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despite a high level of genetic diversity within each species. 
Although some significant population pairwise FST differ-
ences were detected for both species via AMOVA, these 
appeared largely driven by singleton haplotype diversity, 
whereas several common haplotypes were shared among 
all populations. Our results suggest that sedentary, benthic 
estuarine organisms with planktonic larvae can disperse to 
distant estuaries with the aid of tidal flushing and coastal 
ocean currents.

Introduction

Predicting dispersal among marine populations is an impor-
tant aspect of modelling population dynamics and levels 
and patterns of genetic diversity (Coleman et  al. 2011). 
Such information is of particular importance for marine 
ecosystems such as estuaries due to major declines in fish-
ery stocks and rapid degradation of natural coastal habitat 
(Cowen et  al. 2006). Studies measuring metapopulation 
dynamics and connectivity are common for many terres-
trial organisms but are comparatively rare for marine envi-
ronments (Bradbury et  al. 2008a), particularly for benthic 
invertebrates. Identifying patterns of connectivity in the 
marine realm can assist in the identification of sources and 
sinks of larval dispersal (Coleman et al. 2011), and is cru-
cial for optimising the design of effective marine protected 
areas (MPAs). There are, however, long-standing assump-
tions about long-distance dispersal ability for species with 
planktonic larval stages (Bradbury et al. 2008a, b) that can 
lead to the overestimation of dispersal potential (Cowen 
and Sponaugle 2009) and can thus misinform the design of 
protected areas.

Estuaries provide a number of ecosystem services 
including water treatment such as filtering by suspension 
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feeders and detoxification by submerged vegetation and 
wetlands (Barbier et al. 2010). Estuaries are also important 
nursery habitats for many organisms and a source of fishery 
stocks (Bradbury et al. 2008a). Estuarine health can suffer 
from harbour and coastal development, pollution, overfish-
ing and overharvesting, freshwater diversions and dredging 
(Kennish 2002). Projected sea level rise with a changing 
climate will cause the structure and composition of estua-
rine communities to change as species disperse or disap-
pear (Jenkins et al. 2011). Understanding the factors influ-
encing the connectivity of estuarine species—especially 
those towards the base of the trophic chain—can help in 
mitigating anthropogenic damage to estuaries by identify-
ing whether specific areas should be protected.

In this study, we used phylogeographic approaches to 
test for evidence of restricted gene flow in two species of 
polychaete worms from the family Nephtyidae (Aglaopha-
mus australiensis and Nephtys longipes) commonly found 
in estuaries along the coast of New South Wales (NSW), 
Australia. These species are found only in estuaries and 
are absent from the NSW open coast. Dispersal of poly-
chaetes can be influenced by abiotic and biotic factors such 
as ocean currents, larval survival (Sherman et  al. 2008) 
and bathymetry (Piggott et  al. 2008; Bors et  al. 2012). 
Polychaetes with planktonic larvae are dependent on envi-
ronmental factors for dispersal and have been variously 
found to show both high (Jolly et al. 2004; Barroso et al. 
2010) and low (Kesäniemi et  al. 2012) levels of connec-
tivity among populations. Although both of our study spe-
cies have a planktonic larval phase, they also have discon-
tinuous distributions and might not readily disperse among 
populations, particularly as the predominantly southward 
flow of the East Australian Current (EAC) is often inter-
rupted by eddies (Coleman et  al. 2013) that could isolate 
some populations (Fig. 1). Estuaries can also represent eco-
physiological boundaries to marine organisms due to their 
somewhat restricted connection to the ocean (Bilton et al. 
2002; Kennish 2002); this intermittent connection to the 

sea could promote population differentiation. We hypoth-
esised that populations of the same species might therefore 
show strong genetic differences, indicating limited connec-
tivity for these benthic invertebrates among estuaries along 
the southeastern coast of Australia.

Methods

Sampling

In February and March, 2013  and 2014, specimens of A. 
australiensis and N. longipes were collected from estuar-
ies along the coast of NSW, southeastern Australia. For each 
species, samples were collected from estuaries separated by 
at least 30 km (and up to 590 km). Samples of N. longipes 
were collected from four estuaries, and A. australiensis from 
ten estuaries (Table 1; Figs. 2 and 3). To allow assessment of 
fine scale, within-estuary structure, samples of A. australien-
sis were also collected from four sites within the connected 
Pittwater/Hawkesbury estuaries (Table  1; Fig.  4). Intertidal 
benthic sediment was collected at low tide using a spade and 
then gently sieved using a 0.5-mm mesh. All samples were 
collected towards the mouth of estuaries in full marine salini-
ties. N. longipes was generally found closer to the ocean than 
A. australiensis, and only in sites with cleaner sand, whereas 
A. australiensis was found in muddier sand usually associated 
with Zostera seagrasses. N. longipes was only found in the 
four estuaries listed for that species in Table 1. Polychaetes 
were identified to species level and preserved in 95 % ethanol 
within approximately an hour of collecting, and alcohol was 
changed at least twice in the 24 h following collection.   

DNA amplification

We sequenced parts of the mitochondrial cytochrome c 
oxidase subunit I (COI), mitochondrial ribosomal (16S) 
and nuclear ribosomal (28S) genes. Although more slowly 

Fig. 1   Schematic of flow 
directions of major currents 
in southeastern Australia in 
winter (left) and summer (right) 
(modified and generalised from 
Figure 1 in Coleman et al. 
2013). The EAC is stronger 
and extends further south in 
summer, whereas in winter, 
coastal flows in southern NSW 
can be dominated by eddies. 
The spatial extent of sites used 
in this study is indicated by a 
thick black line along part of the 
southeastern Australian coast
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evolving than microsatellites, these markers can nonethe-
less shed light on phylogeographic structure (and hence on 
dispersal capacity over long time frames) in polychaetes. 
For example, COI was used by Carr et al. (2011) to deter-
mine phylogeographic structure in polychaetes in the Pacific, 
Arctic and Atlantic Oceans, and by Meissner et al. (2014) to 

infer dispersal among polychaetes North Atlantic seamounts. 
COI and 16S have also been used to infer past connectivity 
for polychaetes in Europe (Jolly et  al. 2006) and the New 
Zealand region (Bors et al. 2012), and Schüller and Hutch-
ings (2012) used 16S to infer dispersal for a trichobranchid 
polychaete in the Southern Atlantic.

Table 1   List of field sites with 
species collected and GPS 
coordinates, and numbers of 
individuals sequenced for each 
marker

Site name Species Latitude Longitude COI 16S 28S

Wallis Lake A. australiensis 32°10′52.09″S 152°30′4.53″E 20 11 0

Lemon Tree Passage A. australiensis 32°43′51.48″S 152°2′22.27″E 23 16 0

Stockton Bridge A. australiensis 32°52′39.62″S 151°47′36.94″E 21 9 0

Careel Bay, Pittwater A. australiensis 33°37′8.86″S 151°19′38.15″E 26 13 0

Patonga, Hawkesbury A. australiensis 33°33′3.64″S 151°16′5.03″E 24 13 0

Bayview, Pittwater A. australiensis 33°39′39.30″S 151°18′12.23″ 14 11 0

Dangar Island, Hawkesbury A. australiensis 33°32′24.93″S 151°18′12.23″ 20 12 0

Fig Tree Bridge A. australiensis 33°49′45.03″S 151°8′43.21″E 24 11 0

Taren Point A. australiensis 34°0′39.94″S 151°7′39.35″E 21 9 0

Lake Illawarra entrance A. australiensis 34°32′16.20″S 150°52′3.75″E 7 5 0

Lake Illawarra jetties A. australiensis 34°31′37″S 150°51′53″E 7 6 0

Tuross Heads A. australiensis 36°03′59.08″S 150°07′40.58″E 7 3 1

Wallaga Lake A. australiensis 36°22′12.68″S 150°04′6.14″E 14 6 2

Shadracks Creek A. australiensis 37°04′37.59″S 149°52′39.21″E 25 10 8

Dolls Point N. longipes 34°00′20.89″S 151°07′49.07″E 17 10 0

Lake Illawarra N. longipes 34°32′16.20″S 150°52′3.75″E 14 4 0

Cuttagee Beach N. longipes 36°31′37.08″S 150°03′22.31″E 20 8 0

Pambula N. longipes 36°56′48.65″S 149°54′55.48″E 12 13 0

Fig. 2   Sites (a) and haplotype 
networks for COI, (b) and 16S 
(d) for Aglaophamus australien-
sis (pictured in c [Photo by K. 
Atkinson])
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DNA extraction of a small section of worm (approxi-
mately 1  mm) was carried out using a standard Chelex 
extraction procedure (Walsh et al. 1991). All samples used 

were required to have a head to avoid sampling the same 
individual twice. PCR amplification of the three mark-
ers was achieved using published primers (Table 2). Vari-
ous other primer pairs were tested for each marker, but the 
greatest success was achieved with those shown in Table 2. 
PCRs were carried out using an Eppendorf Flexlid Mas-
tercycler Nexus thermocycler in 20  µl volumes contain-
ing 1.0  µl of DNA, 1.0  µl of 10  µM of each the forward 
and reverse primer, 2.0 µl buffer, 2.0 µl of 8 mM dNTPS, 
1.0 µl of 25 mM MgCl2, 0.2 µl of 5 U/µl Taq and 11.6 µl 
water, using the following program: 94 °C for 120 s, then 
40 cycles of 94 °C for 15 s, 48 °C for 30 s and 72 °C for 
60 s, finishing with 72 °C for 240 s. Amplified PCR prod-
uct was purified using IllustraTM ExoProStar ‘enzymatic 
PCR and sequencing clean-up’ kit and sequenced by Mac-
rogen (Korea).

Genetic analyses

Sequences were aligned using Geneious 6.1.6 (Biomatters), 
and any ambiguities were assessed by eye. Haplotype net-
works were constructed using TCS (Clement et  al. 2000). 
Isolation by Distance (IBD) analyses were carried out for 
each species for COI and 16S by paired Mantel tests using 
999 permutations in GenAlEx (Peakall and Smouse 2012). 
For the Mantel test, the geographic distances among sites 
were calculated using a Coordinate Distance Calculator 
(http://boulter.com/gps/distance/), and mean uncorrected 
pairwise distances between sites were calculated using 
MEGA (Tamura et al. 2011). AMOVA analyses were used to 
compare within versus between population diversity for each 
species and marker, implemented in Arlequin version 3.5.1.3 

Fig. 3   Sites (a) and haplotype 
networks for COI, (b) and 16S 
(d) for Nephtys longipes (pic-
tured in c [photo by S. Lindsey]. 
Note the much longer anterior 
chaetae than for A. australien-
sis)

Fig. 4   Sites (top) and COI haplotype network (bottom) for 
Aglaophamus australiensis samples from four sites in the Pittwater/
Hawkesbury estuaries, north of Sydney

http://boulter.com/gps/distance/
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(Excoffier and Lischer 2010). Directionality in gene flow 
between populations of the most widespread taxon, A. aus-
traliensis, was investigated using COI and 16S data via max-
imum likelihood in Migrate-n 3.6.6 (Beerli 1998; Beerli and 
Felsenstein 2001). The transition/transversion ratios were set 
to 16.70 for COI and 1.88 for 16S as calculated by Arlequin. 
The inheritance scalar was set to 0.25 for both loci. The four 
populations from the Pittwater/Hawkesbury estuaries were 
combined. The DNA sequence model was run with 10 short 
chains, each sampling 100,000 genealogies, and three long 
chains, each sampling 1000,000 genealogies, with a burn-
in of 10,000 per chain. Three runs for both a full migration 
(asymmetric dispersal) model and a symmetric migration 
model were carried out, and a likelihood-ratio test (LRT) 
was used to assess which model best fit the data [LRT = 2* 
(lnL(asymmetric model) −  lnL(symmetric model)], where 
lnL is the natural log of the likelihood).

Results

A fragment of COI 594 bp long was successfully amplified 
for 63 samples of N. longipes (yielding 39 haplotypes), and 
a fragment 340 bp long was amplified for 258 samples of 
A. australiensis (yielding 56 haplotypes). A fragment of 
16S 397 bp long was amplified for 38 samples of N. lon-
gipes (yielding seven haplotypes), and a fragment 423 bp 
long was amplified for 149 samples of A. australiensis 
(yielding 26 haplotypes). The differences in lengths of the 
COI and 16S fragments amplified for each species were 
the result of differences in sequencing success; unreadable 
ends due to poor sequence quality in some samples were 
trimmed from all alignments, resulting in shorter fragments 
for some data sets. 28S only amplified for eleven sam-
ples in A. australiensis, and none in N. longipes. The 11 
sequences obtained for 28S (eight from Shadracks Creek, 
one from Tuross Heads and two from Wallaga Lake), each 
with a length of 372 base pairs after trimming of ambigu-
ous ends, showed no variation. All unique sequences from 
this study have been deposited with GenBank (accessions: 
A. australiensis COI: KP836357-412; 16S: KP836413-438; 
28S: KP860235-245; and N. longipes COI: KP792237-275: 
16S: KP836439-445).

No convincing pattern of IBD was found for either spe-
cies (P > 0.05); for N. longipes, neither marker showed a 
significant IBD trend (COI: P = 0.479; 16S: P = 0.095), 
and although a slight IBD trend was found for A. aus-
traliensis for 16S (R2 =  0.192, P =  0.031), this pattern 
was not observed for the more informative COI marker 
(P = 0.273). IBD plots are shown in supplementary figures 
S1-S4. Network analysis (Figs.  2, 3, 4) also did not indi-
cate any clustering of haplotypes according to geography; 
indeed, several haplotypes were shared between multiple 
sites in each species. A single haplotype shared by one indi-
vidual of A. australiensis from Wallaga Lake, and one from 
Dangar Island, could not be joined to the COI network at 
the 95 % confidence limit (Fig. 2). Network analysis indi-
cated considerable diversity within sites; for example, 19 
distinct COI haplotypes were recovered from 20 samples of 
N. longipes from Cuttagee Beach (Fig. 3). Haplotype diver-
sity values were between 0.78 and 0.99 for both species 
and all sites (supplementary tables S1–S2). No evidence 
of directional dispersal was found, with Migrate-n analy-
sis of A. australiensis sequences indicating in all three runs 
that a symmetric dispersal model fits the data better than an 
asymmetric model (P < 0.001).

AMOVA analyses showed that within population vari-
ation was far greater than between population variation 
(COI: A. australiensis: within 99.05  %, between 0.95  %, 
P  >  0.05; N. longipes: within 96.24  %, between 3.76  %, 
P = 0.025; 16S: A. australiensis: within 93.34 %, between 
2.92 %, P = 0.047; N. longipes: within 88.29 %, between 
11.71  %, P  =  0.045). Significant population differentia-
tion was detected for both species for both markers. For N. 
longipes, population differentiation was entirely driven by 
the Dolls Point population differing from the other three 
estuaries. This population did, however, share haplotypes 
for COI and 16S with all of the other estuaries sampled 
for this species (Fig. 3). For A. australiensis, most popula-
tion pairwise differences in the 16S marker were between 
Wallaga Lake and other sites (Table 3), but more pairwise 
differences were detected for COI (Table 4). For example, 
the two most southern sites, Wallaga Lake and Shadracks 
Creek, were different to most sites from Taren Point north-
ward. Nonetheless, as for N. longipes, several of the most 
common haplotypes for A. australiensis were found across 

Table 2   List of primers used 
for amplifying COI, 16S and 
28S markers in A. australiensis 
and N. longipes

Gene Name Direction Primer Sequence (5′–3′) Source

COI LCO1490 Forward GGTCAACAAATCATAAAGATATTGG Folmer et al. (1994)

COI HCO2198 Reverse TAAACTTCAGGGTGACCAAAAAATCA Folmer et al. (1994)

16S 16Sar Forward CGCCTGTTTATCAAAAACAT Palumbi et al. (1991)

16S 16Sbr Reverse CCGGTCTGACTCAGATCACGT Palumbi et al. (1991)

28S LSUD1,D2,Fw1 Forward AGCGGAGGAAAAGAAACTA Sonnenberg et al. (2007)

28S LSUD1,D2,rev2 Reverse ACGATCGATTTGCACGTCAG Sonnenberg et al. (2007)



1324	 Mar Biol (2015) 162:1319–1327

1 3

almost all sites, including the most northern and most 
southern sites (Fig.  2), and differences therefore appear 
to be largely the result of diversity in rare (e.g. singleton) 
haplotypes at each site. Within the connected Pittwater and 
Hawkesbury estuaries, no fine-scale genetic structure was 
observed among sites, with several of the same haplotypes 
found at all four sites (Fig. 4) and no significant population 
differentiation found by AMOVA (P ≫ 0.05).

Discussion

Our results suggest that dispersal of planktonic polychaete 
larvae can readily occur among many estuaries in south-
eastern Australia. Although AMOVA analyses indicated 

differentiation among a few sites, these differences were 
apparently driven by relatively rare haplotypes in a few 
individuals, whereas the finding that several common hap-
lotypes were shared among most sites for both species and 
markers suggests widespread inter-estuarine dispersal. Our 
hypothesis that populations might be poorly connected was 
thus not supported by our results.

Although several other molecular studies on polychaete 
worms have identified the presence of unrecognised species 
(e.g. Barroso et al. 2010; Nygren and Pleijel 2011; Borda 
et al. 2013; Glasby et al. 2013), the close relationships of 
haplotypes from each marker for each species in this study 
suggest their taxonomy is well resolved across the study 
region. Indeed, although Nephtyidae worms in southeast-
ern Australia have recently been the focus of taxonomic 

Table 3   Population pairwise FST values for A. australiensis for 16S. Pairwise differences that were significant (P < 0.05) are in bold and under-
lined

1 2 3 4 5 6 7 8 9 10 11 12 13

1. Wallis Lake 0.00

2. Lemon Tree Passage 0.00 0.00

3. Stockton Bridge −0.01 0.06 0.00

4. Dangar Island 0.01 −0.03 0.04 0.00

5. Patonga −0.02 −0.01 −0.03 −0.02 0.00

6. Careel Bay 0.01 0.02 −0.03 0.03 0.01 0.00

7. Bayview −0.04 0.04 −0.06 0.04 −0.03 0.00 0.00

8. Fig Tree Bridge −0.02 −0.04 −0.01 −0.06 −0.03 −0.03 −0.01 0.00

9. Taren Point −0.06 −0.02 −0.04 −0.02 −0.04 −0.04 −0.05 −0.07 0.00

10. Lake Illawarra −0.03 −0.03 0.05 −0.06 −0.02 0.06 0.03 −0.03 −0.02 0.00

11. Tuross Heads 0.02 −0.02 0.11 −0.03 0.00 0.12 0.07 0.00 0.03 −0.04 0.00

12. Wallaga Lake 0.15 0.11 0.23 0.08 0.10 0.26 0.19 0.13 0.17 0.05 0.01 0.00

13. Shadracks Creek 0.05 −0.05 0.08 −0.03 −0.02 0.04 0.06 −0.04 0.01 0.01 0.00 0.11 0.00

Table 4   Population pairwise FST values for A. australiensis for COI. Pairwise differences that were significant (P < 0.05) are in bold and under-
lined

1 2 3 4 5 6 7 8 9 10 11 12 13

1. Wallis Lake 0.00

2. Lemon Tree Passage 0.00 0.00

3. Stockton Bridge 0.06 0.03 0.00

4. Dangar Island 0.02 0.00 0.00 0.00

5. Patonga 0.00 −0.02 0.01 −0.01 0.00

6. Careel Bay 0.02 −0.01 0.00 −0.02 −0.01 0.00

7. Bayview 0.05 0.02 −0.01 0.00 0.00 0.00 0.00

8. Fig Tree Bridge 0.09 0.05 −0.01 0.04 0.03 0.03 −0.02 0.00

9. Taren Point 0.05 0.03 0.00 0.00 0.00 0.01 −0.04 0.00 0.00

10. Lake Illawarra 0.05 0.00 0.01 −0.04 0.00 −0.01 0.02 0.07 0.01 0.00

11. Tuross Heads −0.04 −0.06 0.01 −0.02 −0.02 −0.02 0.02 0.07 0.04 0.00 0.00

12. Wallaga Lake 0.06 0.06 0.11 0.01 0.06 0.08 0.13 0.19 0.11 0.02 0.01 0.00

13. Shadracks Creek 0.02 0.01 0.10 0.04 0.02 0.05 0.08 0.14 0.07 0.04 −0.04 0.02 0.00
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revision, the two species used in this study appear valid 
(Dixon-Bridges et al. 2014).

Polychaetes are abundant in marine and estuarine envi-
ronments (Hutchings 2004), and the widespread distribu-
tions of some polychaete species are probably due to their 
long pelagic larval stages. There is no literature on the 
larval duration of N. longipes and A. australiensis; how-
ever, the duration of larval stages in other members of the 
Nephtyidae is estimated to be 11–42  days (Caron et  al. 
1995). This is a relatively long planktonic phase, consistent 
with the potential for widespread dispersal suggested by 
our study. The average distance among estuaries in NSW 
(south of Sydney) is approximately 10 km (estimated from 
Google Earth path measurements), and the EAC can have 
coastal flows of ~1 ms−1 (Roughan and Middleton 2004). 
Larval dispersal among adjacent estuaries could therefore 
potentially occur in a matter of a few hours or days, once 
the larvae have been flushed by tides into the sea.

Several other studies have likewise found evidence 
of high dispersal capacity in polychaete worms. Barroso 
et  al. (2010) found that populations of Eurythoe compla-
nata appeared to be well connected along 2500 km coast 
of the Caribbean and Brazil and proposed that the telep-
lanic larvae of E. complanata were being transported by the 
westward South Equatorial Current and the eastward South 
Equatorial Countercurrent (Brown 1990). Widespread lar-
val dispersal facilitating population connectivity was also 
inferred for the polychaete Pectinaria koreni along the 
north coast of France (Jolly et  al. 2004), with evidence 
for past divergence due to historical processes but con-
temporary dispersal with ocean currents. Polychaetes with 
pelagic larvae do not, however, always show evidence of 
connectivity among populations. Kesäniemi et  al. (2012) 
found, for example, that many European populations of the 
spionid polychaete Pygospio elegans were genetically dis-
tinct. Life history alone is inadequate to predict dispersal 
capacity (Johannesson 1988), and in the case of our study, 
tidal flushing, ocean currents and anthropogenic influences 
are likely to play a major role in the transport of larvae.

Despite estuaries potentially acting as eco-physiological 
barriers (Bilton et  al. 2002; Kennish 2002), ballast water 
from ships can transport marine organisms long distances, 
particularly among ports (Hutchings 1992; Ruiz et  al. 
1997). At least one of the sites in our study was close to 
a busy industrial port (Dolls Point, near Botany Bay), and 
all other sites, while not major ports, are estuaries that are 
open to the sea and experience considerable tidal influ-
ences. Coleman (2013) found that estuarine and nearby 
open-ocean populations of the kelp Ecklonia radiata in 
southeastern Australia were not genetically differenti-
ated, suggesting that well-flushed estuaries are not isolated 
environments for benthic marine organisms. Indeed, for 
many of the estuaries studied, the environment is almost 

entirely marine, with relatively little freshwater input from 
streams and rivers, and strong tidal flushing via fast-flow-
ing currents around sand banks. The entrance to the Pitt-
water/Hawkesbury River estuaries (location of sites Dangar 
Island, Patonga, Careel Bay and Bayview), Sydney Harbour 
(Fig Tree Bridge site) and Botany Bay (Taren Point site) 
are all well-flushed estuaries with wide, deep river mouths. 
However, sites such as Wallis Lake and Wallaga Lake have 
shallow entrances, partially blocked by sand bars that limit 
flushing which varies between neap and spring tides (Roy 
et al. 2001). Future research could assess whether less well-
flushed estuaries, such as those that are often completely 
closed by sand movements at the river mouth, or by anthro-
pogenic sea walls, house more differentiated polychaete 
populations than ‘open’ estuaries.

The high dispersal potential of these two estuarine worm 
species has positive implications for their resilience in the 
face of ongoing anthropogenic environmental change, as 
damaged populations may be able to be ‘rescued’ by colo-
nists from elsewhere (Bradbury et al. 2008a). Which popu-
lations would be most likely to act as sources of such res-
cues could not, however, be determined by this research. 
Although the EAC flows southward along the eastern coast 
of Australia, and thus could be expected to connect from 
north to south only, bidirectional dispersal may also be 
facilitated by inshore, north-flowing counter currents and 
eddies due to seasonal variation of strength and positioning 
of the EAC (Coleman et al. 2011, 2013; see Fig. 1). Indeed, 
our Migrate-n analyses suggest that bidirectional, rather 
than asymmetric, dispersal of polychaete larvae is occur-
ring along the NSW coast. Furthermore, if north–south dis-
persal were the norm, genetic diversity could be expected 
to decrease towards the south, but this pattern was not sup-
ported by haplotype diversity values (see supplementary 
tables S1, S2).

In concordance with our results, Piggott et al. (2008) did 
not find a significant IBD relationship in abalones (Haliotis 
coccoradiata) along the south coast of NSW. There was, 
however, additional evidence of fine-scale genetic struc-
ture, provided by microsatellite analysis, which suggested 
some degree of local larval retention and local recruit-
ment (Piggott et  al. 2008). The authors were able to con-
clude that the most likely scenario was that abalones have 
the ability to infrequently disperse over long distances, 
although recruitment occurs primarily on a small spatial 
scale. Comparable results were found using microsatellite 
loci for populations of the kelp Ecklonia radiata along the 
eastern coast of Australia, with no IBD pattern but mosaic 
genetic differentiation apparently driven by eccentrici-
ties in ocean current flow (Coleman et  al. 2011). Rapidly 
evolving molecular markers such as microsatellites are 
ideal for analysing patterns of contemporary connectivity 
among marine populations (Sherman et  al. 2008; Chust 
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et al. 2013). Unfortunately, polymorphic microsatellite loci 
have not yet been identified for our study species (nor for 
any species in the polychaete family Nephtyidae), and our 
research therefore relied on the more slowly evolving, but 
nonetheless phylogeographically informative, mitochon-
drial markers COI and 16S. Although we were able to infer 
connectivity among estuaries, we cannot be sure whether 
this connectivity is ongoing or is simply a reflection of pro-
cesses in the recent past. Future research using microsatel-
lite markers could shed light on the finer-scale population 
structure and connectivity of Nephtyidae worms in eastern 
Australia. Research on the life history of these polychaetes, 
such as their larval duration and length of spawning, would 
also help us to understand the likely extent of their disper-
sal capacity. Nonetheless, our results indicate that benthic 
polychaetes with planktonic larvae may have little trouble 
dispersing among estuaries connected by strong ocean cur-
rents. For less dispersive estuarine species, such as those 
without a planktonic stage, and for organisms in poorly 
flushed estuaries, dispersal is likely to be more of a chal-
lenge. Research on a wide range of taxa with differing 
dispersal mechanisms is critical if the design of protected 
areas such as marine park networks is to be effective.
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