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Introduction

Investigations of marine assemblages across large spatial 
scales often reveal distinct patterns of species distributions 
and community structure, particularly in latitudinal or cross-
shelf studies (Stevens 1989; Bellwood and Wainwright 2001; 
Wismer et  al. 2009). Spreading nearly 2,000  km along the 
coastline and up to 200 km offshore, Australia’s Great Barrier 
Reef shows clear divisions between inshore, mid- and offshore 
reefs. This pattern holds true for a wide variety of organisms, 
ranging from fishes (Bellwood and Wainwright 2001; Hoey 
and Bellwood 2008) and benthic macroalgae (Wismer et  al. 
2009), to crustose coralline algae (Fabricius and De’ath 2001) 
and crustaceans (Preston and Doherty 1994).

Factors that may drive the divisions in the cross-shelf 
distributions include wave energy (Bellwood and Wain-
wright 2001), benthic composition (Wismer et  al. 2009), 
the availability of nutrients (Uthicke and Nobes 2008; 
Uthicke and Altenrath 2010), turbidity (Cooper et al. 2007), 
and sedimentation (Preston and Doherty 1994; McCook 
1996; Fabricius and De’ath 2001). Relatively high rates of 
sedimentation on inner shelf reefs appear to be particularly 
influential on benthic organisms (McCook 1996; Fabricius 
and De’ath 2001; McCulloch et  al. 2003). For example, 
in high sedimentation locations, crustose coralline algae 
cover is low (Fabricius and De’ath 2001) and crustacean 
communities in dead corals have distinctly different assem-
blages and lower abundances (Preston and Doherty 1994). 
Sediment, per se, does little to explain the large-scale com-
munity structure of Foraminifera, however, turbidity and 
nutrient profiles appear to have a much greater influence on 
these benthic organisms (Cooper et al. 2007; Uthicke and 
Nobes 2008; Uthicke and Altenrath 2010).

The epilithic algal matrix (EAM) is a significant, and 
often dominant, component of benthic assemblages on 
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coral reefs, covering approximately 30–70 % of the avail-
able surface area (Klumpp and McKinnon 1992; Goatley 
and Bellwood 2011). Within the EAM, short filamentous 
and crustose algal species are common (Scott and Russ 
1987; Connell et al. 2014) in addition to nutrient-rich detri-
tus (Crossman et  al. 2001; Wilson et  al. 2003), inorganic 
sediments and a community of small organisms (Kramer 
et al. 2012). Once thought to be exploited solely by herbiv-
orous fishes, the EAM has progressively gained recognition 
as being a valuable resource for detritivorous (Wilson et al. 
2003, 2004) and small carnivorous fishes (Kramer et  al. 
2013). Although the EAM is structurally simple, based on a 
short algal turf ranging from 1 to 6 mm in height (Bonaldo 
and Bellwood 2011) it supports a surprisingly diverse and 
abundant community of motile taxa (Kramer et  al. 2012) 
that are likely to be important contributors to ecosystem 
function (Kennedy and Jacoby 1999; Schratzberger et  al. 
2000). In the present study, the term ‘cryptofauna’ will be 
used to include both meiofauna (0.06–0.5 mm; Giere 2009) 
and larger taxa (up to 5 mm).

Environmental factors are capable of having both posi-
tive and negative effects on the abundance of organisms 
and the overall structure of a community. One such factor 
is the effect of sediments, which consist of both organic 
and inorganic settled particulate matter. The amount of 
sediment is particularly important to coral reefs, as high 
levels are known to place corals under metabolic stress 
(Rogers 1990), inhibit coral settlement (Birrell et  al. 
2005) and suppress grazing by herbivorous fishes (Bell-
wood and Fulton 2008). The influence of sediment and 
dissolved nutrients on the abundance of small organisms 
is relatively well known (Preston and Doherty 1994; 
Cooper et al. 2007; Uthicke and Altenrath 2010; Kramer 
et  al. 2012). However, whilst the abundance of crypto-
fauna is reported to remain relatively temporally consist-
ent (Klumpp et al. 1988; Logan et al. 2008) not much is 
known about spatial variability. The present study aims 
to investigate the spatial differences in cross- and along-
shelf variation of EAM cryptofauna using two inner shelf 
locations and a typical mid-shelf location on the GBR. 
In addition, sediment volumes were measured and prox-
imity to major river systems was determined to examine 
the relationship between sediment, nutrients and EAM 
cryptofauna at these locations.

Methods

Sampling locations

Samples of EAM fauna were collected from three locations 
across the Great Barrier Reef: Orpheus Island, the Turtle 
Island group and Lizard Island (Fig.  1). Orpheus Island 

is located on the inner Great Barrier Reef (18° 36′40″S, 
146° 29′20″E), 16  km from the mainland. Samples were 
collected from four sites across the reef of Pioneer Bay, 
Orpheus Island. A detailed description of Pioneer Bay 
habitats is given in Fox and Bellwood (2007). The Turtle 
Island group is similarly located on the inner-shelf of the 
GBR, 12 km offshore and approximately 450 km north of 
Orpheus Island (14° 43′55″S, 145° 11′00″). Composed of 
nine small islands and reefs, two islands (2 sites each) were 
sampled for EAM cryptofauna. Lizard Island is located on 
the mid-shelf GBR (14° 40′40″S, 145° 26′ 55″E) 30  km 
offshore and on similar latitude to the Turtle Island group. 
Samples were collected from the reef in Mermaid Cove and 
the Lagoon Entrance (2 sites each). Sampling at all loca-
tions was conducted during the austral summer months 
(November–March) to reduce variation due to seasonal 
effects, although seasons usually have a minimal influ-
ence on cryptofaunal populations (Klumpp et  al. 1988; 
Logan et  al. 2008). For consistency, sampling at all loca-
tions was conducted from similar depths (2–3 m depth at 
high tide) on the fringing reef crest of the leeward shore 
where live coral and EAM were dominant and macroalgae 
sparse. All locations are marine protected areas where fish-
ing is prohibited and removal of organisms is only granted 
for approved research. As such, the marine communities 
are considered to be relatively intact and include all major 
functional groups of herbivorous fishes (Bellwood et  al. 
2004; Green and Bellwood 2009), thereby subjecting the 
EAM to similar grazing pressure. The EAM at all sites 
was of a similar height (4–6 mm) and morphology (short, 
filamentous Chlorophyta and Rhodophyta). Samples were 
taken from open planar areas away from territorial damself-
ish territories that may modify EAM composition (Klumpp 
et al. 1988). Sampling on Orpheus Island occurred 1 month 
after a tropical cyclone (Cyclone Yasi, Category 5) passed 
over the island (Great Barrier Reef Marine Park Authority 
2011) and 3 months after extensive coastal flooding due to 
Cyclone Tasha (Hayes and Goonetilleke 2012).

Sample collection

Samples from all locations were collected using SCUBA 
from the reef crest zone. A total of 60 samples was 
obtained, consisting of five individual samples from each of 
the four sites at each of the three locations. An underwater 
vacuum apparatus based on the design described in Kramer 
et  al. (2012) was utilised to remove all particulate mate-
rial within a defined area. The sampling area was delimited 
by a section of PVC pipe 51 mm in diameter, representing 
20.4 cm2 of EAM. The sampling area was vacuumed thor-
oughly for 30 s, during which time the resident organisms 
and particulate matter were drawn into the apparatus and 
retained by a 60 µm plankton mesh filter bag. The filter bag 
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was then sealed, transported to the surface and the contents 
fixed in 4 % formaldehyde solution in seawater.

Sample and data analysis

Samples were stained with eosin erythrosin to aid in dis-
tinguishing organisms amongst the particulate matter. Col-
lected material was washed onto a petri dish, which had a 
grid affixed to the bottom to prevent observing the same 
organism twice. Samples were examined using an Olympus 
SZ40 binocular microscope under 40× magnification to 
identify taxa to the lowest functional taxonomic level (usu-
ally order). This level of taxonomic resolution was deemed 
appropriate for the purpose of detecting spatial differences 

in the EAM fauna and comparing overall community com-
position (cf. Beattle and Oliver 1994; Krell 2004). The 
abundance of the respective organisms was recorded and 
standardised to 100  cm2. The sediment volume of each 
sample was calculated following Kramer et  al. (2012). 
Using digital vernier calipers (accuracy: ±0.02  mm), the 
depth of the settled particulates within the sample vial was 
measured and the volume estimated based on a calibrated 
vial.

The dataset used for the analysis incorporated abundant 
organisms and excluded those taxa with fewer than 10 indi-
viduals 100  cm−2. Thus, taxa considered in the analysis 
were Amphipoda, Cumacea, Gastropoda, Harpacticoida, 
Isopoda, Polychaeta, Ostracoda and Tanaidacea. Organisms 
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Fig. 1   Sampling locations. a Queensland, Australia, indicating 
regions where sampling was conducted. b Orpheus Island. c Turtle 
Island group. d Northern sampling locations: Turtle Island group and 

Lizard Island. e Lizard Island. Dashed lines indicate fringing reefs 
and stars are sampling sites. Two sites were sampled at each star
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that were observed, but not included in the analysis due to 
low abundances, were Chaetognatha, Chironomida, Cuma-
cea and Decapoda. The cryptofaunal community data were 
explored using a non-metric multidimensional scaling 
(nMDS) ordination of a Manhattan distance matrix based 
on standardised data, thus representing proportions rather 
than raw abundance and preventing the over-representation 
of abundant taxa. Taxa vectors (based on maximum corre-
lation with taxon variables) were added to the ordination 
to aid interpretation of the data (Oksanen et  al. 2013). A 
permutational multivariate analysis of variance (PER-
MANOVA) was conducted to elucidate differences in sites 
and locations. Spearman rank correlations were conducted 
to investigate the relationship between sediment and the 
abundance of organisms. Additionally, a one-way ANOVA 
was used to test the difference in sediment volume among 
locations. Multivariate analyses, Spearman rank correla-
tions and ANOVA were conducted using the R packages 
vegan (Oksanen et  al. 2013) and Hmisc (Harrell 2014). 
Pairwise comparisons were calculated using Primer 6 with 
PERMANOVA.

Results

PERMANOVA analysis found no significant difference in 
cryptofaunal assemblages among sites within locations, 
or in the interaction between sites and locations. Site data 
were therefore pooled within locations for the remain-
der of the analyses. Investigation of the nMDS revealed 
that each location could be separated into distinct ordina-
tion groupings. This is supported by the PERMANOVA, 
which indicates that locations were statistically significant 
(PERMANOVA, P < 0.001). The pairwise PERMANOVA 

further indicated that all locations were significantly differ-
ent from each other (pairwise PERMANOVA, P  <  0.05). 
From the vectors fitted to the nMDS ordination (Fig.  2), 
Orpheus Island showed strong gradients for Polychaeta and 
Gastropoda, whereas the Turtle Islands and Lizard Island 
are represented by a gradient towards the Harpacticoida. 
Vectors also indicate that Amphipoda, Cumacea and Tan-
aidacea exhibit strong gradients toward the Turtle Islands. 
Although Orpheus Island did not exhibit any shared multi-
variate space with the other locations, the Turtle Islands and 
Lizard Island did have a small degree of overlap, indicating 
that some sampling locations between these two regions 
were somewhat similar in EAM community composition.

Data were further explored by investigating the relation-
ship between sediment and the abundance of organisms in 
the EAM. The only taxon not to have a significant corre-
lation with sediment was Isopoda (Spearman rank correla-
tion, rs =  0.125, N =  60, P =  0.340). All other taxa had 
a significant, positive, relationship with sediment, rang-
ing from (rs = 0.571, N = 60, P < 0.001) to (rs = 0.280, 
N = 60, P = 0.03) for Polychaeta and Amphipoda, respec-
tively (Fig.  3). However, sediment volumes among loca-
tions revealed no significant difference in the volume 
of sediment at each location (ANOVA, F(2, 57)  =  1.819, 
P = 0.171).

Discussion

Cross-shelf studies on the GBR have consistently revealed 
a distinct separation between inner, mid and outer shelf 
reefs. This pattern applies to community assemblages 
(Done 1982; Preston and Doherty 1994; Bellwood and 
Wainwright 2001), benthic composition (McCook 1996; 

Cumacea

O1

O2

O3

O4

O5

O6

O7

O8

O9

O10

O11

O12

O13
O14

O15

O16

O17

O18

O19

O20

L1

L2
L3L4

L5

L6

L7L8

L9
L10

L11

L12

L13
L14

L15

L16

L17

L18

L19

L20

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10 T11

T12

T13

T14

T15

T16

T17

T18

T19

T20 Harpacticoida

Amphipoda
Tanaidacea

Polychaeta

Ostracoda

Gastropoda

Dimension 1

D
im

en
si

on
 2

Stress = 0.076

Fig. 2   Non-metric multidimensional scaling (nMDS) ordination of 
epilithic algal matrix fauna from Orpheus Island (dashed line), Lizard 
Island (dotted line) and Turtle Island group (solid line). Vectors indi-

cate strength and direction of taxa gradients. All locations are signifi-
cantly different (pairwise PERMANOVA, P < 0.05)



2187Mar Biol (2014) 161:2183–2190	

1 3

Fabricius and De’ath 2001; Wismer et  al. 2009) and eco-
system processes (Russ and McCook 1999; Hoey and 
Bellwood 2008). The preliminary observations in the pre-
sent study suggest that there is not only a cross-shelf dif-
ference in EAM cryptofauna composition, but also a dis-
tinct along-shelf separation. Somewhat surprisingly, the 

nMDS suggests that an inner shelf reef (Orpheus Island) 
differs more from another inner shelf location (Turtle 
Island group) than the Turtle Islands differ from a nearby 
mid-shelf system (Lizard Island). This result contrasts with 
other cross-shelf studies, which typically report that fea-
tures such as hydrodynamics (Bellwood and Wainwright 
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2001), sediments (Preston and Doherty 1994; Fabricius 
and De’ath 2001), abundance of macroalgae (Wismer et al. 
2009), or a combination of the above (Hoey and Bellwood 
2008), drive the differences across large spatial scales. The 
samples of the EAM collected in the present study were 
taken from largely similar environments, thereby control-
ling for the effect of depth, reef zone, season, proximity of 
macroalgae and hydrodynamics. Yet, the EAM cryptofauna 
differed significantly among all locations.

Whilst these results were unexpected, there are indi-
cations that this variation in EAM cryptofauna may be a 
result of the water quality and nature of sediments at each 
location. The coastline adjacent to the sampling locations 
is subject to tropical seasonal fluctuations, namely a dry 
season and a wet season. During the wet season, extensive 
flooding is common, where large amounts of terrigenous 
sediments and anthropogenic contaminants are flushed into 
major rivers and out into coastal waters (Devlin and Brodie 
2005; Brodie et  al. 2010). The resulting sediment plumes 
typically move in a northerly direction along the Queens-
land coastline (McCulloch et al. 2003; Brodie et al. 2010). 
The catchments that are most likely to affect the loca-
tions in the present study are the Mossman–Daintree and 
a small section of the Northeastern Cape York catchment 
(Turtle Island group and Lizard Island) and the Burdekin-
Haughton and Ross-Black catchments (Orpheus Island) 
(Neil et  al. 2002; Bainbridge et  al. 2012). It is impor-
tant to note the difference in catchment areas that deliver 
floodwaters into the GBR lagoon. River catchments that 
affect the Turtle Island group and Lizard Island are much 
smaller than those that influence Orpheus Island (Neil et al. 
2002). In addition, of all the rivers along the Queensland 
coast, the Burdekin River produces the highest volume of 
suspended sediments to the GBR lagoon, emitting an esti-
mated 3 × 108 kg year−1 (Neil et al. 2002; McCulloch et al. 
2003; Kroon et al. 2012). Although Orpheus Island is not in 
the direct path of the flood plume stemming from the Bur-
dekin River, excessive nutrients and (to a lesser extent) sus-
pended sediments from the Burdekin River have been doc-
umented at considerable distances that easily extend past, 
and encompass, Orpheus Island (Devlin and Brodie 2005; 
Devlin et al. 2008; Bainbridge et al. 2012).

In the present study, although almost all taxa displayed 
significant positive relationships with sediment vol-
ume, four taxa in particular appear to be influenced most 
strongly: Gastropoda, Harpacticoida, Ostracoda and Poly-
chaeta. Of these, Gastropoda and Polychaeta were char-
acteristic of Orpheus Island, whereas Harpacticoida and 
Ostracoda were dominant taxa at the Turtle Islands and at 
Lizard Island. The major trophic role of these four taxa is 
primary consumption (Ruppert et  al. 2004), thus it would 
be expected that an increase in primary productivity due 
to nutrient input would increase populations (Montagna 

et al. 1995). It is likely that the sediment composition and 
nutrient profile created by local terrigenous inputs (i.e. 
flood plumes from the Burdekin-Haughton and Ross-Black 
catchments) produces a distinctive EAM environment at 
Orpheus Island. Furthermore, it appears that Harpacticoida 
and Ostracoda are abundant EAM taxa in all locations, 
therefore it is the paucity of Gastropoda and Polychaeta 
at the Turtle Islands and Lizard Island locations that most 
clearly drove the distinctly different ordination groups. 
Future analyses that incorporate a finer taxonomic resolu-
tion, particularly of these four Orders (Gastropoda, Harpac-
ticoida, Ostracoda and Polychaeta), may provide greater 
detail in regards to how families, genera or species respond 
to specific environmental conditions, or how the abundance 
of specific trophic categories may vary.

Although the sediment volumes were not significantly 
different among locations, it is likely that it was the com-
position (i.e. particle size or nutrient profiles) rather than 
volume, per se, that most heavily influenced the abun-
dance of certain taxa and thus, community composition. 
In this regard, the effect of cyclonic activity on the GBR 
may also be important. Cyclones subject the reef to sub-
stantial hydrodynamic action, causing resuspension and 
flushing of sediment from the reef, especially in shal-
low waters (Wolanski et  al. 2005). As the majority of the 
fringing reef of Orpheus Island is less than 10  m depth, 
extensive resuspension and removal of sediment from the 
reef crest during cyclones is likely. Additionally, extensive 
flooding is often associated with cyclones, which increases 
the amount of terrigenous material being flushed out into 
the GBR lagoon. There is a strong possibility that the sedi-
ment profile at Orpheus Island observed in the present 
study was influenced by the combined effect of Cyclone 
Tasha’s coastal flooding (December 2010) and Cyclone 
Yasi’s wind-generated waves (February 2011). Nutrients 
and sediments previously flushed into the GBR lagoon 
may have been resuspended and re-released by the cyclonic 
events (Gagan et al. 1987, 1990; Russ and McCook 1999), 
causing an increase in the availability of primary produc-
ers and subsequently the abundance of primary consumers 
in the EAM cryptofauna at Orpheus Island. Furthermore, 
sediments that were previously established within the EAM 
may have been relocated due to major wave action (Wolan-
ski et  al. 2005). Physical disturbance of the cryptofauna 
itself is not expected to have a great impact on the popu-
lations, as these small organisms are known to recover to 
pre-disturbance abundances in <24 h (Sherman and Coull 
1980; Johnson et al. 2007).

While the effect of sediment and dissolved nutrients 
on corals, algae and cryptofauna are well documented on 
faunal communities, knowledge of the impact of sediment 
and nutrients on the EAM is in its infancy. The apparent 
sensitivity of most cryptofauna to sediment emphasises the 
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potential of natural and human-induced modification of 
sediment and water quality to impact coastal ecosystems. 
Although the EAM is increasingly recognised as an impor-
tant contributor to reef processes in terms of productivity of 
detritus and algae (Klumpp and McKinnon 1992; Wilson 
et al. 2003; Bonaldo and Bellwood 2011), the present study 
provides the first, preliminary, account of the cross- and 
along-shelf variation in the cryptofauna of the EAM. Data 
presented herein provides a baseline by which to compare 
the condition of EAM communities in the respective loca-
tions. The present study indicates that EAM cryptofaunas 
are not uniform across the GBR and that particulate and 
dissolved nutrient input, sediment loads and position rela-
tive to catchment areas may be more important than shelf 
position in shaping cryptobenthic communities.
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