seagrass meadows across resource gradients.

Introduction

Cultivation grazing describes an herbivorous feeding mode 
that promotes plant regrowth and food nutritional quality. 
In terrestrial systems, whether or not cultivation grazing 
occurs depends on the magnitude of plant nutrient limita-
tion (Hilbert et al. 1981; de Mazancourt et al. 1998). Cul-
tivation grazing results from the interaction of top-down 
(grazing) and bottom-up (nutrients) effects on the food 
web. Feeding strategies that maintain an area by regularly 
trimming existing plants or otherwise positively altering 
food value have been described for a variety of marine 
taxa: dugongs (Preen 1995); green turtles (Bjorndal 1980); 
damselfish (Hata and Kato 2006); limpets (Plagányi and 
Branch 2000); polychaetes (Woodin 1977); and gastropods 
(Hunter and Russell-Hunter 1983). However, the capacity 
of primary producers to respond positively to grazing in 
nutrient-poor environments and over longer timescales still 
needs to be evaluated in marine ecosystems.

In seagrass meadows, the green turtle Chelonia mydas 
is one of the most widely distributed herbivores, inhabiting 
coastal areas in over 100 countries (Seminoff et al. 2015). 
Juvenile and adult green turtles generally commute daily 
from their sleeping area on fringing reefs to patches of sea-
grass. They selectively consume tender new growth at the 
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base of shoots and discard older leaf material. Even Ber-
muda turtle hunters of the early 1900s noticed this selective 
feeding behavior and allegedly tracked their prey by the 
“quantities of this marine grass floating on the surface…” 
over sandy areas (Babcock 1938). Today green turtles are 
considered cultivation grazers because their mode of trim-
ming shoots: (1) increases seagrass growth, foliar nitrogen 
(N) and protein content; (2) decreases foliar lignin concen-
tration; and (3) minimizes ingestion of epiphytic calcium 
carbonate associated with taller, older leaves (Bjorndal 
1980; Zieman et al. 1984).

The islands of Bermuda have experienced a recent 
decline of nearly 50 % (475 of 900 ha) in offshore seagrass 
area. The most widespread cause for global seagrass loss is 
nutrient over-enrichment (Orth et al. 2006); however, Ber-
muda’s seagrass meadows are often P-limited (N:P < 30:1) 
(Jensen et al. 1998; Fourqurean et al. 2015), and intense 
turtle grazing may have triggered local seagrass declines 
(Murdoch et al. 2007; Fourqurean et al. 2010; van Tus-
senbroek et al. 2014). Immature green turtles in Bermuda 
forage on seagrass year-round for up to 15 years before 
returning to natal beaches in Nicaragua and other Carib-
bean border counties or islands to breed (Bacon et al. 2006; 
Bermuda Turtle Project unpubl. data). Short-term, grazer-
induced changes to seagrass morphology and physiology 
are widely recognized; however, less is known about sea-
grasses resilience following grazing disturbance.

The objective of this preliminary study was to evalu-
ate the short-term and persistent effects of grazing on sea-
grass under varying nutrient levels through manipulating 
green turtle grazing and nutrient availability over 4 months 
and then tracking recovery after 1 and 2 years. Cultiva-
tion grazing responses were assessed through increases 
in foliar growth and nutrient content. Seagrass stress 
responses were assessed through reductions in produc-
tivity, leaf width, leaf density, shoot density and rhizome 
carbohydrate reserves. We hypothesized that cultivation 
grazing is nutrient-dependent, whereby repeated trimming 
would induce cultivation grazing in the high-nutrient sce-
nario (P-sufficient) and plant stress in the low-nutrient sce-
nario (P-deficient).

Materials and methods

Study area

The field experiment was conducted from May 2007 to 
June 2009 in a continuous Thalassia testudinum-domi-
nated seagrass bed at 1.5 m depth (mean low water) in 
the mesotrophic outer harbor of Bailey’s Bay, Bermuda 
(32°20′59″N, 64°43′30″W) (Fig. 1). This shallow bay 
measures approximately 0.2 km2 in area and is partially 

sheltered by Bay Island, Pimlico Rock, and a chain of 
small karst islands and patch reefs along its seaward bor-
der. The seafloor contains sandy carbonate sediments with 
a mosaic of dense and sparse seagrass beds separated by 
bare areas. The most abundant seagrass is turtlegrass T. 
testudinum, existing in single-species stands often of short 
stature (<10 cm), as well as beside manatee grass Syringo-
dium filiforme and shoal grass Halodule wrightii in mixed-
species patches. The seaweed community is dominated 
by Halimeda spp. and Penicillus spp. (K. Holzer unpubl. 
data). Primarily, productivity is generally P-limited in the 
outer harbor, which was confirmed by elemental ratios of 
seagrass leaves from our control plots (see “Results”). No 
evidence of natural turtle grazing was observed in experi-
mental plots.

Experimental design

A 2 × 2 factorial design with two levels of nutrients (ambi-
ent and enriched) and two levels of simulated turtle grazing 
(untrimmed and trimmed) was used. Twenty 0.5 m × 0.5 m 
plots were established in a grid (12 m × 15 m) with 2 m 
separation among plots. Experimental plot size represents 
the lower areal limit of grazing scars observed in Bermuda, 
which can range from less than 0.25 m2 to well over 100 m2 
(K. Holzer pers. obs.). Rhizomes around the plot borders 
were left intact to minimize artificial stress, permitting 
belowground translocation of resources between adjoined 
shoots. Since experimental plots may have received nutri-
ent subsidies from neighboring shoots, we assume a more 
cautious assessment of plant tolerance for disturbance. Five 
replicates were randomly assigned to the four treatments 
consisting of (1) control; (2) no trimming, +nutrients; (3) 
+trimming, no nutrients; and (4) +trimming, +nutrients. 
Nutrients were mixed evenly into the top 4 cm of sediment 
with fingertips using time-release granular lawn fertilizer 
(Sta-Green®; N–P–K = 29–2–5, containing nitrogen as 
97 % urea and phosphorus as diammonium phosphate). 
The sediment surface of unfertilized plots was also mixed 
in a similar fashion. Nutrients were supplied monthly from 
May to September 2007 at a loading rate exceeding N and 
P demands of T. testudinum at peak growth, calculated by 
multiplying maximum aboveground productivity by mean 
foliar N and P content. Turtle grazing was simulated with 
surgical scissors also from May to September 2007 using a 
method similar to Moran and Bjorndal (2005). Scuba divers 
trimmed leaves to approximately 2 cm above the sedi-
ment surface and re-trimmed them when they grew taller 
than 5 cm. We also maintained a 10-cm trimmed buffer 
around the grazing plots. A total of 10 trimmings were per-
formed between 9- and 20-day intervals depending on plant 
regrowth rates. Seagrass clippings were removed from the 
area to mimic ingestion by turtles.
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Sampling

Field data were collected by scuba divers. Before initiat-
ing the treatments (May 2007), the natural variation within 
the study area was quantified using 10 randomly selected 
plots for all response variables, except rhizome and isotope 
measurements. We assumed that plots were not statistically 
different from each other because the standard error was 
<10 % of the mean for all parameters except epiphyte load, 
which has inherently high variability. Repeated sampling 
occurred immediately after the 4-month treatment regime 
to capture short-term effects (September 2007) and after 
1 (June 2008) and 2 years (June 2009) to describe resid-
ual treatment effects after the simulated grazing–fertilizer 
course ended.

Aboveground growth of T. testudinum was measured by 
the hole-punch technique of Zieman (1974) on all shoots 
within a 15.3-cm-diameter PVC ring (area = 0.02 m2) 
using a 20 G BD PrecisionGlide™ needle. From these 
data, mass-specific (g g−1 day−1), shoot-specific (mg 
shoot−1 day−1) and area-specific (g m−2 day−1) produc-
tivity were calculated. For leaf density, we counted the 
number of leaves per shoot for all marked shoots. The 
total number of shoots was tallied for seagrass density 

(shoot m−2) and standing stock (g m−2) measures. Width 
was recorded for three random leaves within each plot.

A standardized 5-cm long segment of the youngest 
mature leaf from five different shoots per plot was scraped 
clean of epiphytes using a razor blade without disrupting 
the epidermis of the plant. The epiphyte-free leaf was then 
rinsed in DIW, dried at 60 °C and ground to a fine pow-
der (using a Wig-L-Bug® Model 002-0200 grinding mill) 
for calculation of N content using a NA-1500 CNS Ana-
lyzer™ (Carlo Erba). Foliar P content was determined on 
the same sample by a dry oxidation, hot acid digestion fol-
lowed by colorimetric analysis of phosphate concentration 
using the technique in Fourqurean et al. (1992) minus the 
addition of sodium and magnesium sulfate. These reagents 
were omitted due to the high recovery of the P content for 
National Institute of Standards and Technology-certified 
peach leaf standard. Knowing that plants using fertilizer-
derived N should contain 15δN signatures near 0 ‰ (Macko 
and Ostrom 1994), leaf samples from each plot were run at 
the University of California Davis Stable Isotope Facility to 
evaluate plant assimilation of the fertilizer application after 
4 months and 1 year.

Epiphyte abundance was measured after 4 months on 
one shoot per plot. All leaves were scraped clean of fouling 

Fig. 1  Location of simulated 
grazing and nutrient enrichment 
field experiment in Bailey’s 
Bay, Bermuda at 32°20′59″N, 
64°43′30″W 
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material in a DIW bath and then strained through a 15-cm-
diameter filter with 41 μm pore size. Samples were dried 
to a constant weight at 60 °C and normalized by shoot sur-
face area to obtain the epiphyte load (mg cm−2). Epiphyte 
organic matter was calculated on the same sample as the 
percent ash-free dry weight remaining after combusting 
10–20 mg of dried sample at 500 °C for 4 h.

At completion of the simulated grazing–fertilizer course 
(4 months), rhizome samples were dried to constant weight 
in a 60 °C oven and ground to a fine powder for subsequent 
analysis of soluble carbohydrates at Florida International 
University Seagrass Ecosystem Research Lab (Fourqurean 
et al. 2010).

Statistical analyses

The main effects of nutrient enrichment, simulated turtle 
grazing and nutrient enrichment x simulated turtle grazing 
on seagrass growth and foliar nutrient composition were 
evaluated using two-way ANOVA followed by Tukey’s post 
hoc test. Data that did not meet assumptions of homogene-
ity or normality were transformed. For the residual treat-
ment effects 1 and 2 years later (both measured in June), 
year was treated as a fixed effect. In cases when more than 
one value was recorded for a given response variable, they 
were averaged to give one datum per plot for statistical 
analyses. In some instances, samples were compromised 
in the laboratory and therefore omitted from the analysis, 
which is reflected in the degrees of freedom for “error.” 
Statistical significance was determined at p < 0.05. All 
analyses were run on R version 3.2.2.

Results

Effects of simulated turtle grazing and nutrient 
enrichment

Compensatory seagrass growth (g g−1 day−1) increased for 
the short-term only, in response to simulated turtle graz-
ing regardless of nutrient status, a characteristic artifact of 
active trimming [F(3, 15) = 6.69, p < 0.01] (Fig. 2a). In 
the short term, shoot-specific growth (mg shoot−1 day−1) 
increased with enrichment and decreased with trim-
ming [F(3, 15) = 9.08, p < 0.001] (Fig. 2b). After 2 years 
however, fertilizer plus trimming depressed shoot-spe-
cific growth for a nutrient × trimming interaction [F(7, 
31) = 15.59, p < 0.0001]. In contrast, for both timeframes, 
area-specific growth (g m−2 day−1) increased for enriched 
plots only [F(3, 16) = 5.76 and F(7, 31) = 8.23, p < 0.01] 
(Fig. 2c). While nutrient enrichment plus trimming had a 
positive immediate effect on aboveground biomass (g m−2) 
[F(3, 15) = 15.21, p < 0.0001], only a nutrient effect 

persisted 2 years after the trimming–fertilizer course ended 
[F(7, 31) = 6.07, p < 0.001].

Seagrass exhibits stress by reducing foliar growth, leaf 
width, leaf density and shoot density (Greenway 1974; 
Zieman et al. 1984). See Tables 1 and 2 for a summary of 
response variables, F values and significance levels. In the 
short term, T. testudinum showed signs of decreased leaf 
width in trimmed plots without nutrients added; however, 
in the long term, all trimmed plots grew significantly nar-
rower leaves [F(7, 32) = 4.48, p < 0.001]. In the nutrient-
enriched plots, leaf density increased in the long term 
[F(7, 32) = 4.50, p < 0.001] and seagrass shoot density 
progressively increased throughout the 2-year experiment, 

Fig. 2  Separate and interactive effects of simulated turtle grazing 
(trimming) and nutrient enrichment (+NP) on T. testudinum above-
ground productivity expressed as (a) turnover rate (b) shoot-specific 
growth rate and (c) area-specific growth rate, during the trimming–
fertilizer course (4 months) and after the treatment ended (1 and 
2 years). Letters denote significant differences among treatments 
within sampling period. Error bars represent ±SE, n = 5
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which was amplified by simulated grazing for a nutrient 
x trimming interaction [F(7, 30) = 3.39, p < 0.01]. After 
2 years, trimming plus nutrient plots contained a mean of 
1482 ± 151 shoots m−2. In contrast, in the low-nutrient sce-
nario despite a short-term shoot density increase, simulated 
grazing without enrichment reduced shoot density in the 
long term for an endpoint mean of 968 ± 76 shoots m−2. 

In the high-nutrient scenario, simulated turtle grazing 
boosted foliar N content in the short term [F(3, 15) = 7.03, 
p < 0.01]. However, after the interim 4-month simulated 
grazing–nutrient course ended, leaf N was similar for all 
treatments (Fig. 3a). At 4 months, the foliar δ15N values 
were significantly depressed to near 0 ‰ for the enrich-
ment treatments versus 2.4 ‰ for the unfertilized treat-
ments [F(3, 14) = 11.13, p < 0.001], confirming assimila-
tion of the fertilizer application. However, after 1 year, the 
fertilizer N signal dissipated. In the short term, fertilizer 

produced leaves with slightly higher P content, but fer-
tilizer plus trimming produced leaves with much higher 
P (25–30 %) for a nutrient × trimming interaction [F(3, 
15) = 19.11, p < 0.0001]. By comparison, trimming alone 
depleted foliar P after 4 months, and this effect persisted 
for 1 year but dissipated after 2 years [F(7, 32) = 6.49, 
p < 0.0001] (Fig. 3b).

For seagrasses, tissue elemental N:P reflects the rela-
tive availability of these elements in the environment. In 
T. testudinum leaves, N:P ratio around 30:1 (i.e., seagrass 
Redfield ratio) represents a critical level and balance in the 
availability of both nutrients (Atkinson and Smith 1983; 
Duarte 1990; Fourqurean and Zieman 2002). In our experi-
ment, the leaf N:P ratios showed that trimming increased 
plant-available P (N:P < 30:1) when fertilizer was added 
but depleted foliar P compared to N in the short term [F(3, 
15) = 14.57, p < 0.0001]. The P-drawdown response lasted 
another year, but no N:P treatment effects persisted after 
2 years [F(7, 32) = 7.60, p < 0.0001] (Fig. 3c).

There were no treatment patterns in epiphyte load or 
epiphyte organic matter after 4 months. Statistical power 
was low for these responses, so data were not collected for 
residual effects. At the 4-month sampling in September, 
mean epiphyte abundance for all treatments pooled was 
16 ± 3 mg cm−2 and mean epiphyte organic content was 
11 ± 2 %.

After 4 months, the soluble carbohydrate levels in 
T. testudinum rhizomes were lowest in the high-nutri-
ent scenario with trimming (80.0 ± 6.8 mg C g−1) and 
greatest in the high-nutrient scenario without trimming 
(107.6 ± 6.8 mg C g−1) although the differences were not 
statistically significant. Only short-term treatment effects 
on carbohydrate concentration were assessed.

Discussion

Cultivation grazing response

Our experimental data support the hypothesis that suf-
ficient nutrients are required for seagrass to respond to 
repeated trimming by turtles through enhanced plant 
regrowth and nutritional value (cultivation grazing). We 
demonstrate that cultivation grazing can be a function of 
limiting resources (in this case, P availability) in a marine 
environment, affirming a likely parallel between terres-
trial and marine systems. This finding also provides an 
important qualifier for the concept of cultivation graz-
ing by green turtles regarding nutrient availability. The 
prerequisite that sediments cannot be nutrient-poor may 
help explain observations of destructive C. mydas graz-
ing in certain environments, i.e., Saint John, US Virgin 
Islands (Williams 1988); review (Heithaus et al. 2014) 

Fig. 3  Separate and interactive effects of simulated turtle grazing 
(trimming) and nutrient enrichment (+NP) on T. testudinum leaf tis-
sue a nitrogen, b phosphorus and c N:P ratio during the trimming–
fertilizer course (4 months) and after the treatment ended (1 and 
2 years). Vertical dashed line at 30:1 marks the “seagrass Redfield 
ratio.” Letters denote significant differences among treatments within 
sampling period. Error bars represent ±SE, n = 5
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and offshore Bermuda (Fourqurean et al. 2010), but sus-
tained positive effects in other locations, i.e., Bahamas 
(Moran and Bjorndal 2007) and Indonesia (Christianen 
et al. 2012). In this study, we also show empirically that 
residual stress symptoms of turtle grazing (thin leaf width 
and low shoot density) in P-deprived areas can last for at 
least 2 years following the initial disturbance. Therefore, 
we recommend taking seagrass nutrient status into consid-
eration when calculating the long-term food supply avail-
able to green turtles.

Some limitations of the scale of our experiment warrant 
discussion. First, we acknowledge that due to our small plot 
size (0.5 m × 0.5 m), Thalassia rhizome connections could 
extend outside treatment areas and permit nutrient translo-
cation, which may affect seagrass responses to trimming. 
However, clonal expansion of Thalassia can occur over 
very large spatial scales (van Dijk and van Tussenbroek 
2010), and thus even larger plot sizes would be affected. 
Clonal integration is a key component of seagrass resil-
ience to grazing. Second, it is possible that smaller plots 
may not mimic biogeochemical and hydrological processes 
in larger naturally grazed areas, especially particle capture 
and nutrient cycling. It is well known that the seagrass 
canopy slows water flow and promotes sediment stability 
and organic matter deposition (Almasi et al. 1987; Hansen 
and Reidenbach 2012; McGlathery et al. 2012). The sur-
rounding (taller) canopy also likely influences water flow 
and sediment suspension in the experimental plots. The 
mechanisms influencing altered flow dynamics on adjacent 
areas with small versus large gaps are complex and depend 
on landscape configuration and patch size (Carr et al. 2015; 
Luhar et al. 2008). Therefore, results from plot size experi-
ments should be applied cautiously to the ecosystem and 
landscape scale.

Patterns of enhanced production

Grazing had persistent effects on seagrass morphology 
and productivity, which depended on nutrient levels. In 
our experiment, area-specific production was highest in 
nutrient-only plots and when fertilizer was combined 
with simulated grazing (Fig. 2c), but through different 
plant growth strategies. In general, to boost production in 
response to changes in abiotic or biotic factors, seagrasses 
may increase leaf length, leaf width, leaf density or shoot 
density (Thayer et al. 1984). Initially, the nutrient-only 
plots produced plants with more leaves per shoot, but after 
the enrichment course ended, plants maintained enhanced 
area-specific production for at least 2 years through boost-
ing leaf density (1 year) and shoot density (2 years), while 
retaining leaf width. By comparison, although leaves 
grew thinner, when nutrients were added, simulated graz-
ing improved areal growth by progressively increasing the 

recruitment of new shoots until shoot density exceeded 
the control (30 %) and nutrient-only (20 %) plots at the 
2-year sampling (Tables 1, 2). This shoot density response 
matches findings from a sea urchin grazing experiment also 
with T. testudinum (Valentine et al. 1997). The persistent 
increase in shoot density we detected may help explain the 
apparent short-term drawdown of belowground carbohy-
drate reserves, albeit statistically insignificant (Tables 1, 
2). By comparison, in the absence of nutrients, even though 
trimming initially stimulated shoot recruitment, shoot den-
sity then declined significantly over the long term (Fig. 4). 

Fig. 4  Depiction of variation in T. testudinum growth characteris-
tics following the simulated grazing–fertilizer course (4 months) and 
recovery (2 years). Nutrient-enriched plants increased leaf density in 
the short term and shoot density in the long term while maintaining 
wider leaves. Without nutrients, trimmed plants displayed persis-
tent stress symptoms of narrower leaves and fewer shoots. Trimmed 
plants plus nutrients progressively increased shoot density, but grew 
narrower leaves
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These unique nutrient-mediated seagrass responses (growth 
forms) evoke variable consequences for ecosystem func-
tion, such as habitat quality for fishes or sediment produc-
tion rates.

Two standard mechanisms proposed for the benefi-
cial effect of herbivory on plant growth include: (1) nutri-
ent replenishment from animal waste products, detritus 
accumulation or enhanced bacterial N-fixation, and (2) 
increased light reaching active underlying tissues due 
to a reduced canopy, i.e., light and turtles (Zieman et al. 
1984); review (de Mazancourt et al. 1998), and nutrients 
and dugongs (Perry and Dennison 2000). Regarding the 
first argument, the deposit of C. mydas waste products in 
the foraging area is considered inconsequential because 
the turtles usually disperse after feeding, and the solubil-
ity and hydrological transport of any waste products dilute 
this potential nutrient source (Aragones et al. 2006). At 
natural green turtle foraging meadows in Bermuda, grazed 
areas typically lack leaf litter or detrital buildup (K. Holzer 
pers. obs.) presumably because leaf material floated away 
(Bjorndal 1980) or was removed through feeding. Moran 
and Bjorndal (2007) also observed a thinner detrital layer 
in trimmed versus untrimmed plots in a Bahamas simu-
lated turtle grazing experiment. Therefore, we maintain the 
conclusion of Zieman et al. (1984) that T. testudinum can 
respond positively to grazing due to the physiological ben-
efit of extra light reaching leaf bases. Further, we provide 
another example of positive seagrass responses to short-
term eutrophication being contingent on preexisting nutri-
ent limitation (Cabaço et al. 2013).

During the 4-month simulated grazing–fertilizer course, 
leaf turnover rates (g g−1 day−1) were higher (50 %) in 
trimmed plots, regardless of nutrient levels (Fig. 2a). 
Unlike the other productivity metrics, after the simulated 
grazing ended, there was no significant difference in turno-
ver rates across treatments, suggesting that mass-specific 
growth measures of recently trimmed plants represent an 
artifact of leaf removal, rather than a physiological or eco-
system change. This result does not imply that turnover is 
unimportant, but other more versatile growth metrics (e.g., 
growth per shoot or area) can be used, while seagrasses are 
actively grazed or recovering from recent leaf loss to avoid 
overestimating the impacts of herbivory.

Patterns of relative P availability

While classic studies review the central role of N in medi-
ating food choice (Mattson 1980; McNaughton 1984), 
we show that P availability can drive plant capacity for 
regrowth over the long term. Given the high affinity and 
tight adsorption of P by carbonate sediments, primary pro-
duction is generally considered P-limited in subtropical and 
tropical seagrass environments (Fourqurean et al. 1992). 

The nutrient manipulations in our study may reflect field 
conditions with elevated P, in an otherwise P-limited envi-
ronment, caused by localized percolation of human sew-
age from nearby cesspits or deep-sealed effluent boreholes, 
which in Bermuda leach nutrients laterally to the seabed 
adjacent to the shoreline (Jones et al. 2011). Such pulse 
releases of human waste to the seabed are also realistic for 
other coastal areas without centralized municipal sewage 
systems. Isotope analysis of seagrass leaves in Bermuda 
supports the hypothesis that the relatively high P avail-
ability at some nearshore sites comes from sewage-derived 
nutrients (Fourqurean et al. 2015). It is even possible that 
natural turtle populations in Bermuda select foraging sites 
where seagrasses have sufficient P to withstand repeat trim-
ming. Furthermore, the high retention of P compared to N 
in the system following a nutrient enrichment pulse (Ferdie 
and Fourqurean 2004) may help explain long-term toler-
ance of certain inshore meadows for grazing.

The rapid response of T. testudinum to nutrient enrich-
ment at our experimental site in Bailey’s Bay, Bermuda, 
suggests strong nutrient limitation. Plants quickly assimi-
lated artificial N and P, producing fertilizer-derived δ15N 
signals at 4 months (Tables 1, 2) and P-enriched leaf tissues 
after 4 months that persisted for at least 2 years (Fig. 3b). 
Not surprisingly, chemical analyses of seagrass leaves 
from other locations where cultivation grazing has been 
described, such as Saint Croix, US Virgin Islands (Zie-
man et al. 1984); Bahamas (Moran and Bjorndal 2007) and 
Indonesia (Christianen et al. 2012), revealed N:P similar 
to our experimental high-nutrient scenario. Phosphorus 
was not limiting in our experimental high-nutrient sce-
nario with simulated grazing (N:P = 26:1) or the above-
mentioned simulated turtle grazing studies (N:P = 26:1 and 
29:1, respectively) (Moran and Bjorndal 2007; Christianen 
et al. 2012). It seems likely that these environments collec-
tively supported a positive (cultivation) response to grazing 
because foliar N:P ratios were lower than the seagrass Red-
field ratio of 30:1, indicating P-sufficient growth.

Sustainability of repeat turtle grazing

In the 1960s, an interest in using seagrass leaves for live-
stock feed due to the high protein content (~13 %) moti-
vated the first published experimental assessments of 
viable harvesting procedures, using leaf length and above-
ground biomass measurements before and after harvesting 
to measure recovery (Taylor et al. 1973). This pilot study 
determined that Florida T. testudinum beds could tolerate 
clipping twice a year at 2-month intervals during the grow-
ing season. In Jamaica, Greenway (1974) showed that T. 
testudinum fully recovered after four clippings at 70-day 
intervals. Subsequently, ecologists started estimating how 
long seagrass areas could tolerate continuous grazing by 
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green turtles, which ranged from 3 months to over 1 year 
(Bjorndal 1980; Zieman et al. 1984). The first empirical 
study on how long repetitive turtle trimming could sustain 
production of N-rich leaves achieved at least 16 months 
in a P-sufficient (foliar P = 0.22 %) meadow (Moran and 
Bjorndal 2005). In the presence of high nutrient load-
ing, simulated turtle grazing doubled seagrass produc-
tion resulting in a positive feedback loop that could be 
traced back 6 years (Christianen et al. 2012). However, in 
extreme cases when seagrass leaf regrowth did not keep 
pace with consumption, C. mydas altered their feeding 
strategy to mine rhizomes, which led to erosion and other 
damaging effects (Christianen et al. 2014). These results 
collectively highlight why P-limited sites, such as Ber-
muda’s oligotrophic offshore waters, may not sustain pro-
longed turtle grazing.

Conclusions

Randall (1965) imagined a pre-Columbus ocean where C. 
mydas populations were so great that they overwhelmed 
their food source. Today, we revisit that scenario in 
which seagrass abundance can become the “limiting fac-
tor,” if seagrass habitat loss outpaces sea turtle popula-
tion recovery (Chaloupka et al. 2008). In Bermuda, 
green turtle nesting has not been observed for centuries 
(Babcock 1938) until last summer (Jardine 2015), which 
could mark the rebound of a local rookery. Our small-
scale experiment suggests that moderate turtle grazing 
may cultivate seagrasses when P is sufficient, but may 
harm seagrasses in P-deficient cases. Research on the 
ability of seagrasses to respond positively to herbivory 
across abiotic gradients of light, temperature and salinity 
(especially where turtle populations are increasing) over 
larger spatial scales would benefit resource managers. 
The cultivation potential of other preferred food seagrass 
and seaweed species in the geographic range of C. mydas 
requires further investigation. Finally, the consequences 
of grazer-mediated, P-sensitive changes to meadow 
architecture (e.g., shoot morphology, density) deserve 
additional attention.
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