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contribution of juvenile turtles of Atlantic and Mediter-
ranean origin to each foraging ground. A decreasing pro-
portion of Atlantic juveniles was detected along the main 
surface current entering the Mediterranean, with a high 
prevalence of turtles from eastern Florida in the Algerian 
basin and lower numbers elsewhere. In regard to the turtles 
of Mediterranean origin, juveniles from Libya prevailed in 
central and western Mediterranean foraging grounds other 
than the Algerian basin. Conversely, the Adriatic Sea was 
characterised by a large presence of individuals from west-
ern Greece, while the southern Levantine Sea was inhab-
ited by a heterogeneous mix of turtles from the eastern 
Mediterranean rookeries (Turkey, Lebanon and Israel). 
Overall, the distribution of juveniles may be related to sur-
face circulation patterns in the Mediterranean and suggests 
that fisheries might have differential effects on each popu-
lation depending on the overlap degree between foraging 
and fishing grounds.

Abstract  Loggerhead turtles nesting in the Mediter-
ranean Sea exhibit remarkable genetic structuring. This 
paper tests the hypothesis that young loggerhead turtles 
from different rookeries do not distribute homogeneously 
among the major Mediterranean foraging grounds, due 
to a complex pattern of surface currents. We extracted 
long fragments of mitochondrial DNA from 275 stranded 
or bycaught juvenile turtles from six foraging grounds 
(Catalano-Balearic Sea, Algerian basin, Tyrrhenian Sea, 
Adriatic Sea, northern Ionian Sea and southern Levantine 
Sea). We used a Bayesian mixed-stock analysis to estimate 
the contributions from rookeries in the Mediterranean, 
the North-west Atlantic and Cape Verde to the studied 
foraging grounds. Differences were found in the relative 
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Introduction

Great migrations are often found in the animal kingdom 
and at very different scales (Hoare 2009). By migrating, 
species have adapted to increase their fitness and repro-
ductive success for millions of years, but nowadays many 
anthropogenic threats affect populations at their origin, 
destination and along migratory corridors. Only by under-
standing the distribution of these migratory species and the 
overlap with anthropogenic threats will conservation be 
possible.

Sea turtles are among these highly migratory species, 
undertaking long-distance journeys sometimes spanning 
entire oceans (Bolten 2003; Plotkin 2003). One of the best-
known oceanic migrators is the loggerhead turtle (Caretta 
caretta), distributed in all tropical and warm-temperate 
areas and the most abundant sea turtle in the Mediterra-
nean Sea (Broderick et  al. 2002; Casale and Margaritou-
lis 2010). Loggerhead turtles of different origins coexist 
in this area, as juveniles from western Atlantic rookeries 
share foraging grounds with those clutched within the 
Mediterranean (Laurent et  al. 1993, 1998; Bowen et  al. 
2003; Carreras et al. 2006, 2011). Small Atlantic juveniles 
enter the Mediterranean Sea through the Strait of Gibral-
tar during their pelagic stage and remain there until they 
are large enough to swim against the strong and permanent 
eastward current of the strait (Revelles et al. 2007a; Eckert 
et al. 2008). During this period, juvenile turtles of Atlan-
tic origin use the same foraging grounds as juveniles born 
in Mediterranean rookeries but rarely interbreed (Carre-
ras et  al. 2011), maintaining isolation between these two 
genetically distinct Regional Management Units (RMU; 
Wallace et al. 2010).

The distribution of juvenile loggerhead turtles of 
Atlantic and Mediterranean origin in the Mediterranean 
Sea has been widely studied through the use of satellite 
telemetry (Cardona et  al. 2005; Bentivegna et  al. 2007; 
Revelles et  al. 2007b; Cardona et  al. 2009; Casale et  al. 
2013), mark recapture techniques (Margaritoulis et  al. 
2003; Casale et al. 2007; Revelles et al. 2008) and genet-
ics (Carreras et  al. 2006; Maffucci et  al. 2006; Casale 
et al. 2008; Saied et al. 2012; Garofalo et al. 2013). In the 

western Mediterranean Sea, juvenile turtles of Atlantic ori-
gin mainly inhabit foraging grounds off the North African 
coast and juvenile turtles of Mediterranean origin forage 
mainly along the European coasts (Carreras et  al. 2006). 
However, little is known about the distribution and propor-
tion of Atlantic juveniles in other areas within the Medi-
terranean Sea (Laurent et  al. 1998; Maffucci et  al. 2006; 
Casale et  al. 2008; Piovano et  al. 2011). Furthermore, 
nothing is known about the distribution of young turtles 
from the different nesting populations existing in the Med-
iterranean Sea (Carreras et al. 2007; Garofalo et al. 2009; 
Saied et al. 2012; Clusa et al. 2013).

The relative contribution of each rookery to specific for-
aging grounds can be studied through mixed-stock analysis 
(MSA; Grant et al. 1980). Previous research in the Medi-
terranean Sea has mostly used a ~380-bp fragment of non-
coding mitochondrial DNA (mtDNA) as the genetic marker 
for MSA (Laurent et  al. 1998; Maffucci et  al. 2006; Car-
reras et al. 2007; Casale et al. 2008; Carreras et al. 2011; 
Saied et al. 2012; but see Garofalo et al. 2013). However, 
the limited assignment power of this marker has precluded 
a fine-scale assessment of the contribution of Mediter-
ranean rookeries to the Mediterranean foraging grounds. 
A new set of primers has been developed (Abreu-Grobois 
et al. 2006), which amplifies a longer segment of the mito-
chondrial control region (815 bp) and hence increases the 
resolution of genetic structuring among the different nest-
ing areas (Monzón-Argüello et  al. 2010; Shamblin et  al. 
2012; Clusa et al. 2013). With this increase in the genetic 
resolution, origin assignment power of juveniles from 
Mediterranean foraging grounds is expected to improve at 
regional and fine-scale levels, potentially unveiling previ-
ously unknown distribution patterns.

Bycatch of juvenile turtles at their foraging grounds is 
one of the most significant anthropogenic threats for sea 
turtles in the Mediterranean Sea, with over 132,000 annual 
captures estimated in the area (Casale and Margaritou-
lis 2010; Casale 2011). The impact of fisheries bycatch 
depends on habitat use, type of fishing gear, fishing effort, 
abundance of the affected populations and origin of these 
populations (Wallace et al. 2008). Thus, fine-scale informa-
tion on the composition of bycatch in each fishing ground 
is essential for a proper impact assessment of turtle bycatch 
in the Mediterranean Sea.

This paper analyses the origin of juvenile loggerhead 
turtles from seven distinct foraging grounds within the 
Mediterranean Sea through a mixed-stock analysis with 
longer fragments of mtDNA with the aim to (1) describe 
the distribution of juveniles of Atlantic origin within the 
Mediterranean Sea (regional level), (2) unveil the use of 
Mediterranean foraging grounds by juveniles of Mediter-
ranean origin (fine-scale level), (3) understand the mecha-
nisms of such distributions and (4) evaluate the impact that 
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incidental bycatch in foraging grounds might have on nest-
ing populations.

Materials and methods

Sample collection

Tissue samples were taken from 275 stranded or 
bycaught juvenile loggerhead turtles from several devel-
opmental foraging grounds in the Mediterranean Sea 
between 2002 and 2012 (Table  1). Only turtles smaller 
than 69 cm curved carapace length (CCL) were sampled, 
as this is the average minimum size of nesting females 
in the Mediterranean (Margaritoulis et al. 2003) and tur-
tles of Atlantic origin become adults at a much larger size 
(Piovano et  al. 2011). Sampling was designed to ensure 
coverage of several juvenile foraging grounds within the 
major sub-basins in the region (Fig.  1): the Catalano-
Balearic Sea (CAB), the Algerian basin (ALG), the Tyr-
rhenian Sea (TYR), the northern Adriatic Sea (NADR), 
the southern Adriatic Sea (SADR), the northern Ion-
ian Sea (ION) and the southern Levantine Sea (LEV). 

No samples could be obtained from the southern Ionian 
Sea or the Aegean Sea, areas also known to be used by 
juvenile turtles as foraging grounds (Margaritoulis et al. 
2003; Casale et al. 2013).

Muscle samples were collected from dead animals and 
stored in 95 % ethanol. Blood samples were taken from live 
animals and stored frozen.

Laboratory procedures

DNA from samples was extracted with the QIAamp 
extraction kit (QIAGEN®), following the manufacturer’s 
instructions. An 815-bp fragment of the mtDNA con-
trol region was amplified by polymerase chain reaction 
(PCR) using the primer pair LCM15382 (5′-GCTTAAC 
CCTAAAGCATTGG-3′) and H950 (5′-GTCTCGGATT 
TAGGGGTTT-3′) (Abreu-Grobois et  al. 2006), following 
the protocols described in Clusa et al. (2013). All samples 
were sequenced in both forward and reverse directions to 
confirm variable sites on both strands of DNA on an ABI 
3730 automated DNA analyser at the Scientific-Technical 
Services at the University of Barcelona or at the Molecular 
Biology Service of the Stazione Zoologica Anton Dohrn.

Table 1   Absolute mtDNA haplotype frequencies found in the Medi-
terranean foraging grounds for juvenile loggerhead turtles: CAB (the 
Catalano-Balearic Sea), ALG (the Algerian basin), TYR (the Tyrrhe-

nian basin), NADR (the northern Adriatic Sea), SADR (the southern 
Adriatic Sea), ION (the northern Ionian Sea) and SLE (the southern 
Levantine Sea)

Total number of sampled turtles (n), number of turtles found dead (d), haplotype diversity (h) and nucleotide diversity (π) found in each foraging 
ground included at the bottom of the table. Mean standard deviations (±) included

CAB ALG TYR NADR SADR ION SLE

CC-A1.1 2 21 5

CC-A1.3 1 2 1 1

CC-A2.1 30 31 39 26 20 21 28

CC-A2.8 1

CC-A2.9 2 4 1 5

CC-A3.1 2 4 2 2 1 5 3

CC-A5.1 1

CC-A6.1 1

CC-A10.3 1

CC-A10.4 1

CC-A14.1 1 3

CC-A20.1 2

CC-A28.1 1

CC-A29.1 1

CC-A31.1 1

CC-A32.1 1

CC-A55.1 1

n 40 65 51 29 21 35 34

d 33 48 46 29 21 35 34

h 0.439 ± 0.098 0.668 ± 0.041 0.409 ± 0.084 0.197 ± 0.095 0.095 ± 0.084 0.613 ± 0.083 0.321 ± 0.101

π 0.0095 ± 0.0050 0.0248 ± 0.0123 0.0109 ± 0.0057 0.0002 ± 0.0004 0.0001 ± 0.0002 0.0010 ± 0.0008 0.0033 ± 0.0020
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Genetic structuring of foraging grounds

Sequences were aligned with BioEdit version 7.1.6 (Hall 
1999) and compared to the 815-bp haplotypes previously 
described for this species compiled by the Archie Carr 
Center for Sea Turtle Research of the University of Florida 
(ACCSTR; http://accstr.ufl.edu). The resulting fragment 
also contains the 380-bp fragment, traditionally used in 
molecular studies on marine turtles (Norman et al. 1994).

Our results of the northern Ionian Sea were compiled 
with haplotype frequencies previously published from the 
same area (Garofalo et al. 2013) in order to increase sample 
size. Pseudoreplication between these two sample sets was 
not expected as all the individuals in this region were found 
dead in both studies. Compilation of haplotype frequencies 
for the other foraging grounds also analysed in Garofalo 
et al. (2013) was not done as individual carapace sizes fell 
off the considered range for juvenile loggerheads (Margari-
toulis et al. 2003; Piovano et al. 2011).

Haplotype diversity (h; Nei 1987) and nucleotide 
diversity (π; Nei 1987) were estimated for each foraging 
ground using ARLEQUIN version 3.5 (Excoffier and Lis-
cher 2010) to analyse the genetic diversity of the sampled 
areas. Pairwise genetic distances (FST) between foraging 
grounds were calculated with the DnaSP version 5.10 soft-
ware package (Librado and Rozas 2009). The significance 
of genetic differentiation among these regions was assessed 
using Hudson’s nearest neighbour statistic (SNN) with 1,000 
permutations. Statistical significance when analysing mul-
tiple pairwise comparisons was evaluated with a modified 
false discovery rate (FDR) (Narum 2006). Pairwise genetic 
distances between foraging grounds (FST) were plotted 
with a principal coordinate analysis (PCoA) inferred with 
GenAlEx version 6.5 (Peakall and Smouse 2012).

Stock composition

A Bayesian mixed-stock analysis (MSA) was used to 
assess the composition of each foraging ground as imple-
mented in Bayes (Pella and Masuda 2001). This analysis 
estimates the proportion of individuals in each foraging 
ground coming from different rookeries. We used a base-
line with a total of 23 rookeries (Supplementary Table 1) 
analysed in previous studies using the same primer pair 
(Garofalo et  al. 2009; Monzón-Argüello et  al. 2010; 
Yilmaz et al. 2011; Saied et al. 2012; Shamblin et al. 2012; 
Clusa et  al. 2013). This baseline included haplotype fre-
quencies from 10 Atlantic rookeries (Monzón-Argüello 
et  al. 2010; Shamblin et  al. 2012) and 13 Mediterranean 
rookeries (Garofalo et al. 2009; Yilmaz et al. 2011; Saied 
et  al. 2012; Clusa et  al. 2013), as loggerheads from both 
areas may potentially coexist in any of the Mediterra-
nean foraging grounds considered. A ‘many-to-many’ 
MSA (Bolker et  al. 2007) was not used in the present 
study because the genetic characterisation of Atlantic 
foraging grounds based on 815-bp mtDNA fragments is 
still unknown and this is needed for the ‘many-to-many’ 
approach.

Estimates on the size of each rookery (expressed as the 
mean number of nests per year; Supplementary Table  1) 
were included in the Bayesian approach as a weighting 
factor as suggested by previous studies (Bass et al. 2004). 
Iterated chains were only considered reliable when the 
Gelman–Rubin criterion was fulfilled (G-R shrink factor 
<1.2 for all parameters; Gelman et al. 1996). The analyses 
were undertaken twice: first considering two regional areas 
(Atlantic and Mediterranean; regional level) and second 
considering all rookeries as independent units (fine-scale 
level).

Fig. 1   Foraging grounds for 
juvenile loggerhead turtles 
sampled in this study: CAB (the 
Catalano-Balearic Sea), ALG 
(the Algerian basin), TYR (the 
Tyrrhenian basin), NADR (the 
northern Adriatic Sea), SADR 
(the southern Adriatic Sea), 
ION (the northern Ionian Sea) 
and SLE (the southern Levan-
tine Sea). Black lines represent 
surveyed coastlines

http://accstr.ufl.edu
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Results

Genetic structuring of foraging grounds

A total of 17 different haplotypes were found in the Medi-
terranean foraging grounds analysed (Table 1), all of them 
described in previous studies. Haplotype CC-A2.1 was the 
most dominant (70.9 %), followed by CC-A1.1 (10.2 %). 
Five haplotypes were exclusive to Atlantic rookeries (CC-
A1.1, CC-A1.3, CC-A5.1, CC-A10.4 and CC-A14.1), six 
exclusive to Mediterranean rookeries (CC-A2.8, CC-A2.9, 
CC-A6.1, CC-A29.1, CC-A31.1 and CC-A32.1) and three 
shared between Atlantic and Mediterranean rookeries (CC-
A2.1, CC-A3.1 and CC-A20.1). The remaining haplotypes 
(CC-A10.3, CC-A28.1 and CC-A55.1) have only been 
described in foraging grounds but have not been found in 
any rookery to date. However, their combined frequency 
was very low (1.1  %). Overall, haplotype and nucleotide 
diversities in foraging areas were highly variable (h range: 
0.095–0.668; π range: 0.0001–0.0248), with the Algerian 
basin presenting the highest haplotype (0.668 ± 0.041) and 
nucleotide (0.0248 ± 0.0123) diversities (Table 1).

Highly significant genetic structuring was found 
among the studied foraging grounds (global FST =  0.201, 
p  <  0.001). Because FST differentiation tests showed no 
statistical differences between the northern and southern 
Adriatic Sea (FST = −  0.037, p =  0.936), these two for-
aging grounds were pooled as Adriatic Sea (ADR) for fur-
ther analyses. The majority of pairwise statistically signifi-
cant differences occurred between the Algerian basin and 
the central eastern side of the Mediterranean (Table  2). 
PCoA ordination also reflected the deepest differentia-
tion between the Algerian basin and the rest of foraging 
grounds, explaining 93.89  % of the observed variation 
with the first two axes (Fig. 2). This analysis also separated 
the Catalano-Balearic Sea and the Tyrrhenian Sea from 
the rest, although only by the second axis, which in turn 
explained only 11 % of the total variation.

Stock composition

MSA results showed that the deep differentiation between 
the Algerian basin and the other foraging grounds reported 
above was due to the overwhelming prevalence of individu-
als of Atlantic origin in the Algerian basin (Fig. 3). Individ-
uals of Atlantic origin could be detected in all the foraging 
grounds considered but nowhere was the Atlantic contri-
bution as strong as in the Algerian basin (58.4 ± 11.2 %). 
Overall, the majority of the Atlantic contribution came 
from central eastern Florida and south-eastern Florida 
(CEF and SEF; Supplementary Table 2). All the other for-
aging grounds studied hosted mainly Mediterranean indi-
viduals, with the strongest Mediterranean contribution 
(Fig. 3) found in the northern Ionian Sea (96.4 ±  3.6 %) 
and the Adriatic Sea (93.6 ± 16.2 %).

Table 2   Genetic distances (FST) among Mediterranean foraging grounds for juvenile loggerhead turtles (below diagonal) and SNN significance p 
values (above diagonal)

CAB (the Catalano-Balearic Sea), ALG (the Algerian basin), TYR (the Tyrrhenian basin), ADR (the Adriatic Sea), ION (the northern Ionian 
Sea) and SLE (the southern Levantine Sea)

* Significant SNN p values after FDR correction for a threshold of α = 0.05 (p < 0.015)

CAB ALG TYR ADR ION SLE

CAB 0.032 0.660 0.037 0.100 0.492

ALG 0.194 0.006* <0.001* <0.001* <0.001*

TYR −0.019 0.164 0.022 0.005* 0.270

ADR 0.071 0.379 0.099 0.002* 0.422

ION 0.058 0.364 0.088 0.040 0.062

SLE 0.012 0.316 0.036 −0.002 0.003

Fig. 2   Principal coordinate analysis based on genetic distances 
(FST) between juvenile loggerhead turtles in Mediterranean forag-
ing grounds. Percentage of variation explained by each coordinate 
included in brackets. Foraging ground acronyms as shown in Table 2
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Results based on unclustered rookeries (Fig.  4, Sup-
plementary Table  2) showed that juveniles from Mediter-
ranean rookeries were not homogenously mixed in the 
Mediterranean Sea, with major differences between adjoin-
ing foraging grounds. While the Adriatic Sea was inhab-
ited by a high proportion of turtles from western Greece 
(57.8 ±  33.3  %), the northern Ionian Sea hosted individ-
uals mainly from Misrata in Libya (70.4 ±  34.9 %). The 
Tyrrhenian Sea also hosted mainly individuals from Mis-
rata (47.4  ±  31.3  %), but there was also relevant contri-
bution from Calabria (14.5  ±  12.5  %). Juvenile turtles 
from Misrata (38.6  ±  29.1  %) and from western Greece 
(31.3 ± 23.7 %) had a similar abundance in the Catalano-
Balearic Sea. Finally, the southern Levantine Sea showed 
a particularly different composition as this hosted a high 

proportion of individuals from the easternmost rooker-
ies in the Mediterranean Sea: Israel, Lebanon and Tur-
key (Supplementary Table  2). However, their contribu-
tions were unequal and western Turkey was the source of 
28.4 ± 36.6 % of its turtles in comparison with eastern Tur-
key or Israel and Lebanon (~10 % each).

Discussion

The contribution of different nesting beaches to any par-
ticular juvenile foraging ground will depend on the size 
of the population nesting at each beach and the pattern of 
surface currents connecting these beaches with the forag-
ing ground (Bowen and Karl 2007; Hays et al. 2010). The 
largest nesting aggregation of loggerhead turtles in the 
North Atlantic is found along the coasts of North America 
(Ehrhart et  al. 2003) and is connected with the European 
coasts by the Gulf Stream (Carr 1986; Bolten et al. 1998). 
Furthermore, the negative water balance of the Mediterra-
nean Sea generates a permanent eastward flow of Atlantic 
water at the Strait of Gibraltar (Millot and Taupier-Letage 
2004), thus connecting the Mediterranean with the Gulf 
Stream. The Cape Verde Archipelago hosts the second larg-
est nesting aggregation in the North Atlantic (Marco et al. 
2012), but is connected with northern South America by 
the North Equatorial Current rather than with the Mediter-
ranean Sea (Mansfield and Putman 2013). In this scenario, 
it is hardly surprising that most of the juvenile loggerhead 
turtles found in the foraging grounds of the eastern Atlantic 
and the south-western Mediterranean had a North Ameri-
can origin, with only a few juveniles coming from Cape 
Verde (Monzón-Argüello et al. 2009, 2010; Carreras et al. 
2011; this study).

Fig. 3   Atlantic (light grey) and Mediterranean (dark grey) juvenile 
contributions to each Mediterranean foraging ground estimated by 
MSA. Standard deviation bars included. Foraging ground acronyms 
as shown in Table 2

Fig. 4   Fine-scale rookery 
contributions (%) to Medi-
terranean foraging grounds 
estimated by MSA. Rookeries: 
ATL (Atlantic), MIS (Misrata, 
Libya), WGR (western Greece), 
WTU (western Turkey), LEV 
(Israel; Lebanon; Cyprus; 
eastern Turkey; middle Turkey; 
Dalaman and Dalyan, Turkey), 
OTHER (Sirte, Libya; Calabria, 
Italy; Crete, Greece). Stars 
show Mediterranean rookery 
locations
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Once into the Mediterranean Sea, Atlantic water flows 
initially eastwards along the slope of Northern Africa 
(Fig. 5) and then splits in two major currents, one flowing 
northwards into the Tyrrhenian Sea and the other flowing 
eastwards along the coast of Libya to the southern Levan-
tine Sea (Millot and Taupier-Letage 2004). Accordingly, the 
relative abundance of juvenile loggerhead turtles of Atlan-
tic origin decreases downstream, from the Algerian basin to 
the Adriatic Sea (Carreras et al. 2006; Maffucci et al. 2006; 
this study). However, the contribution of Atlantic rooker-
ies to the Algerian basin reported here is lower than that 
detected in previous studies (Carreras et al. 2006; Carreras 
et  al. 2011). This is because the longer mtDNA fragment 
allowed the differentiation of the Libyan CC-A2.9 haplo-
type from the widespread CC-A2.1 haplotype, something 
impossible with the short fragment. Thus, some of the tur-
tles occurring in the Algerian basin and previously consid-
ered of Atlantic origin come actually from Libya.

Conversely, the occurrence of turtles of Atlantic ori-
gin in the eastern Mediterranean is higher than previously 
reported. This is likely to be a consequence of analysing 
only turtles shorter than 69 cm CCL, as turtles of Atlantic 
origin migrate back to the Atlantic at an average length of 
58.8 cm CCL (Revelles et al. 2007a), and hence, the pro-
portion of turtles of Atlantic origin in any foraging ground 
will decline when larger turtles are considered. Casale et al. 
(2008), on the basis of data from Laurent et al. (1998), esti-
mated that only 11 % of the turtles in the southern Levan-
tine Sea had an Atlantic origin, whereas our MSA results 
based on long fragments indicate a much higher propor-
tion (20 %). It should be noted that the turtles sampled by 
Laurent et al. (1998) ranged in size from 49.4 to 86.3 cm 
CCL, whereas here only turtles shorter than 69  cm have 
been considered. This might also explain why the propor-
tion of turtles of Atlantic origin present in the Adriatic Sea 

is slightly larger than that previously estimated on the basis 
of a wider size range (Giovannotti et al. 2010; Yilmaz et al. 
2012).

Another methodological difference is the use of popu-
lation size as a weighting factor for the MSA (Bass et al. 
2004), while other studies in the region did not use it (Maf-
fucci et al. 2006). Thus, an underestimation of the contri-
bution of juveniles from Atlantic rookeries could have also 
occurred in these previous studies as they did not con-
sider the much larger number of nests per year recorded in 
Atlantic beaches (ca. 100,000 nests per year; SWOT 2007) 
compared to the Mediterranean (ca. 7,200 nests per year; 
Casale and Margaritoulis 2010).

The surface circulation pattern might also explain the 
distribution patterns of turtles from Mediterranean nest-
ing beaches to the different sub-basins. The prevalence in 
the Adriatic Sea of turtles from western Greece might be 
explained by the pattern of water entering the Adriatic Sea 
having previously flowed past the coast of western Greece 
(Fig.  5; Millot and Taupier-Letage 2004). Likewise, the 
prevalence of turtles from Libyan beaches in the Ionian 
Sea may be linked to the mesoscale eddies present in the 
Ionian Sea (Robinson et al. 2001; Hamad et al. 2006; Hays 
et al. 2010), which might trap the hatchlings and juveniles 
swimming off Libya in the sub-basin and prevent disper-
sal across the eastern Mediterranean (Fig. 5). A proportion 
of juveniles from Libya might also be trapped in coastal 
systems and pushed by a westward current to the Algerian 
basin, the Catalano-Balearic Sea and the Tyrrhenian Sea, 
where its contribution is also relevant. This westwards dis-
persal perfectly fits the one suggested by Hays et al. (2010) 
for hatchlings drifting in the Mediterranean Sea.

Nevertheless, if the hypothesis that currents determine 
the observed distribution patterns of juveniles is true, a 
higher proportion of juvenile turtles from western Greece 

Fig. 5   Main surface circulation 
patterns of the Mediterranean 
Sea. Thin dashed lines show 
transient gyres and eddies. 
Adapted and modified after 
Robinson et al. 2001 and Millot 
and Taupier-Letage 2004
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would be expected to occur in the northern Ionian Sea, as 
hatchlings swimming off western Greece encounter a water 
current bifurcation, with one current flowing northwards 
into the Adriatic Sea and another one flowing south-east-
wards (Fig. 5; Hays et  al. 2010). Accordingly, half of the 
adult turtles departing from western Greece migrate to the 
Ionian Sea after nesting and the other half to the Adriatic 
Sea (Zbinden et al. 2011; Schofield et al. 2013). In this sce-
nario, the low estimated contribution of western Greece to 
the foraging grounds in the northern Ionian Sea might be 
caused by two non-excluding processes. On the one hand, 
currents flowing off western Greece fluctuate seasonally 
(Hays et al. 2010) and most hatchlings might emerge when 
northward flowing prevails, thus drifting to the Adriatic 
Sea. This hypothesis could be tested combining particle-
tracking modelling with detailed data about the seasonal-
ity of hatchling emergence at rookeries in western Greece. 
Expanding this kind of studies to the remaining rookeries 
in the Mediterranean would improve our understanding of 
hatchling dispersal within the whole basin. On the other 
hand, a very large nesting population might exist in Libya 
(Laurent et al. 1999), which might result in the dilution of 
contributions from western Greece. Although recently pub-
lished figures do not support that claim (Casale and Mar-
garitoulis 2010), nest numbers in Libya are poorly known 
due to political unrest and further research in the region is 
urgently needed.

The turtles considered in this study ranged from 30 to 
69  cm CCL and hence were capable of dispersing inde-
pendently of prevailing currents within the Mediterranean, 
except in the Strait of Gibraltar, the Alboran Sea and the 
Algerian Stream (Revelles et  al. 2007a). However, the 
results reported here revealed genetic structuring consist-
ent with the distribution of water masses and the pattern of 
surface currents. There is increasing evidence that young 
turtles become imprinted by the habitats they visit during 
their developmental migration, which in turn determines 
the habitats where they will settle and forage as adults 
(Hatase et al. 2002; Hays et al. 2010; Fossette et al. 2010; 
Eder et al. 2012). Turtles of Mediterranean origin begin set-
tlement at approximately 40 cm CCL (Casale et al. 2008), 
which suggests that the genetic structuring here reported 
might emerge from such a process as imprinting. This, 
however, might not apply to turtles of Atlantic origin, as 
their natal rookeries are more than 6,000  km away from 
the Mediterranean foraging grounds they used as juveniles. 
This results in a remarkable trade-off between philopatry 
and habitat knowledge that finally leads them to leave the 
Mediterranean once they are large enough to overcome the 
currents in the Alboran Sea and the Strait of Gibraltar and 
settle in the western Atlantic (Bowen et al. 2005). Accord-
ingly, adult turtles of Atlantic origin are highly scarce in the 
Mediterranean Sea.

The contributions from specific rookeries to Mediter-
ranean foraging grounds described here are important not 
only for a better understanding of the biology of this spe-
cies but also for its conservation. Fisheries bycatch stands 
as one of the major anthropogenic factors threatening 
sea turtle populations worldwide (Lewison et  al. 2004; 
Lewison and Crowder 2007, Wallace et  al. 2008), and 
available evidence indicates that tens of thousands of tur-
tles are bycaught incidentally every year around the Medi-
terranean Sea (Carreras et  al. 2004, Lewison et  al. 2004; 
Alessandro and Antonello 2010; Casale 2011; Álvarez 
de Quevedo et  al. 2010, 2013). However, the impact of 
these high levels of bycatch is unevenly distributed among 
nesting areas, according to the heterogeneous admixture 
revealed by genetic markers in this study. For example, 
bycatch in the western Mediterranean might be a threat 
for populations nesting in North America and in Libya, but 
less of a threat for those nesting elsewhere. Likewise, the 
Tyrrhenian Sea is an important foraging area for turtles not 
only from Libya but also from Calabria. Thus, bycatch in 
the Tyrrhenian Sea may directly impact the small nesting 
population of Calabria. Bycatch in the Adriatic Sea might 
primarily affect the population nesting in western Greece, 
whereas bycatch in the Levantine Sea might affect primar-
ily the populations nesting in Turkey, Lebanon and Israel. 
This shows that knowing the degree of overlap between 
fishing and foraging grounds is a key factor to protect spe-
cific populations nesting in the Mediterranean Sea.

Overall, the present study has revealed previously 
unknown distributions of Atlantic and Mediterranean juve-
nile turtles within the Mediterranean Sea at a regional and 
fine-scale level through the use of population genetics. We 
highlighted the importance of large studies comprising 
vast sampling areas (particularly in the case of migratory 
species) and the use of long fragments of mtDNA as these 
highly enhance genetic resolution. We have underlined 
MSA as a useful tool in conservation biology, and with it, 
we suggest that future management plans include updated 
genetic assessments of wild populations as a conservation 
method to unveil population structuring and life-stage-spe-
cific distributions.
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