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Abstract Two regions of the mitochondrial genome

(cytochrome oxidase I and ATPase 8–ATPase 6) were used

to examine the population genetic structure of New Zea-

land’s endemic abalone (Haliotis iris). Samples were col-

lected from 28 locations around New Zealand between

January 2005 and February 2008. At least four phylogeo-

graphic breaks were present and occurred across the

Chatham rise, in the western Cook Strait region, along

the southeast coast of the South Island, and at East Cape in

the North Island. Gene flow across the Chatham rise is

probably limited due to infrequent dispersal across large

geographic distances (*850 km), while factors limiting

gene flow around the North and South Islands are less

clear, and understanding these may require intense tem-

poral and spatial sampling in complex hydrographic

regions. High genetic diversity and weak genetic structure

may be a general feature of abalone potentially reflecting

large and/or ancient populations.

Introduction

The interaction between a variety of extrinsic and intrinsic

factors has been proposed to shape the genetic structure of

marine invertebrates with bipartite life histories (reviewed

in Palumbi 1994; Hellberg et al. 2002; Sponaugle et al.

2002). The biology of a species can help predict how it will

respond to a particular environment, while past and present

environmental features can help predict potential barriers

and corridors to gene flow. However, neither biology nor

New Zealand’s oceanography offer clear-cut predictions

for the genetic structure of New Zealand’s black-foot

abalone or paua (Haliotis iris).

Paua are long-lived marine gastropods that inhabit the

intertidal and subtidal rocky reefs surrounding mainland

and offshore islands and the Chatham Islands (Fig. 1). The

commercial and cultural importance of paua has warranted

much research regarding its biology. Paua are highly

fecund broadcast spawners with a larval duration under

10 days (Tong et al. 1992). Spawning events, larval sur-

vival, and juvenile settlement and recruitment are variable

and influenced by many abiotic and biotic factors (Poore

1973; Sainsbury 1982; Hooker and Creese 1995; McShane

and Naylor 1995; Naylor and McShane 1997; Naylor and

McShane 2001; Roberts et al. 2004; Phillips and Shima

2006).

The numerous factors affecting spawning, larval sur-

vival, and juvenile settlement and survival result in vari-

able recruitment over time and space, as observed by

Sainsbury (1982). Potentially, this could result in patterns

of genetic patchiness. On the other hand, the larvae are

considered passive and as a result can be influenced by the

local hydrodynamic environment (McShane 1992; Boho-

nak 1999). In general, population genetic research on

abalone species has found either panmixia or slight
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differentiation, which was detectable with highly variable

markers or a number of independent loci (e.g., Withler

et al. 2003; Hara and Sekino 2005; Gruenthal et al. 2007).

In several cases where pronounced differentiation was

detectable with mitochondrial markers, phylogeographic

breaks corresponded with present and past oceanography

(e.g., Evans et al. 2004; Imron et al. 2007).

New Zealand’s marine environment is complex.

Although New Zealand has six major offshore currents

(summarized in Laing and Chiswell 2003), coastal circu-

lation patterns are complicated with features like coastal

topography, upwelling, eddies, and river plumes that could

inhibit dispersal and/or promote local retention of larvae

(Sponaugle et al. 2002; Schiel 2004). Arguably, the two

most persistent features associated with genetic patterns of

coastal marine invertebrates around New Zealand are (1)

the large geographic distance (about 850 km) between the

Chatham Islands and the mainland (North and South

Islands; e.g., Goldstien et al. 2009) and (2) the Cook Strait

region, an area encompassing the waterway separating the

North and South Islands (e.g., Apte and Gardner 2002;

Waters and Roy 2004; Goldstien et al. 2006; Veale 2007).

Although gene flow between the Chatham Islands and

the mainland is most likely limited due to isolation by

distance (Chiswell 2009), factors limiting gene flow across

the Cook Strait region are unknown. Cook Strait was

submerged 10,000–5,000 ya with the rise of sea levels at

the end of the last ice age (Stevens et al. 1995). The

present-day hydrography around the Cook Strait region

(Fig. 1) is complex and involves the convergence of three

offshore currents that vary in temperature and salinity

(Heath 1970; Heath 1985), river discharge (Harris 1990),

strong tidal flows and large amounts of tidal mixing (Heath

1978; Hume et al. 1992), and upwelling (Heath 1972;

Bowman et al. 1983; Barnes 1985; Shirtcliffe et al. 1990).

Potentially, present-day upwelling could limit larval dis-

persal and, therefore, gene flow (Star et al. 2003; Waters

and Roy 2004; Veale 2007). Unfortunately whether

upwelling really limits larval dispersal is debatable

(Roughgarden et al. 1988; Poulin et al. 2002; Shanks and

Brink 2005), and the upwelling hypothesis also does not

reconcile well with attempts to date genetic disjunctions

across the Cook Strait region (Apte and Gardner 2002;

Goldstien et al. 2006).

Previous genetic studies on paua support differentiation

between the Chatham Islands and the mainland (Frusin

1982; Smith and McVeagh 2006). However, genetic

structure around the mainland remains inconclusive, in part
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Fig. 1 Cook Strait region and sampling locations. The box is an

enlargement of the Cook Strait region. Shown are areas of upwelling

proposed by Veale (2007), locations mentioned in text, and currents

around the Cook Strait region. The flow and direction of the East

Cape and Southland Currents are from Fig. 4 in Barnes (1985). The

map of New Zealand shows the 28 sampling localities listed in

Table 2. The location of the Chatham Islands sample (OCH; 44.01� S,

176.21� W) is not to scale and lies about 850 km off the east coast of

New Zealand. The dashed lines labeled A, B, C, and D mark areas of

genetic discontinuities identified using Barrier 2.2 (Manni et al.

2004). Thickness of the dashed lines denotes the percentage of

resampled matrices identifying the barrier (supplementary infor-

mation)
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due to a limited number of samples (\4), which do not

span the geographic range of paua, and small sample sizes

(\11). To elucidate paua genetic structure further, this

study analyzed variation in two regions of the mitochon-

drial genome (COI and ATPase8–ATPase6) for samples

from 28 locations around New Zealand to identify if

genetic structure exists and, if it does, to determine the

pattern, specifically genetic differentiation between the

Chatham Islands and the mainland and between the North

and South Islands.

Materials and methods

Samples

Between January 2005 and February 2008, foot or mantle

tissue was collected from 13–24 paua from 28 locations

(Fig. 1, Table 1). Paua were collected by a variety of

means, including confiscated illegal catch, commercial

catch, recreational catch, and scientific catch, and as a

result, different tissues were available for different sam-

ples. Individual paua varied in size and therefore age

(Naylor et al. 2007). All individuals were mature (i.e. had

shell lengths C44 mm; Hooker and Creese 1995); how-

ever, not all individuals were larger than the minimum

legal catch size (C125 mm).

DNA extraction, PCR amplification, and sequencing

DNA was extracted from individuals collected at 27 of the 28

sites using Qiagen’s DNEasy� Blood & Tissue Kit. Abalone

DNA from the remaining site (OPT) was extracted using a

modified LiCl protocol (Gemmell and Akiyama 1996). Two

regions of the mitochondrial genome were amplified: cyto-

chrome oxidase I (mtCOI) and ATPase8–ATPase6. These

Table 1 Locations, collection

dates, and sample sizes for

collection sites shown in Fig. 1

a Geographic coordinates are

approximations

Sample Location Latitudea Longitudea Collection date N

AHU Ahu Ahu Rd -39.117159� 173.929819� 16 Oct 2005 22

CBL Cape Campbell -41.741920�
-41.734349�
-41.725371�

174.275685�
174.276258�
174.273675�

15 Oct 2005 12

CCB Colac Bay -46.422131� 167.836311� 13 Jan 2005 20

CHN Charleston -41.912494� 171.423681� 28 Nov 2007

5 Dec 2007

20

CRW Cape Runaway -37.547890� 178.166130� 2 Nov 2005 19

DBL Doubtless Bay -34.849000� 173.470007� 2 May 2005 15

DSD Doubtful Sound -45.269575� 166.889359� 12 Jan 2005 14

EAI East Island -37.690435� 178.577756� 19 Dec 2005 24

GLN Raglan -37.822233� 174.800314� 26 Jun 2006 20

GOB Goose Bay -42.482263� 173.529256� 8 Jan 2005 19

IHM Pihama -39.521503� 173.913828� 16 Oct 2005 20

JCH Cascade Point -44.008238� 168.365705� 6 Jul 2007 20

MAT Castle Point -40.882115� 176.224620� 18 Jan 2005 21

MHP Mahia Beach -39.085833� 177.865000� 14 Feb 2008 20

MTB Magnet Bay -43.841655� 172.738753� 6 Feb 2005 22

NPT Nugget Point -46.481505� 169.755918� 13 Jan 2005 20

OCH Chatham Island -45.005556� 176.455556� 6 Dec 2005 13

OLB Tolaga Bay -38.378430� 178.342005� 19 Jan 2006 20

OPT Opito Point -36.716311� 175.817936� 10 Apr 2006 19

PHD Port Hardy -40.750326� 173.887572� 29 Nov 2005 20

SPB Spirits Bay -34.417460� 172.855740� 16 Apr 2006 21

STR Stewart Island -46.705408� 167.716418� 14 Nov 2006 15

TCL Tory Channel -41.205550� 174.305633� 27 Sep 2006 20

TIM Timaru -44.375875� 171.252545� 7 Jan 2006 23

TSK Taylor’s Mistake -43.585165� 172.789056� 11 Dec 2005 20

WAI Waipatiki -39.300333� 176.978333� 14 Feb 2008 20

WLG Wellington -41.337139� 174.792826� 19 Jul 2006 20

WST West Haven -40.565063� 172.553310� 29 Nov 2005 15

Mar Biol (2011) 158:1417–1429 1419

123



are separated by 1526 bp in H. rubra (Maynard et al. 2005).

Initially, a 581-bp fragment of mtCOI was amplified with

primers F1 and R1 (Metz et al. 1998). However, due to

inconsistent amplifications, two new internal mtCOI primers

(mtCOI_F2 (50-TTTAGGGGACGACCAACTGTA-30) and

mtCOI_R2 (50-TACGGTCGGTTAGGAGCATT-30)) were

designed for paua using Primer3 (Rozen and Skaletsky

2000). These modified mtCOI primers amplified a 540-bp

fragment. A 723-bp fragment of the ATPase8–ATPase6

region was amplified using primers COIIcons-F and H22-R1

(Maynard et al. 2005).

Both mtCOI and ATPase8–ATPase6 were amplified in

25 lL reaction volumes containing 1–40 ng of genomic

DNA, 200 lM of dNTPs, 0.4 lM of each primer, 1.5 mM

MgCl2, 1X NH4 Reaction Buffer (160 mM (NH4)2SO4,

670 mM Tris–HCl (pH 8.8 at 25�C), and 0.1% Tween-20),

and 0.5 units BIOTAQTM (Bioline). Thermal cycling pro-

files consisted of denaturation at 96�C for 2 min, 35 cycles

of 96�C/20 s, 55�C (mtCOI) and 60�C (ATPase8–ATP-

ase6)/30 s, 72�C/30 s (mtCOI) and 45 s (ATPase8–ATP-

ase6), and a final cycle elongation step at 72�C for 7 min.

Successful amplifications were purified according to man-

ufacturer’s instructions using either a vacuum method with

Eppendorf Perfectprep� PCR Cleanup 96 plates or a cen-

trifugation method with PALL� AcroPrepTM 96-well Filter

Plates.

Purified amplicons were directly sequenced with ABI

Prism� Big Dye� Terminator v. 3.1 Cycle Sequencing Kit

as per the manufacturer’s instructions but used at 0.125 the

suggested volume of Big Dye� Terminator. Sequence

products were purified using SephadexTM GS-50 gel fil-

tration (Amersham Bioscience) and run on an ABI3100

Genetic Analyzer at the University of Canterbury.

Sequences were edited with SequencherTM 4.2.2 (Gene

Codes Corporation). Sequence alignment was done by

hand using Se-Al v2.0a11 (Rambaut 2002), and all variable

sites were confirmed by visual inspection of chromato-

grams. A total of 459 bp of mtCOI and 597 bp of ATP-

ase8–ATPase6 were obtained from 534 out of 538

individuals.

Analyses

The mitochondrial regions were concatenated giving a total

of 1056 bp for analyses. Sequence variation within samples

was assessed with standard molecular indices calculated in

Arlequin 3.5 (Excoffier et al. 2005). To evaluate similarity

and differences among haplotypes for each fragment, per-

cent divergences between haplotype pairs were calculated

using maximum likelihood settings in Paup* (Swofford

1998). Maximum likelihood parameters were established

separately for each mitochondrial region in jModelTest

(Guindon and Gascuel 2003; Posada 2008). According to

Akaike information criterion (Posada and Buckley 2004),

the most appropriate model of sequence evolution was the

Tamura and Nei (1993) model (TrN) with the proportion of

invariant sites (I) equal to 0.7800 for the mtCOI region and

the general time reversible model (GTR) with I equal to

0.5560 for ATPase 8–ATPase 6 region.

Haplotype networks were constructed to visually

examine similarities and differences among haplotypes

(Posada and Crandall 2001). Due to differences among

network-building algorithms (Cassens et al. 2005), rela-

tionships between haplotypes were inferred with three

frequently used network-building algorithms: median-

spanning (Excoffier and Smouse 1994; implemented in

Arlequin 3.5, Excoffier et al. 2005), median-joining (Ban-

delt et al. 1999; implemented in Network 4.2.0.1, Fluxus

Technology Ltd.), and statistical parsimony (Templeton

et al. 1992; implemented in TCS, Clement et al. 2000).

Differences among haplotype networks were minor, and

thus, only the statistical parsimony network is presented.

To test for the presence of a genetic split between (1) the

Chatham Islands and the mainland (North and South

Island), (2) the North Island and the South Island, and (3)

the areas north and south of the upwelling regions (Fig. 1),

analyses of molecular variance (AMOVAs), based on the

number of pairwise differences, were employed (Excoffier

et al. 1992). AMOVAs were calculated in Arlequin 3.5

(Excoffier et al. 2005), and significance tests used 16002

permutations. To identify alternative patterns, associations

between genetic distance (UST) and both geographic dis-

tance and spatial geometry were examined. First, isolation

by distance was tested using a Mantel test (Mantel 1967)

calculated in Arlequin 3.5 (Excoffier et al. 2005). Coastal

distances between locations were determined using Arc-

MapTM 9.1 (Environmental Systems Research Institute,

Inc.) and GoogleTM Earth 5.2. Second, barriers represent-

ing areas of large genetic discontinuities between sampling

locations were identified using Monmonier’s (1973) max-

imum difference algorithm implemented in Barrier 2.2

(Manni et al. 2004). Barrier 2.2 connects adjacent sampling

locations using Delaunay triangulation. The default trian-

gulation was manipulated as much as possible to reflect

sampling along the entire coast of the North and South

Islands (supplementary information). To evaluate the

robustness of the predicted barriers, Monmonier’s (1973)

maximum difference algorithm was also run on 100

resampled distance matrices. SEQBOOT (Felsenstein

2004) was used to generate 100 bootstrap replicates of the

original data set, and these replicates were used to create

100 genetic distance matrices in Arlequin 3.5 (Excoffier

et al. 2005).

Additional information about processes affecting

genetic structure was inferred through mismatch distribu-

tions and neutrality tests (implemented in Arlequin 3.5,
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Excoffier et al. 2005). Mismatch distributions compared

the observed numbers of pairwise differences between

haplotypes with simulated data under two models of

expansion: pure demographic expansion (Slatkin and

Hudson 1991; Schneider and Excoffier 1999) and spatial

expansion with migration (Ray et al. 2003; Excoffier

2004). The significance of the sum of squared deviations

between the observed and expected mismatch distributions

and the raggedness index (Harpending et al. 1993) were

assessed with 10,000 parametric bootstraps. The presence

of geographic structure within all samples and within

groups limited the application of mismatch distributions to

only the sampling locations. Tajima’s D (Tajima 1989) and

Fu’s Fs (Fu and Li 1993) were used to assess sequence

neutrality and mutation-drift equilibrium. Tajima’s

D examines the relationship between the number of seg-

regating sites and nucleotide diversity to test for deleterious

alleles and balancing selection under the assumption of

population equilibrium (Tajima 1989), while Fu’s Fs tests

for the excess of recent mutations (indicative of population

growth, hitchhiking, and background selection) via the

relationship between the mean number of nucleotide dif-

ferences and the number of alleles (Fu 1997).

Results

A 459-bp fragment of mtCOI and a 597-bp fragment of

ATPase8–ATPase6 were amplified in 534 paua from the

28 locations (GenBank accession numbers for unique

mtCOI sequences: JF441275-JF4411316 and unique

ATPase8–ATPase6 sequences: JF4411317-JF4411424).

The mtCOI fragment and the ATPase8–ATPase6 frag-

ment corresponded to base pairs 3504–3612 and base

pairs 5582–6178, respectively, in the H. rubra mito-

chondrial genome (ACCN: NC_0059400). As separate

fragments, ATPase8–ATPase6 was more variable than

mtCOI: it had a larger number of polymorphic sites,

higher haplotype diversity, and greater nucleotide diver-

sity (supplementary information). The mtCOI contained

33 polymorphic sites of which 13 were parsimony infor-

mative, while ATPase8–ATPase6 contained 96 polymor-

phic sites of which three had indels and 40 were

parsimony informative. Percent pairwise divergence

between haplotypes calculated using a maximum likeli-

hood approach ranged from 0.22–1.31% for mtCOI and

0.17–2.02% for ATPase8–ATPase6.

The concatenated sequences (bp = 1056) contained

129 polymorphic sites (122 transitions, 9 transversions, 3

indels) of which 53 were parsimony informative. The

overall haplotype diversity was 0.900 ± 0.008; other-

wise, haplotype diversity ranged from 0.5824 (DSD)–

0.9810 (SPB) within sampling locations (supplementary

information). The overall nucleotide diversity was

0.004 ± 0.002, while nucleotide diversity ranged from

0.001 (MTB)–0.006 (IHM) within sampling locations

(Table 2).

A total of 147 haplotypes were identified (Fig. 2). Only

23 haplotypes were shared among locations, and the

remaining 124 haplotypes were private. Four haplotypes

(numbered 9, 11, 18, and 19, Fig. 2) were identified in 50

or more individuals. In general, haplotypes were closely

related as expected according to the low nucleotide

diversity.

Table 2 AMOVA results

* Indicates significance after

Bonferroni correction

(p = 0.008)

Groups UST USC UCT

[All] 0.039

p \ 0.001*

[Mainland]

[OCH]

0.155

p \ 0.001*

0.032

p \ 0.001*

0.127

p = 0.033

[Mainland] 0.033

p \ 0.001*

Split across Cook Strait

[North Island]

[South Island ? PHD ? TCL]

0.046

p \ 0.001*

0.018

p = 0.012

0.028

p \ 0.001*

Split across upwelling regions

[North Island ? PHD ? TCL]

[South Island]

0.046

p \ 0.001*

0.019

p = 0.011

0.028

p \ 0.001*

Split according to Barrier 2.2 results

[AHU, IHM, GLN, SPB, DBL, OPT, CRW]

[EAI]

[OLB, MHP, WAI, MAT, WLG, CBL, TCL, PHD, WST, CHN,

JCH, DSD, CCB, STR, NPT, TIM, MTB, TSK, GOB]

0.058

p \ 0.001*

0.009

p = 0.136

0.050

p \ 0.001*
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Significant population genetic structure existed among

all samples (UST = 0.039, p \ 0.001). Grouping the loca-

tions according to structures proposed by Smith and

McVeagh (2006) showed that Chatham Islands paua were

distinct from North and South Island paua (UCT = 0.127,

p = 0.033; Table 2). In addition, the frequency of the most

common shared haplotypes (9, 11, 18, and 19) differed

between the Chatham Islands and the mainland samples.

Haplotypes 9, 11, and 19 were common, and haplotype 18

was rare in the mainland samples, while haplotype 18 was

as common as haplotype 9, 11, and 19 in the Chatham

Islands sample (Fig. 2).

After removing the Chatham Islands sample, significant

population genetic structure still existed among the main-

land samples (UST = 0.033, p \ 0.001; Table 2). To test

whether this mainland genetic structure was related to the

Cook Strait region, further AMOVAs tested two different

divisions around Cook Strait: (1) a split across Cook Strait

and (2) a split across upwelling regions as proposed in

Veale (2007). Both scenarios resulted in similar significant

UCT indices (Table 2). However, significant differentiation

still occurred between samples within groups (USC). In

both cases, the variance within sampling locations was

around 95%.

To interpret the AMOVA results better, molecular

indices for the above groupings and pairwise comparisons

of UST were inspected (Table 3, Fig. 3). Noticeably, the

number of haplotypes, the number of private haplotypes,

and the haplotype diversities were larger for groups that

contained North Island samples (Table 3). In fact, haplo-

type diversities between northern and southern groups

differed by more than two standard deviations. The pro-

posed groups also differed in the frequency of the most

common shared haplotypes 9, 11, 18, and 19 (Fig. 2). For

example, haplotype 18 was absent at nine North Island

sampling locations, while it was only absent at one South

Island sampling location. The pairwise UST showed that

MTB and TIM (South Island), IHM and GLN (North

Island), and Chatham Islands were the most divergent

samples (Fig. 3). A larger proportion of significant com-

parisons (32%) occurred between North and South Island

samples than between samples within either island (19%

for the North Island and 18% for the South Island).

A Mantel test indicated that there was isolation by dis-

tance among all samples (r2 = 0.221, p = 0.019). This

was most likely due to the inclusion of the Chatham Islands

sample, and removing the Chatham Islands sample from

the test resulted in no significant relationship between

genetic divergence and geographic distance among main-

land samples (r2 = 0.141, p = 0.081). Among mainland

samples, isolation by distance was identified for North

Island paua (r2 = 0.280, p = 0.027) but not for South

Island paua (r2 = -0.131, p = 0.963).

At least four areas of genetic differentiation were con-

sistently found across the original data set and the 100

resampled matrices using Barrier 2.2 (Fig. 1 and supple-

mentary information; Manni et al. 2004). Area A separated

the Chatham Islands (OCH) from the east coast of the

South Island (MTB, TIM, GOB) and was identified first

(contained the maximum pairwise UST) in 100% of the

resampled matrices. Two other areas, B and C, were

identified among the top five potential barriers in C 98% of

the replicate data sets. Area B separated the southwest

coast of the North Island (IHM and AHU) from the

northwest coast of the South Island (WST and PHD), while

area C separated the southeast of the South Island (NPT)

from the east coast of the South Island (TIM). Area D

occupied the northeast corner of the North Island with

18

11

9

19

Fig. 2 Statistical parsimony network. The network was constructed

in TCS (Clement et al. 2000). Black represents South Island samples.

White represents North Island samples. Light gray represents South

Island samples (TCL and PHD) that are north of the upwelling areas

(Fig. 1). Dark gray represents Chatham Island (OCH) individuals.

Dashed lines represent indels and black tick marks represent missing

haplotypes
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potential barriers occurring between EAI and OLB (sup-

ported with 99% of the resampled matrices), OLB and

CRW (supported with 62% of the resampled matrices), and

CRW and EAI (supported with 51% of the resampled

matrices, supplementary information).

For comparison to groupings divided by Cook Strait, the

sampling locations were partitioned into three groups (1.

samples north of areas A and D, 2. samples south of areas

A and D, 3. EAI), based on the areas of genetic differen-

tiation predicted with Barrier 2.2 (Manni et al. 2004).

Analyses using this grouping showed significant differen-

tiation between groups (UCT) and no significant differen-

tiation within groups (USC, Table 2). Haplotype diversity

was larger for the group of sampling locations north of

areas A and D (Table 3), and common haplotypes 18 and

19 were absent from all sampling locations north of areas A

and D. No isolation by distance was detected in either

group.

Mismatch analyses of individuals grouped according to

sampling locations could not reject models of demographic

and range expansions. Modes were in the range of 0–4 and

7–9 pairwise differences, consistent with common haplo-

types (9, 11, 18 and 19) being either 1–2 or 7–9 mutations

apart (Fig. 2), and as a result, population parameters esti-

mated from the mismatch distributions varied. For

instance, coalescence time in mutational time units (s)

ranged from 0.313–9.852 for demographic expansions and

0.504–8.069 for spatial expansions (supplementary infor-

mation). Although mismatch analyses suggested patterns of

expansions, significance of Tajima’s D and Fu’s Fs varied

according to sampling location (supplementary informa-

tion). Tajima’s D and Fu’s Fs were negative and significant

when all individuals were treated as a single group and for

all North, South, and Chatham Island groupings (Table 3).

Given that the mismatch analyses for sampling locations all

supported models of expansions, and the large excess of

recent mutations indicated by large negative Fu’s Fs and

the star-shaped region of the haplotype network (Fig. 2),

these significant negative values could indicate population

expansion instead of selection on mtDNA.
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Fig. 3 Pairwise UST (below the diagonal) for 28 sampling locations

around New Zealand. Above the diagonal, a ? indicates p \ 0.05 and

an open circle (s) indicates significance after Bonferroni correction

(p = 0.00014). Samples are arranged first according to island and

then roughly north to south along the west coast and north to south

along the east coast of each island
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Discussion

Paua’s relatively short larval duration (Tong et al. 1992)

and passive larval stage (McShane 1992) suggested its

population genetic structure would be vulnerable to fea-

tures associated with population genetic structure identified

in other New Zealand coastal marine invertebrates (Ross

et al. 2009). Paua samples collected from around New

Zealand had highly significant but modest genetic struc-

ture. All AMOVAs resulted in significant structure, sug-

gesting that the Chatham Islands sample was different from

the mainland samples and the northern samples were dif-

ferent from southern samples. Monmonier’s maximum

difference algorithm identified additional potential genetic

breaks at the southeast of the South Island and the northeast

of the North Island.

The Chatham Islands vs. North and South Islands

The separation of the Chatham Islands sample from the

North and South Island samples was consistent with Smith

and McVeagh’s (2006) preliminary genetic study of paua.

The differentiation between Chatham Islands and mainland

paua was also consistent with the few intraspecific studies

of New Zealand coastal marine invertebrates that have

incorporated samples from the Chatham Islands (Smith

et al. 1989; Clarke 2001; Goldstien et al. 2009). Differ-

entiation between paua from the mainland and paua from

the Chatham Islands probably resulted from isolation by

distance.

The combination of moderate genetic structure and

shared haplotypes supports a conclusion of very limited

gene flow between the Chatham Islands and the mainland.

Limited gene flow may occur via chance dispersals due to

delayed metamorphosis. Roberts and Lapworth (2001)

reported that paua larvae that underwent metamorphosis at

26 and 30 days could survive, but at reduced rates com-

pared to larvae that underwent metamorphosis in under

10 days. This borders the lower limits of a 30–50 day

period estimated for simulated passive planktonic larvae

(or particles) traveling from the South Island to the Chat-

ham Islands (in fact, the 10-4 percentile dispersal time was

27 days; Chiswell 2009).

North Island vs. South Island

The inclusion of more sampling locations, more individu-

als, and/or an additional 459 bp of mtCOI resulted in the

detection of highly significant genetic structure among

mainland samples that was not previously identified with

mtDNA in Smith and McVeagh’s (2006) preliminary

genetic study. AMOVAs rejected the hypothesis of

homogeneity around the Cook Strait region, but unlike

other New Zealand invertebrates, such as Sypharochiton

pelliserpentis (Veale 2007), Cellana ornata (Goldstien

et al. 2006), Patiriella regularis (Waters and Roy 2004;

Ayers and Waters 2005), and Perna canaliculus (Apte and

Garder 2002; Star et al. 2003), the structuring did not

necessarily correspond to known regions of upwelling as

proposed by Veale (2007).

The lack of a strong partition in pairwise UST and the

low level of divergence (UST = 0.039) emphasized that

paua do not have an obvious genetic structure, as com-

pared to the level and pattern of genetic structures iden-

tified in C. ornata (UST = 0.829, Goldstien et al. 2006)

and S. pelliserpentis (UST = 0.45, Veale 2007). Although

UST values are not directly comparable, the level of dif-

ferentiation in paua was more similar to species like

P. regularis with a 9–10-week pelagic larval stage

(UST = 0.072, Waters and Roy 2004) or P. canaliculus

with a greater than 4-week pelagic larval stage

(UST = 0.162, Apte and Gardner 2002). The lack of

concordance in pattern and level of population differen-

tiation among New Zealand coastal invertebrates suggest

that the effects of potential barriers to gene flow in the

Cook Strait are species-specific. Differences in larval

behavior and life-history characteristics (Hedgecock1986;

Bohonak 1999; Ross et al. 2009), ecology (Reid et al.

2006) and/or demography may limit how and when

potential barriers of the Cook Strait region influence

population genetic structure.

Additionally, a north–south split may not be an accurate

description of paua genetic structure. At least three areas of

reduced gene flow were evident around the mainland and

only Area B corresponds with a portion of the Cook Strait

region (Fig. 1). Area D, at the eastern promontory of the

North Island, corresponds with the offshore divergence of

the East Auckland Current and a series of offshore eddies

that can impinge on the coastline to the south (Heath 1985,

Chiswell and Roemmich 1998). Potentially, these features

could sweep larvae offshore or entrain larvae beyond sur-

vival and, thereby, limit gene flow. Such a pattern of

limited gene flow has been identified in two amphipods

(Paracorophium spp., Stevens and Hogg 2004) and an

anemone (Actinia tenebrosa, Veale 2007). Further, the

presence of a barrier in this location is also supported by

biogeographic data, with a strong biogeographic boundary

observed in a range of taxa around East Cape (Powell

1961; Pawson 1961; Moore 1961; Francis 1996). Unlike

Areas B and D, Area C does not correspond to an obvious

hydrographic barrier, nor has it been identified in other

organisms as a potential barrier to gene flow. The signifi-

cant differentiation of samples MTB and TIM in this area

from a large number of other samples may indicate the role
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of other processes such as local retention of larvae in

shaping the genetic structure of paua.

Note, Monmonier’s (1973) maximum differentiation

algorithm is considerably less accurate at identifying true

population structure in instances of high levels of gene flow

and/or low ratios of within to between group gene flow

(Dupanloup et al. 2002), both or either of which may be the

case with paua. Also although the correspondence of

genetic breaks and contemporary hydrography has been

emphasized, we cannot exclude other explanations for

genetic structure such as past hydrography (e.g., Barber

et al. 2006), the effects (i.e., genetic patchiness) of repeated

variability of new recruits (Sainsbury 1982, Hedgecock

1994), and/or the potential non-neutrality (which could not

be excluded using Tajima’s D and Fu’s Fs) mtDNA frag-

ments (Meiklejohn et al. 2007). Testing concordance of the

structure found here to that obtained with multiple neutral

nuclear markers can help to address these alternatives.

Furthermore, issues such as small sample sizes, tempo-

ral variation in sampling, and the paua fishery may con-

found results. Small sample sizes may reflect statistical

sampling errors in which the samples do not capture the

true variation in a population (Holsinger and Weir 2009).

Collecting a larger number of individuals from these

locations would reduce these errors, and given the small

pairwise UST values between sampling locations consid-

erably larger samples (e.g., N = 100) would be needed

(Kalinowski 2005). The paua were collected in just over a

three-year period (January 2005–February 2008), so vari-

ation between samples may reflect temporal variation (e.g.,

due to variability in recruitment) rather than or in addition

to spatial variation (e.g., Lee and Boulding 2007, 2009).

Unfortunately, we do not have temporally varying samples

from the same location to untangle temporal vs. spatial

variation. Based on pairwise UST results, the effect of

temporal variation seems small. The five locations with the

earliest sample dates (GOB, DSD, CCB, NPT, MAT;

sampled in January 2005) were not significantly different

from the four locations (JCH, CHN, WAI, MHP) sampled

over 2.5 years later. A clear temporal pattern could not be

identified among significant comparisons that did not fit

one of the north–south genetic splits examined in this

paper. For example, the South Island sample MTB was

significantly divergent from other South Island samples

collected within a month (CCB, GOB, and NPT) to sam-

ples collected within 2.5 years (JCH), while it was not

divergent from samples collected within 1 month (DSD

and GOB) to samples collected within 2.75 years (CHN).

The fact that the samples most likely contained a range of

cohorts may dampen the effect of temporal variation

resulting from variable recruitment (Hedgecock 1994).

Finally, prolonged periods of intense fishing results in

reduced genetic diversity and fishery-induced selection

(Hauser et al. 2002; Allendorf et al. 2008). The amount of

commercial fishing around New Zealand varies according

to the estimated stock size of different regions and could

potentially alter the genetic make-up of some samples.

Teasing apart the influence of all these factors on the main

pattern found here requires significant additional work that

includes collecting a large number of samples from com-

mercially fished, non-commercially fished, and marine

preserves over a long time frame.

Noticeably, northern (lower latitude) samples had a

larger number of private haplotypes and higher haplotype

diversity; a pattern that has also been identified in the

endemic cushion star (P. regularis, Ayers and Waters

2005). Such a pattern, combined with significant neutrality

tests, suggests population expansion and mirrors a pattern

indicative of climate-driven expansions observed in the

northern hemisphere (Maggs et al. 2008). Although mis-

match distributions support demographic and spatial

expansion, they cannot clearly identify a common expan-

sion time (supplementary information).

Similar to other abalone species (e.g., H. cracherodii,

Gruenthal and Burton 2008; H. rufescens, Burton and

Tegner 2000; H. midae, Evans et al. 2004; and H. rubra,

Conod et al. 2002), paua mtDNA variation was charac-

terized by high haplotype diversity resulting from a large

number of rare haplotypes with few nucleotide differ-

ences (or low nucleotide diversity). Large levels of

genetic variation can accumulate in populations that are

ancient, occupy a diversity of niches, or have an

increased mutation rate. Potentially, the large levels of

diversity are indicative of large effective population sizes

in abalone slowing the loss of genetic diversity due to

genetic drift.

Conclusion

The mtDNA gene regions used in this study identified

genetic differentiation among paua from around New

Zealand. In general, the genetic splits between the Chatham

Islands and the mainland and between northern and

southern mainland samples are consistent with those

identified in other coastal marine invertebrates (Ross et al.

2009), but the magnitude of differentiation in paua was

lower. Although this may be a product of marker choice,

paua could potentially have higher levels of gene flow or

may have larger population sizes buffering against the

effects of genetic drift. Further spatial and temporal sam-

pling, as well as studies of adult and larval movement, is

needed to elucidate processes occurring in the Cook Strait

region, the northeast of the North Island, and the southeast

of the South Island. Additional genetic structure among

mainland samples may also exist (see Smith and McVeigh
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2006), but will only be identified with more variable

markers (Waples 1998, Kalinowski 2002).
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