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Do activity costs determine foraging tactics for an arctic seabird?
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Abstract How energy costs aVect foraging decisions is
poorly understood for marine animals. To provide data rele-
vant to this topic, we examined the relationship between
activity levels and foraging behavior by attaching activity
recorders to 29 chick-rearing wing-propelled diving birds
(thick-billed murres, Uria lomvia) in 1999–2000. We con-
nected the activity during the Wnal dive bout with the prey
item we observed being fed to the chicks. After accounting
for changes in activity level with depth, activity was high-
est during the Wnal dive of a dive bout, reXecting maneu-
vring during prey capture. Pelagic prey items, especially
invertebrates (amphipods), were associated with higher
depth-corrected activity, leading to shorter dives for a given
depth (presumably due to higher oxygen consumption

rates) and, thus, shorter search times (lower bottom time
for a given depth). Pelagic prey items were likely captured
during active pursuit, with the birds actively seeking and
pursuing schooling mid-water prey. In contrast, benthic
prey involved low activity and extended search times, sug-
gesting that the birds slowly glided along the bottom in
search for prey hidden in the sediments or rocks. We con-
cluded that activity levels are important in determining the
foraging tactics of marine predators.

Introduction

In the marine environment, predators encounter prey items
that vary considerably in their predator-avoidance tactics
(e.g., speed, density, movement in three dimensions). To
facilitate prey capture, many marine predators specialize on
a single-prey type, necessitating only a single-prey capture
tactic (Watanuki et al. 1993; Davoren et al. 2003; Wilson
et al. 2005). In contrast, generalist marine predators must
modulate their prey-capture strategies depending on the
energy gain available from a given prey type and the energy
expenditure required to capture the prey type (Schluter
1995; Svanbäck and Eklöv 2003; Svanbäck and Bolnick
2005). For example, breath-hold divers may extend dive
duration when ephemeral Wsh schools are encountered
(Ydenberg and Clark 1989; Houston and Carbone 1992) or
allocate time and activity diVerentially between transit and
bottom time depending on whether prey items are pelagic
or benthic (Wilson et al. 2002; Ropert-Coudert et al. 2006a,
b; Elliott et al. 2008b, c). Although there is a growing body
of literature showing that marine predators modulate their
prey-capture tactic (dive depth, dive shape, foraging dis-
tance) for diVerent prey types (Garthe et al. 2000; Estes
et al. 2003; Tremblay et al. 2005), there is little information
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on the activity levels associated with diVerent tactics
although it is known that penguins are more active when
feeding on krill than Wsh (Wilson et al. 2002).

Activity, as measured by stroke frequency or dynamic
acceleration, is a useful proxy variable for underwater
energy costs, where direct measurement is diYcult, and
activity recorders attached to wild animals can estimate
energy expenditure during underwater activity (Williams
et al. 2004; Wilson et al. 2006) and Wne-scale activity
budgets (Ropert-Coudert et al. 2004a, b, 2006a, b). Yet,
because most seabirds and marine mammals make rela-
tively long foraging trips and return with many prey items,
it is diYcult to link activity patterns and dive characteristics
to speciWc prey items (Wanless et al. 1993; Simeone and
Wilson 2003; Tremblay et al. 2005; Wilson et al. 2005).
Thick-billed murres (Uria lomvia, hereafter “murres”) pro-
vide an opportunity for overcoming some of these diYcul-
ties because they return to the colony with a single prey
item (“single prey loaders”, except when capturing inverte-
brates) and yet are suYciently large that recording equip-
ment can be deployed with limited impact on dive behavior
(Croll et al. 1992; Jones et al. 2002; Mori et al. 2002; Pare-
des et al. 2006; Takahashi et al. 2008b). Murres in the Low
Arctic are particularly well suited for these comparisons
because individuals here have an especially diverse diet
(Gaston and Bradstreet 1993).

To determine whether murre foraging tactics diVer when
searching for and capturing diVerent prey types, with par-
ticular emphasis on underwater activity, we combined iden-
tiWcation of prey deliveries at the colony with information
on foraging behavior from activity recorders attached to
adult birds during the chick-rearing season. We made the
assumptions that the last dive represented the dive during
which prey was captured for the chick and that the last dive
bout represented foraging behavior typical for searching for
that prey item. Support for these assumptions is provided
by the observation that the Wnal dive prior to prey delivery
tends to be shorter, but no deeper, than other dives, suggest-
ing that the Wnal dive represents a premature abortion fol-
lowing a successful prey-capture event (Elliott et al. 2008a,
c). Here, we examine how murre activity patterns vary
among prey types. SpeciWcally, we ask (1) Does activity
during diVerent dive phases vary among prey types? and (2)
Is activity highest on the Wnal dive during a dive bout, when
prey capture presumably happens?

Methods

Our observations were made at the Coats Island west col-
ony (62°57�N, 82°00�W), Nunavut, Canada (Gaston et al.
2003, 2005a, b) during the 1999 (n = 24) and 2000 (n = 5)
breeding seasons. Adult murres were caught at their nest

sites using a noose pole (Hipfner et al. 2003, 2006). We
used activity recorders identical to those described by
Falk et al. (2000, 2002) and Benvenuti et al. (1998, 2002):
length, 80 mm; width, 23 mm (tip) to 30 mm (base); depth,
13–18.5 mm; mass, 28 g (3% of body mass and 4% of body
cross-sectional area), containing a pressure sensor and two
motion recorders (in case one failed). The motion recorders
were made of a metal ball (modiWed microphone) within a
case and the activity (three-dimensional movement of the
ball as measured by vibrations within the microphone) was
averaged over the 8-s interval and converted into bits
between 0 and 28 ¡ 1 = 255. Because calibrations may
have been slightly diVerent between activity recorders, we
included individual devices (which were reused up to Wve
times) as a covariate in analyses. The pressure sensors sam-
pled every 4 s and recorded to a maximum depth of 76 m.
We assumed that activity (e.g., wingbeat frequency) and
energy costs are correlated, so that the activity recorders
provide an index of activity, wingbeat frequency and
energy costs (Sato et al. 2003; Watanuki et al. 2003, 2006;
Kato et al. 2006; Ropert-Coudert et al. 2006a, b). Although
activity recorders measuring at a Wner scale (32 Hz) are
available, we used devices that recorded at 0.125 Hz
because we were interested in larger sample sizes and in
showing broad diVerences in activity among prey type
rather than the detailed kinematics of single wingbeats,
which has already been studied in detail (e.g., Lovvorn
et al. 2004; Watanuki et al. 2003, 2006); even high-fre-
quency devices are improved by smoothing over longer
intervals when linking dynamic acceleration with behavior
(Shepard et al. 2008). Back-mounted devices are known to
aVect murre provisioning rates, trip duration, mass loss and
dive parameters (Croll et al. 1992, Watanuki et al. 2001,
Tremblay et al. 2003, Hamel et al. 2004, Paredes et al.
2004; Elliott et al. 2007, 2008a, c). To minimize these
eVects, the devices were attached along the midline of the
lower back by means of cable ties and tape around several
dorsal feathers (Bannasch et al. 1994). Handling time was
always less than 10 min and usually less than 5 min.

Continuous observations of breeding sites were carried
out in conjunction with the deployment of the devices
(Elliott et al. 2008d). All observations were made from blinds
situated on the study plots, within 6 m of the birds. Three
48 h continuous feeding watches were conducted during
1999 (28–30 July, 7–9 August, 12–14 August) and one in
2000 (30–31 July). We did not conduct feeding watches
when it was too dark to see deliveries (roughly 01:00–02:00
in late July, 23:00–0:400 in mid August) because nestlings
are rarely fed at this time (Gaston et al. 2003). During these
observation sessions, prey items delivered to the colony for
chick provisionings were identiWed whenever possible.
Arctic cod (Boreogadus saida), sand eels (Ammodytes sp.)
and capelin (Mallotus villosus) were classiWed as pelagic
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prey items, while all other Wsh, including blennies, shannies
and sculpin, were classiWed as benthic prey items (Elliott
and Gaston 2008; Elliott et al. 2008b, c). We considered
capelin to be pelagic because they were often captured after
V-shaped dives and sand eels to be pelagic because they are
generally captured after W- or u-shaped dives. U-shaped
dives have a Xat bottom with at least three identical consec-
utive measurements, while u-shaped dives have a rounded
bottom (deWnite bottom phase) but without at least three
identical consecutive measurements (see Fig. 4b in Elliott
et al. 2008c; their legend should read “u-shaped” rather
than “U-shaped”). However, sand eels and capelin are
caught during benthic dives by some predators (Davoren
et al. 2003, 2006; Watanuki et al. 2008), and although we
are conWdent that most pelagic prey items were caught in
the water column, some of our “pelagic” prey items may
have been captured during benthic dives. Including a few
benthic dives in our analyses should make our statistics
more conservative as it would reduce our ability to detect a
diVerence; any statistically-signiWcant diVerences are there-
fore likely to be biologically relevant. Invertebrates (amphi-
pods, shrimp) were also classiWed separately.

We used sequential diVerences analysis to deWne Wnal
dive bouts (Mori et al. 2001; bout deWned when sequential
dives diVered by either 37 m or 63 s). To increase the likeli-
hood that dives were directed towards a given prey item, we
only included the Wnal ten dives in dive bouts with more
than ten dives (<5% of dive bouts had more than 10 dives).
We excluded dives that were shallower than 3 m because of
device resolution. Because activity was only recorded every
8 s, we only analyzed dives at least 24 s in length, excluding
<5% of all Wnal dives as too short (Elliott et al. 2008a, b).
We partitioned each dive into three phases: descent, bottom
time and ascent. We deWned bottom time as from the Wrst
reading below 90% of maximum depth to the last reading
below 90% of maximum depth (Elliott et al. 2008a, b). The
deWnition of bottom time was appropriate because even most
pelagic prey items (excluding invertebrates, which tended to
show high activity during both descent and ascent) had a
clear bottom phase, although for pelagic prey items this bot-
tom was often ragged. We ignored the Wrst and last activity
reading during each phase to avoid the possibility that activ-
ity from another phase was included in the analyses (e.g., we
excluded the Wrst and last reading from each dive as it may
include periods not included in the dive).

For murres, surface pauses are more closely related to
dive depth than duration, presumably because dive depth
better reXects energy expenditure for these deep-diving
birds, and surface pauses for a given dive depth increase
with increasing energy expenditure but are independent of
prey type (Elliott et al. 2008a, b). For short, likely aerobic
dives, birds used the surface interval to optimize oxygen
stores and buoyancy for the subsequent dive while for long,

likely anaerobic dives, birds used the surface interval to
metabolize lactate from the previous dive (Elliott et al.
2007, 2008a, b). It is possible that predictions of surface
intervals could be reWned by the inclusion of activity mea-
surements.

All statistical analyses were completed in R 2.4.1. To
examine how activity (output from a custom-built program
that converted binary data into digital readout in bits)
changed with depth and maximum depth, we created a gen-
eral linear model for each phase (descent, bottom and
ascent) with depth, maximum depth and prey type as inde-
pendent variables and individual and device as covariates.
Only dives prior to the Wnal dive (non-feeding dives) were
included; a separate analysis included feeding dives as a
covariate. To avoid pseudoreplication due to individual
specialization (Elliott et al. 2008c; Woo et al. 2008), we
randomly selected a single prey item for each individual–
prey type combination and reran all analyses. As this did
not change the signiWcance of any results, we included all
data in the analyses. To examine the role of activity in pre-
dicting surface intervals, we created a general linear model
with ln (surface interval) as the dependent variable, depth,
activity and dive duration as independent variables and
individual and device as covariates. We used AIC values to
create forward stepwise regressions. Models with �AIC
>2.0 were considered to be unsupported.

Results

In 1999, median dive duration was 74 s and median dive
depth was 18 m, with 20 out of 24 birds having at least one
dive that exceeded 76 m (maximum depth recorded by
device; Table 1). Out of 10,404 dives, 541 (5.2%) exceeded
76 m. In 2000, median dive duration was 104 s and median
dive depth was 32 m, with 4 out of 5 birds having at least
one dive that exceeded 76 m. Out of 1,742 dives, 188
(10.8%) exceeded 76 m.

Table 1 Summary data for deployments

1999 2000

Number of TDRs deployed 24 5

Number with feeds 21 5

Feeds per bird 3.3 § 0.6 2.8 § 1.2

Number of dives per bird 434 § 29 348 § 68

Maximum dive duration 192 § 8 s (max = 249 s) 193 § 24 s

Average dive duration 93 § 7 s 107 § 19 s

Median dive duration 74 s 104 s

Maximum dive depth 72 § 2 m 71 § 6 m

Average dive depth 32 § 3 m 38 § 8 m

Median dive depth 18 m 32 m
123



1812 Mar Biol (2009) 156:1809–1816
After accounting for depth and maximum depth, average
activity varied among prey types (Table 2; Fig. 1). During all
phases, activity was greater when pursuing pelagic inverte-
brates (Table 2). During ascent and descent, there was no
diVerence among Wsh prey types (Table 2), whereas in bot-
tom phase activity was greater for pelagic than for benthic
Wsh or capelin. After accounting for depth, average activity
was higher during the bottom phase of Wnal dives than for the
remainder of the dives during the dive bout (Wnal dive = 115,

other dives = 98, z28 = 2.21, P = 0.02), as was the variance
(Wnal dive = 7,000 § 450; other dives = 5,550 § 355, P =
0.01). There was no diVerence (P > 0.50) in activity during
the ascent and descent phases of Wnal dives, compared to the
remainder of dives during the dive bout. The relationship for
surface pauses with dive depth was considerably stronger
than with dive duration (�AIC = 64), and both were consid-
erably stronger than with activity (�AIC = 1,093). When
considered together, dive depth and duration factored into the
loglinear model for surface pauses but activity, individual
and device did not (�AIC > 6.0).

Discussion

Activity levels had a strong relationship with prey type.
Pelagic prey items, especially invertebrates (amphipods),
were associated with high depth-corrected activity, while
benthic prey items were associated with low depth-
corrected activity. Activity was high during descent as birds

Table 2 Average residual activity from best Wt general linear models
including depth, maximum depth, individual and device

Values are § SE; AIC values are described n the text. Values that are
not signiWcantly diVerent from one another within each column are
shown in bold

N Descent Bottom Ascent

All taxa (no residual) 88 203 § 44 106 § 56 48 § 62

Benthic Wsh 24 ¡8 § 1 ¡15 § 2 ¡19 § 4

Pelagic Wsh 58 ¡6 § 1 0 § 2 ¡12 § 4

Pelagic invertebrate 6 29 § 11 99 § 11 78 § 15

Fig. 1 Activity (black) and 
depth (grey) proWles for a typical 
dive prior to the delivery of 
pelagic (a, b amphipods) and 
benthic (c, d sculpin) prey. 
The pelagic graphs show high 
activity until the Wnal portion of 
ascent, whereas the benthic 
graphs show high activity during 
descent, reduced activity during 
the bottom phase and low activ-
ity during ascent. Graph (c) was 
the Wnal dive of a dive bout, and 
shows the characteristic increase 
in activity (presumed prey 
capture) just before ascent

0

50

100

150

200

250

300
(a) (b)

(d)(c)

0 40 80 120

A
ct

iv
ity

0

10

20

30

40

50

60

70

80

0

50

100

150

200

250

300

0 40 80 120
0

10

20

30

40

50

60

70

80

D
ep

th
 (

m
)

D
ep

th
 (

m
)

0

50

100

150

200

250

300

Time (s)

A
ct

iv
ity

0

10

20

30

40

50

60

70

80

0

50

100

150

200

250

300

0 40 80 120 160 200 0 40 80 120 160 200

Time (s)

0

10

20

30

40

50

60

70

80
123



Mar Biol (2009) 156:1809–1816 1813
overcame high surface buoyancy and low during passive
ascent (Fig. 1, Lovvorn et al. 1999, 2004; Watanuki et al.
2003, 2006). Thus, as the bird descended it worked hard
near the surface to overcome buoyancy, but wingbeat fre-
quency decreased as air stores were compressed and the
bird became closer to neutrally buoyant (Lovvorn et al.
1999, 2004; Watanuki et al. 2003, 2006). The exact point of
neutral buoyancy is likely irrelevant as there is a zone of
neutral buoyancy (sensu Cook et al. 2008) where murres
are eVectively close enough to neutrally buoyant that they
neither need to expend great amounts of energy to over-
come buoyancy, nor are able to use buoyancy to ascend in a
timely manner (Lovvorn et al. 1999, 2004; Elliott et al.
2007).

For a given depth, pelagic prey items required greater
activity during the bottom phase than benthic prey items
(Fig. 1; Table 2). Presumably, pelagic prey items were
likely captured during active pursuit, with the birds actively
seeking and pursuing schooling mid-water prey (cf. Takah-
ashi et al. 2008a). The high rate of turning, coupled with
repeated accelerations and decelerations would all be mea-
sured as higher activity by the devices. For amphipods,
multiple prey items are caught in a single dive—birds
return with multiple amphipods after completing only a sin-
gle dive away from the colony—and there may be multiple
accelerations and decelerations associated with capturing
multiple amphipods (Wilson et al. 2002). Bite marks on the
underside of prey and videography of auks (e.g., rhinoceros
auklets, common murres; Burger et al. 1993; Gaston 2004;
Morelle 2009) suggest that auks feeding on pelagic prey
herd them towards the surface or attack them when they are
silhouetted against the surface, although herding may occur
less often in thick-billed murres, which tend to forage in
smaller groups (Gaston 2004). Herding, and avoiding being
eaten incidentally by competitors at large Wsh schools,
requires a high level of activity, but presumably results in a
high rate of energy gain. The schooling nature of pelagic
prey items combined with the high activity needed to cap-
ture them likely led to a faster rate of oxygen depletion.
This may be why pelagic prey items involved shorter dive
durations for a given dive depth and less bottom time dur-
ing the dive (Elliott et al. 2008b). Cormorants feeding on
mobile prey also show higher energy expenditure, longer
pursuit durations and shorter dive durations than cormo-
rants feeding on sedentary prey (Enstipp et al. 2006, 2007;
Halsey et al. 2007).

Other studies have focused on the diVerence in energy
density between pelagic and benthic prey items as a possi-
ble reason for the preference of pelagic over benthic prey
(Litzow et al. 2004; Österblom et al. 2008). Although
pelagic prey items have higher energy density than benthic
prey at our study site, the diVerence (1.5-fold) is much
smaller than diVerences in prey mass (>100-fold; Elliott

and Gaston 2008) and, as with diVerences in Xight time and
time allocation with the dive (Elliott et al. 2008b, 2009),
diVerences in prey mass (e.g., energy quantity) is likely
more important in determining activity levels than energy
quality. Rather than selecting prey based on energy intake,
birds may select prey items based on energy output. For
example, birds may select benthic over pelagic prey
because they require less searching (i.e., occur at known
geographic features, such as rocky outcrops) or are nearer
to the colony (Baird 1991; Elliott et al. 2009).

In contrast to pelagic prey items, benthic prey involved
low activity and extended search times. Slowly gliding
along the bottom in a single direction to surprise prey hid-
den in the sediments or between rocks would result in low
measures of activity. This is consistent with the notion that
benthic prey items require greater underwater search time,
and therefore more bottom time, than pelagic prey items
(Elliott et al. 2008a, b). Swim speeds during the bottom
phase were lower during benthic than pelagic dives for cor-
morants and penguins feeding on pelagic invertebrates used
slower swim speeds than those feeding on schooling Wsh
but remained at an optimum in terms of net energy gain
(Wilson et al. 2002; Ropert-Coudert et al. 2006a). Shags
feeding on benthic gunnels usually fed solitarily and swam
rapidly over rocky bottoms, whereas shags feeding on sand
eels usually fed in groups and sifted carefully through
sandy bottoms (Watanuki et al. 2008). Similarly, murres
feeding on deep water capelin, encountered at below-zero
temperatures where the Wsh would be very slow-moving,
were able to have extended dive times and depths, presum-
ably because they required low levels of activity during
capture (Hedd et al. 2009). Our results add to the growing
body of literature showing that marine predators modulate
their prey-capture strategy for diVerent prey types (Garthe
et al. 2000; Estes et al. 2003; Tremblay et al. 2005; Elliott
et al. 2008b, c; Deagle et al. 2008; Paredes et al. 2008; but
see Ropert-Coudert et al. 2002) and suggest that certain
individuals specialize on active prey pursuit while others
specialize on less active prey-capture tactics (Woo et al.
2008).

Higher and more variable activity during the Wnal dive of
a bout is consistent with our assumption that the Wnal dive
represents prey capture. Thus, as with most single-prey load-
ers, dive bouts are terminated once a prey item is captured
(Nolet et al. 1993; Watanuki et al. 2008). Higher activity
during prey-capture dives suggests that an index of prey-
capture rate, or at least prey pursuit, may be obtainable during
the self-feeding portion of the dive schedule by examining
activity during the bottom phase of non-Wnal dive bouts.
A similar approach was successful in determining prey
encounter rates for benthic-feeding penguins (Ropert-
Coudert et al. 2006b) and shags (Sato et al. 2008). In larger
penguins, “wiggles” in dive proWles represent prey captures
123
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(Simeone and Wilson 2003; Bost et al. 2007; Wilson et al.
2005). Although this method does not seem to work in mur-
res, which show few wiggles during diving, activity proWles
may provide a useful alternative. Additional work conWrm-
ing this method using beak opening sensors would be critical
(Simeone and Wilson 2003; Wilson et al. 2005). Activity
was a worse predictor of surface pause interval than either
depth or duration. This is presumably because our devices
only crudely estimated activity costs, or because other
factors (e.g., thermoregulatory costs) might obscure the
relationship between activity level and energy expenditure
during diving (Niizuma et al. 2007).

In conclusion, activity levels were directly related to
foraging decisions, with high activity associated with mid-
water, pelagic prey pursuit and low activity associated with
benthic prey pursuit. Thus, activity was an important part of
the foraging tactics of marine predators.
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