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Abstract Small-scale vertical patterns of larval distri-
bution were studied at a very nearshore larval Wsh
assemblage, during the spring–summer period of sev-
eral years, at two depth strata (surface and bottom)
using sub-surface and bottom trawls. A total of 4,589
larvae (2,016 from surface samples and 2,573 from bot-
tom samples) belonging to 62 taxa included in 22 fami-
lies were collected. Most larvae belonged to coastal
species. Although inter-annual variations in larval den-
sity and diversity could be found, total larval abun-
dance was always higher near the bottom whereas
diversity was higher at the surface. A marked distinc-
tion between the structure of surface and bottom
assemblages was found. Sixteen taxa explained 95% of
the similarity among surface samples. Larvae which
contributed most to this similarity included species like
clupeiformes, sparids and serranids, and also blenniids,
tripterygiids and some labrids. In the bottom samples,
fewer species were present, with only six taxa, almost
exclusively from species which lay demersal eggs, con-
tributing to 95% of the similarity between samples.
Larvae present at the surface were signiWcantly smaller
than at the bottom. For some of the most abundant
species found at the bottom, only small larvae occurred
at the surface while the whole range of sizes was pres-
ent at the bottom, indicating that larvae may be com-
pleting the entire pelagic phase near the adults’

habitat. These results indicate that larval retention
near the reefs probably occurs for these species,
although for others dispersal seems to be the prevailing
mechanism.

Introduction

Traditional sampling methods for ichthyoplankton
studies are diYcult to use in nearshore waters due to
shallower depths, complex bottom topography (Smith
et al. 1987) and wave action. This resulted in a poorer
knowledge of coastal ichthyoplankton communities
and their distribution patterns at small spatial scales.
Several studies on nearshore larval assemblage compo-
sition and spatial distribution patterns have, however,
been conducted in recent years on coral reefs (Smith
et al. 1987; Kobayashi 1989; Boehlert and Mundy 1993;
Leis 1993; Sponaugle and Cowen 1996; Kingsford and
Finn 1997; Hendriks et al. 2001; Kingsford 2001; Wil-
son 2001; Sponaugle et al. 2003). In these environ-
ments, evidence is growing on the ability of larvae to
actively modify their position in the water column
which can result in larval retention in the vicinity of the
reefs (Leis 1991a, b; Jones et al. 1999, 2005; Swearer
et al. 1999, 2002; Cowen 2002; Leis and McCormick
2002; Sponaugle et al. 2002; Taylor and Hellberg 2003;
Paris and Cowen 2004). Depth stratiWed sampling with
plankton nets and light traps used in shallow waters
directly over reefs (Doherty and Carleton 1997; Fisher
and Bellwood 2002a; Fisher 2004; Hendriks et al. 2001;
reviewed by Cowen 2002 and Leis and McCormick
2002) identiWed vertical distribution patterns, some-
times with a clear daily or ontogenetic basis (Leis
1986a, 1991a, b, 1993; Sponaugle and Cowen 1996;

Communicated by S.A. Poulet, RoscoV.

R. Borges · R. Beldade · E. J. Gonçalves (&)
Eco-Ethology Research Unit, 
Instituto Superior de Psicologia Aplicada, 
R. Jardim do Tabaco 34, 1149-041 Lisbon, Portugal
e-mail: emanuel@ispa.pt
123



1350 Mar Biol (2007) 151:1349–1363
Sponaugle et al. 2003; Leis et al. 2006). In situ behavio-
ural studies also revealed species-speciWc behaviours
and showed that larvae of coral reef Wsh exhibit direc-
tional swimming capabilities and regulate their vertical
position at a Wne scale (Leis and Carson-Ewart 1999,
2000a; Leis and McCormick 2002; Leis 2004, 2006; Leis
et al. 2006).

In temperate regions, extensive work has been done
on ichthyoplankton composition and vertical distribu-
tion in oceanic or shelf waters (e.g. Kendall and Naplin
1981; Southward and Barret 1983; McGowen 1993;
Moser and Smith 1993; Conway et al. 1997; Olivar and
Sabatés 1997; Gray 1998; Somarakis et al. 2002; Sab-
atés 2004). Some studies showed evidence of vertical
migration patterns for some species (for a review see
Neilson and Perry 1990).

However, in nearshore waters little is known about
the spatial distribution of Wsh larvae. Some studies on
micro-scale distribution of larval Wsh have focused on
only one species. Marliave (1981) found vertical migra-
tion patterns in Gibertidia sigalutes (Cottiidae) larvae
within the Wrst 3 m layer, in Vancouver Island. Jenkins
et al. (1998, 1999) reported diurnal vertical migrations
of Sillaginodes punctata (Sillaginidae) in nearshore
waters. Breitburg (1989) studied in situ behaviour of
Gobiosoma bosci (Gobiidae) in an oyster reef and sug-
gested that pre-settlement schooling may be a common
behaviour among temperate benthic Wsh species. Breit-
burg et al. (1995) performed Weld studies to examine
the relationship between these aggregations and water
Xow and suggested that larvae actively respond to
water Xow patterns near reefs and that this may be
determinant to understand the Wne scale spatial pat-
terns of distribution at settlement.

DiVerences in larval assemblages between inshore
and oVshore samples and, in some occasions, depth
stratiWed patterns of distribution have been described
by several authors (Boehlert et al. 1985; Cowen et al.
1993; McGowen 1993; Tilney et al. 1996; Gray and Mis-
kiewicz 2000). Brewer and Kleppel (1986) suggested
that vertical patterns of neritic Wsh larvae could con-
tribute to their retention in nearshore waters. Marliave
(1986) sampled the extreme nearshore over rocky reefs
and found that larvae of intertidal Wshes occurred more
frequently along rocky shores than in adjacent sandy
beaches. This author suggested that intertidal Wsh lar-
vae are capable of resisting oVshore and alongshore
dispersal and may prefer more turbulent waters or
avoid more laminar velocity gradients along sand or
mud shores. Tilney et al. (1996) also suggested larval
retention nearshore for some rock associated species
present in the Tsitsikamma National Park Marine
Reserve, South Africa.

More recently, Sabatés et al. (2003) found diVer-
ences in patterns of larval distribution among species
from a nearshore rocky Wsh assemblage in the north-
west Mediterranean. Also, Vélez et al. (2005)
described distinct vertical assemblages of nearshore
Wsh larvae at Independencia Bay, Peru. These authors
compared the larval composition at the surface and at
10 m depth and found that these assemblages were dis-
tinct even though a strong vertical mixing was present.
However, the bottom assemblages were not sampled
(the bottom at the sampling stations was at 22–25 m).
For several species of this inshore assemblage, larvae
were present at diVerent developmental stages, sug-
gesting retention in nearshore waters.

In this paper we describe the nearshore larval
assemblages present at the Arrábida Marine Park
(west coast of Portugal) where we have observed dense
schools of larvae near the reefs at shallow depths (less
than 15 m) during SCUBA diving. Our aims are (1) to
investigate the composition of the coastal larval Wsh
assemblages present during the spring–summer period;
(2) to compare the structure of the assemblage and lar-
val density at the surface and bottom depth strata; (3)
to search for possible ontogenetic vertical distribution
patterns.

Materials and methods

Study area

This study was carried out at the Arrábida Marine
Park, between Sesimbra and Portinho da Arrábida,
30 km South of Lisbon (9°00�15�–9°03�48�W and
38°26�–38°27�N) (Fig. 1). Although located on the
Portuguese west coast, the study site faces south, being
protected from the prevailing north and north-west
winds and waves. Relatively calm sea conditions exist
throughout the year, allowing sampling in the very
nearshore where wave action is negligible. Tidal cur-
rents parallel to the shoreline prevail. The nearby
Sado estuary has little inXuence over this coastal area,
given that during the spring and summer months the
water Xow is very reduced (Martins et al. 2002). The
adjacent mountain chain of Arrábida is characterized
by high vertical calcareous cliVs. Boulders of many
diVerent sizes, resulting from the disintegration of
these cliVs, originate a highly heterogeneous rocky
subtidal habitat where many benthic Wsh species occur
(Gonçalves et al. 2003). In the extreme nearshore, the
rocky sub-stratum extends oVshore only for some tens
of metres and depths are very shallow (maximum
around 13 m).
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Sampling procedure

Sampling was performed in the extreme nearshore
(less than 50 m from shore) in the spring–summer
period, when most coastal Wsh species breed. The sur-
face larval assemblage was sampled in 1999 and 2000
with sub-superWcial trawls, at 17 stations distributed
along the study area (Table 1). The bottom assemblage
was sampled at two locations in 2001 and 2002. In 2003,
both depth strata were sampled (Table 1). Bottom
sampling was performed along 14 days in 2001, 15 days
in 2002 and 6 days in 2003, with an average of four
dives per day. Surface samples were taken monthly,
with a mean number of samples between nine (in 2003)
and 12 (in 1999), taken in 1 or 2 days. Owing to logistic
constraints, all samples were taken during the day,
between 9 and 18 h, and at all tidal phases. All samples
collected at each depth were considered as replicates
since no longitudinal gradients in assemblage structure
were found (unpublished results).

Surface samples consisted of 5-min sub-superWcial
(1 m depth) trawls using a standard plankton net with a
350 �m mesh size, 0.30 m mouth diameter and a mouth
diameter:net length ratio of 1:5. A small 4.6 m semi-
rigid inXatable boat towed the net at a distance of 20 m
from the boat, and a speed of approximately 1.5 knots.
Bottom sampling was performed with a plankton net
attached to an underwater scooter. This net was similar

to the one used at the surface trawls, but the mouth
diameter:net length ratio was 1:3 due to manoeuver-
ability reasons. The bottom plankton trawls were
undertaken at a distance of approximately 0.50 m from
the rocky substrate. After reaching the bottom, the
diver opened the net and begun the trawl following a
direction parallel to the shoreline, contouring obstacles
when needed. Five minutes later the diver would close
the net and slowly ascend to the surface. Sampling
speed was approximately 1.5 knots. All samples were
performed over the whole extent of the rocky bottom,
from 4 to 13 m. In each bottom sample we followed the
bottom contour at approximately the same depth. The
average diVerence between maximum and minimum
depths per bottom sample was 1.92 m (SD = 0.86).
Hydrobios Xowmeters were attached to both nets. Fil-
tered volumes, sampling periods and number of larvae
caught are shown in Table 1.

All samples were preserved in 4% saline formalin
buVered with sodium borate for at least 1 month,
before larvae were sorted and identiWed under a ste-
reomicroscope to the lowest possible taxonomic level
(species level when possible). We identiWed 94% of the
larvae to family level (99% in the bottom samples and
88% in the surface samples), 86% to genus level (97%
in the bottom samples and 71% in the surface samples)
and 83% to species level (95% in the bottom samples
and 69% in the surface samples).

Fig. 1 Study site location on 
the Portuguese west coast

Table 1 Sampling periods, 
water volume Wltered and 
number of larvae caught at the 
surface and bottom samples in 
each year

Depth Year Sampling period N Volume Wltered (m3) Number of larvae

Mean SD Range Mean SD Total

Surface 1999 26 May–30 Aug 48 25.44 6.45 14.12–42.58 22.29 24.17 1070
2000 31 May–21 Aug 30 28.67 4.20 15.12–35.52 12.87 9.63 386
2003 11 Jun–21 Aug 27 28.93 6.09 16.31–42.75 20.74 15.22 560

Bottom 2001 26 Jun–09 Aug 48 6.87 1.32 4.54–9.10 20.19 29.23 969
2002 02 Jul–25 Jul 54 7.22 2.15 3.07–11.34 13.98 19.04 755
2003 19 May–07 Aug 24 11.15 1.78 7.44–13.91 35.38 31.58 849
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Photographs were taken to help in the identiWca-
tions, using a digital camera attached to a stereomicro-
scope. Body length (BL), corresponding to notochord
length in pre-Xexion larvae or to standard length in
post-Xexion larvae, was measured to the nearest
0.01 mm using a micrometer scale. For larvae larger
than 15.0 mm measurements were made using a cali-
per. A total of 14.5% of larvae in the surface samples
and 5.1% in the bottom samples were in bad condition
and were not measured.

Data analysis

Composition and annual patterns of larval assemblages

Larval abundances were calculated for every taxa iden-
tiWed in each sample and are expressed as the number
of larvae/1,000 m3. Two biodiversity indices were cal-
culated for each sample, the Shannon diversity index
(H�) using the natural logarithm in its formulation and
the average taxonomic distinctness index (Delta*),
which reXects the taxonomic spread of species among
samples (Clarke and Warwick 2001). This index is
based not just on the species abundances but also on
the taxonomic distances between every pair of individ-
uals; high Delta* values (maximum = 100) reXect high
taxonomic diversity in the assemblage (Clarke and
Warwick 2001). Equal step-lengths were assumed
between each taxonomic level. Four taxonomic levels
were used, from species to order. Mean values and
standard deviation of these indexes were calculated for
each year at each depth strata.

Annual diVerences in total larval abundances and
diversity indexes were tested with one-way ANOVA
and Student-Newman–Keuls tests for post hoc compar-
isons, when homoscedascity assumptions were met
after being tested with the Levene’s test. If needed,
variables were log (x + 1) transformed. When variances
were heterogeneous, a Kruskall–Wallis ANOVA was
used and post hoc comparisons were performed with
the Dunn’s test. Using the same criteria, T-student
tests or Mann–Whitney U tests were used for the com-
parisons of overall abundance and diversity indexes
between surface and bottom samples.

Owing to a possible eVect of tide on larval distribu-
tion (Neilson and Perry 1990; Cowen 2002) and logisti-
cal constraints (it was not possible to standardize tide
situation), tidal phase was randomized in this study.
However, we tested for a possible interaction between
tide and depth on larval abundance using a factorial
ANOVA, with tidal phase and depth strata as factors.
Since no interaction between these factors was found,
but, when pooled together, homoscedascity assump-

tions could not be met even after transformation (due
to the great diVerence in variance between surface and
bottom samples), we analysed these factors separately
with one-way ANOVA and Student-Newman–Keuls
tests for post hoc comparisons.

DiVerences in larval assemblages between depth strata

Using the relative abundance of each species, diVer-
ences between the structure of surface and bottom
assemblages were graphically displayed with a non-
metric multidimensional scaling (MDS) two-dimen-
sional plot. The ordination was based on a triangular
matrix of Bray–Curtis similarities after a log (x + 1)
data transformation. Samples in plots that are closer
together are less distinct and a stress coeYcient deter-
mines the relationship among samples from distinct
groups (Clarke and Warwick 2001). Larvae which
could not be identiWed were not considered in the anal-
ysis: 11.1% of the larvae present in surface samples
(from which 87% were in the pre-Xexion stage) and
0.58% of the larvae from the bottom samples (98% of
which were in the pre-Xexion stage). Six groups were
considered in the analysis, corresponding to the diVer-
ent years sampled at each depth.

In order to test for diVerences between groups a
one-way analysis of similarities (ANOSIM) was per-
formed. High R values indicate diVerences between
groups (Clarke and Warwick 2001). Similarity percent-
ages analysis (SIMPER) was used to determine the
species contribution to each group after log (x + 1)
transformation of the data, assuming a cut-oV at 95%.
The MDS stress level was higher than 0.1 (Clarke and
Warwick 2001), and therefore we performed a cluster
analysis based on the Bray–Curtis similarities matrix
with log (x + 1) transformed data. To simplify the clus-
ter graphical interpretation, we used the average simi-
larity contribution of each species to the average
similarity within each year at each depth, according to
the SIMPER results. In order to understand the spe-
cies composition at each depth, since low R values
were obtained in every pair-wise comparison between
years in the same depth strata, inter-annual results
were pooled together for the same depth before the
SIMPER analysis.

Ontogenetic vertical distribution patterns

To access possible ontogenetic diVerences in the distri-
bution of larvae between depth strata, the length of
larvae of the most representative species was
compared between the surface and bottom samples
with T-student tests (the log x transformation was used
123
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when needed) or Mann–Whitney U tests (if variances
were heterogeneous even after transformation).
Developmental stage of each larva was categorized
into pre-Xexion, incomplete Xexion and post-Xexion
stages following Leis and Carson-Ewart (2000b). We
considered all larval stages from hatching, including
yolk-sac larvae.

The PRIMER 5 programme was used for the calcu-
lation of diversity indexes and multivariate analyses.
STATISTICA 7 (StatSoft, Inc. 2004) was used for all
other statistics.

Results

Composition and annual patterns of larval assemblages

A total of 4,589 larvae (2,016 from the surface samples
and 2,573 from the bottom samples) were collected
belonging to 62 identiWable taxa included in 22 families
(Table 2). Most larvae caught belonged to species
whose adults live in nearshore waters laying demersal
eggs (e.g. Blenniidae, Gobiidae, Tripterygiidae, some
Labridae). However, there were also a few coastal lar-
vae hatching from pelagic eggs (e.g. Sparidae, Serrani-
dae) and species whose adults live and spawn in coastal
and shelf waters like Sardina pilchardus, Trachurus tra-
churus and Engraulis encrasicolus.

Although variation in total larval abundance among
years was apparent for both depth strata (Fig. 2), total
larval abundance was always higher at the bottom
than at the surface and overall diVerences were signiW-
cant (Z = 6.214, P < 0.001). The inter-annual variation
in larval density in the bottom samples was not signiW-
cantly diVerent (H = 4.26, df = 2, P = 0.12), but at the
surface signiWcant variations between years were
found (F = 3.673, df = 2, P < 0.05), with larval densi-
ties observed in 2000 lower than both in 1999
(P < 0.05) and 2003 (P < 0.05). No diVerences of larval
abundance were found among tidal phases at the sur-
face (F = 0.46, df = 3, P = 0.71), but signiWcant results
were obtained at the bottom (F = 4.81, df = 3,
P < 0.01) with more larvae occurring at low tide than
at rising tide (P < 0.05).

Diversity was signiWcantly higher in the surface sam-
ples (Table 3). Annual variation in diversity was signiW-
cant at the bottom samples for both the Shannon
diversity index and the average taxonomic distinctness
index, with a decrease in the overall diversity in 2003
and an increase in taxonomic diversity in 2002. On the
contrary, no signiWcant changes in taxonomic diversity
were found in the surface samples, but overall diversity
exhibited a signiWcant decrease in 2000 (Table 3).

DiVerences in larval assemblages between depth strata

The MDS graphical representation showed a clear dis-
tinction between the structure of surface and bottom
assemblages (Fig. 3a), which was conWrmed by the clus-
ter analysis (Fig. 3b). ANOSIM revealed that these
diVerences were signiWcant (Global R = 0.46, P = 0.001;
Table 4). There were low R values in every pair-wise
comparison between years in the same depth strata,
but all comparisons between any surface layer group
with any bottom layer group revealed high values of R
(above 0.50), showing signiWcant diVerences between
the structure of surface and bottom assemblages
(Clarke and Warwick 2001).

The similarity percentages analysis (SIMPER)
showed that surface assemblages included 16 taxa from
which only six taxa explained 73.4% of the similarity
among groups (Table 5). Larvae that contributed most
to this similarity include sparids, serranids (Serranus
sp.), blenniids (Parablennius pilicornis), clupeiformes
(Sardina pilchardus), labrids (Coris julis) and trip-
terygiids (Tripterygion delaisi). In the bottom samples
only six taxa were present, almost exclusively from
coastal species which lay demersal eggs. The only
exception was the sparid Boops boops which lays
pelagic eggs but also breeds in nearshore waters. Gobi-
ids dominated this assemblage with only two species,
Pomatoschistus pictus and Gobius xanthocephalus,
explaining together 73.79% of the similarity among
groups (Table 5).

Ontogenetic vertical distribution patterns

Larvae present at the surface were signiWcantly smaller
than at the bottom (surface: mean = 2.99 mm, SD = 1.39,
range 1.07–17.07, N = 1,724; bottom: mean = 7.24 mm,
SD = 2.36, range 1.10–23.00, N = 2,442; Z = 48.62,
P < 0.001). This overall pattern was found for most spe-
cies present at the bottom with the exceptions of Call-
ionymus spp., Sparidae sp.1 and Tripterygion delaisi
(Table 6). Most larvae caught at the surface were small
and undeveloped (83.0% of the larvae were less than
4 mm BL and 92.3% were in the pre-Xexion stage). On
the contrary, larvae caught at the bottom were larger
(94.8% > 4 mm, see Fig. 4) and more developed (90.3%
were in the Xexion or post-Xexion stages).

During the analysis of the size distribution of the
most representative species (according to the SIMPER
analysis), an interesting pattern emerged for those
species which were present at both depths. In most
cases, only small larvae occurred at the surface whereas
all size classes were present at the bottom (Fig. 5). For
species which were abundant at the bottom, larvae
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from 4 mm to the 10–12 mm or to the 18–20 mm size
classes (depending on the species considered) were
present. These patterns of small larvae at the surface
and diVerent size classes at the bottom could be
observed in the gobiids Pomatoschistus pictus, Gobius-
culus Xavescens and Gobius niger; the sparid Boops
boops and in labrids from the genus Symphodus.
Symphodus melops larvae constituted 55.6% of the
Symphodus larvae present at the bottom where they
were present in the diVerent size classes. Small Symph-
odus larvae (2–4 mm size class) present at the surface
and included in the category Symphodus spp., may
belong to either S. melops or Symphodus cinereus,
since adults of both species are common at the study
site and both larvae have similar pigmentation patterns
when newly hatched (Quignard 1967, 1968; Fives
1976). Finally, Tripterygion delaisi, the third most
abundant species at the bottom, represents an excep-
tion to this pattern, with an overlap of size-class distri-
bution for larvae caught at the surface and at the
bottom with slightly bigger larvae present at the sur-
face (Fig. 5).

Discussion and conclusions

The very nearshore larval Wsh assemblages studied in
the present work were exclusively composed by shore
or shelf-dwelling species. Larvae from shore Wsh
species included sparids, serranids, blenniids, gobiids,
tripterygiids and labrids, reXecting the adult Wsh assem-
blage occurring at the study area (Henriques et al.
1999). Larvae from shelf-dwelling spawners were
mainly clupeids, carangids and engraulids.

These results generally agree with Sabatés et al.
(2003) who found nearshore larval assemblages at a
rocky shore in the northwest Mediterranean to be
essentially composed by shoreWsh species (also includ-
ing gobiids, sparids, labrids, tripterygiids and a few
shelf species). Other studies found similar results in
other geographic areas: New Zealand (Kingsford and
Choat 1989); Gulf of California (Brogan 1994); South
Africa (Tilney et al. 1996); Peru (Velez et al. 2005).
Larvae from slope or oceanic families that are abun-
dant oV the Portuguese coast, like myctophids or par-
alepidids (John and Ré 1993), were not found.

Most coastal species known to breed at the Arráb-
ida Marine Park during the spring and summer period
(Henriques et al. 1999) were present in our samples.
However, there were a few exceptions, like clingWshes
(family Gobiesocidae). Some authors have shown
that clingWsh species can be abundant near reefs (e.g.
Marliave 1986; Kingsford and Choat 1989; Tilney
et al. 1996; Sabatés et al. 2003). Using light-traps we
have been able to conWrm this as we caught many
clingWsh larvae from all size classes in the study area
(unpublished results). A possible explanation for the
fact that, although clingWsh larvae are present in the
area they were not collected in our samples, could be
related to the short planktonic larval duration (PLD)
of these Wshes (15 days for Apletodon dentatus and
13 days for Lepadogaster candolii; Raventós and

Table 3 Shannon diversity index (H�) and average taxonomic distinctness index (�*) in each depth strata and year sampled

F = value of one-way ANOVA (Newman–Keuls post hoc test); t = value of t test for independent samples; Z = value of Mann–Whitney
U test; ns not signiWcant

*P < 0.05; **P < 0.01; ***P < 0.001

Depth Year N Mean H� SD H� Statistics Post hoc test Mean �* SD �* Statistics Post hoc test

Surface 1999 47 1.65 0.53 F = 4.44* 99–00*; 83.06 18.61 F = 1.72 ns
2000 30 1.34 0.48 00–03 * 76.33 16.29
2003 26 1.65 0.35 80.96 4.68

Bottom 2001 43 0.88 0.53 F = 5.72** 01–03*; 53.24 25.86 F = 5.38** 01–02*;
2002 53 1.03 0.46 02–03** 67.14 20.64 02–03*
2003 24 0.62 0.46 53.27 22.64

Surface £ bottom 103 1.56 0.50 t = ¡9.81*** 80.57 15.66 Z = ¡9.44***
120 0.90 0.51 59.39 23.86

Fig. 2 Total larval abundance at each depth strata and in each
year sampled. (S surface; B bottom). Central square mean; large
rectangle mean § SE; whiskers mean § 1.96 SE
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Macpherson 2001). The fast development of ontoge-
netic structures, which could contribute to an active
behaviour of net avoidance, is probably associated
with these short PLDs. In fact, these species hatch at a
large size with an advanced stage of development and
are probably able to actively swim and Wnd shelter
(e.g. hiding among algal tufts, Gonçalves et al. 2003),
thus being able to avoid the net very early in life. This
could explain why they were caught using light-traps,
but absent from the bottom and surface sampling
using nets.

Larval assemblages at the surface and at the bottom
were clearly distinct, indicating that this very nearshore
larval Wsh assemblage is vertically structured at a small
scale (a few metres). The surface assemblage was much
more diverse, being composed by coastal larvae hatch-
ing from both pelagic and demersal eggs. Although
Wltered volumes were also higher at the surface (due to
the diVerent net diameter: net length ratios of the
nets), similarity was higher among bottom samples.
This fact, together with the larger size of larvae col-
lected in the bottom samples (larger larvae could be
expected to more easily avoid the net actively than
smaller larvae), seems to indicate that the detected

diVerences in diversity were not due to the diVerent
Wltered volumes between surface and bottom samples.
The bottom assemblage was composed by a small num-
ber of exclusively nearshore reef-associated species
laying demersal eggs (like gobiids, tripterygiids and
labrids of the genus Symphodus). The exception was
the sparid Boops boops, which is abundant in the study
area and also breeds nearshore (Henriques et al. 1999),
but spawns pelagic eggs.

At the surface, inter-annual Xuctuations were
detected, with the year 2000 presenting signiWcant
lower larval densities and diversities. These variations
could be related to the inter-annual Xuctuations of the
North Atlantic Oscillation (NAO), since, coincidently,
the year 2000 presented particularly high winter NAO
Index values.1 However, the pattern of variation was
diVerent at the bottom. Therefore, more data are
needed to further analyse this relation, although it is
possible that inter-annual diVerences could be caused
by more general climatic Xuctuations. This relation has
been recently described for this study area concerning
the adult rocky Wsh assemblage (Henriques et al. 2006).
Despite these inter-annual Xuctuations, overall larval
density was always much higher at the bottom than at
the surface.

Fig. 3 a Non-metric multidimensional scaling (MDS) plot show-
ing samples for each year and depth strata (B bottom samples; S
surface samples). The spatial segregation of surface and bottom
samples reXects diVerences in the structure of the assemblages. b
Cluster analysis on log (x + 1) transformed data based on a Bray–
Curtis similarity matrix for the diVerent years and depth strata (B
bottom samples; S surface samples)
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1 See NAO Index data provided by the Climate Analysis Section,
NCAR, Boulder, USA, Hurrell (1995) at http://www.cgd.
ucar.edu/cas/jhurrell.

Table 4 Summary of one-way analysis of similarity (ANOSIM)
with pair-wise comparisons of larval assemblages between years
and depth strata

Nine hundred and ninety-nine permutations were used for each
test. The value of the R statistic and its signiWcance are shown.
Numbers in bold represent R values higher than 0.5

S surface, B bottom

R SigniWcance

Global R 0.46 0.001
Surface S 1999 vs S 2000 0.24 0.001

S 1999 vs S 2003 0.18 0.001
S 2000 vs S 2003 0.16 0.001

Bottom B 2001 vs B 2002 0.04 0.02
B 2001 vs B 2003 0.09 0.04
B 2002 vs B 2003 0.03 0.23

Surface £ bottom S 1999 vs B 2001 0.75 0.001
S 1999 vs B 2002 0.68 0.001
S 1999 vs B 2003 0.81 0.001
S 2000 vs B 2001 0.69 0.001
S 2000 vs B 2002 0.71 0.001
S 2000 vs B 2003 0.78 0.001
S 2003 vs B 2001 0.55 0.001
S 2003 vs B 2002 0.55 0.001
S 2003 vs B 2003 0.65 0.001
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Although tidal eVects were not speciWcally addressed
in this study and tidal phase was randomized in our
sampling design, a preliminary analysis showed that
samples collected in the bottom at low tide contained
signiWcantly higher larval abundances than at the rising
tide. In future work, this possible tidal eVect should be

explored in order to evaluate if these patterns are
consistent and determine if they are a simple concen-
tration eVect of larvae in a small water column at low
tide and/or if they reXect any behavioural mechanism
which allows these larvae to be retained nearshore.
The fact that surface and bottom patterns were strik-
ingly diVerent indicates that larvae must have an active
role in the observed patterns.

One could argue that the described vertical patterns
occurred during the day and that they could be diVer-
ent at night, since it is well established that nocturnal
ascent of larger larvae is one of the commonest pat-
terns of diel vertical migration of coastal larval Wsh
(Leis 1991a; Fisher 2004). However, night trawling at
the surface in the same period of the year showed that,
for the species considered, the patterns found during
the day are maintained at night, with only small larvae
found in sub-surface trawls (unpublished results).

The high diversity values found at the surface and
the high density values found at the bottom indicate
that, for a selected number of species, larvae school
near the substrate at high densities. The gobies
Pomatoschistus pictus and Gobius xanthocephalus
dominated this assemblage. Several studies have docu-
mented the presence of Gobiidae larvae nearshore
(Leis 1986a, 1993; Smith et al. 1987; Kingsford and
Choat 1989; Kobayashi 1989; Gray 1993; Brogan 1994;
Gray and Miskiewicz 2000; Kingsford 2001; Sabatés
et al. 2003; Sponaugle et al. 2003), but little is known
about the small-scale distribution patterns near the
substrate in very nearshore waters. Moreover, some
gobies are present nearshore at all size classes of their
planktonic life in diVerent environments. Leis et al.
(1998) found this pattern in gobies occurring in shallow
waters at Taiaro atoll and concluded that they com-
pleted their entire planktonic life cycle near the reefs.
The same result was obtained by Leis et al. (2003) for

Table 5 Similarity percentages analysis (SIMPER) results for
the surface and bottom assemblages with inter-annual results
pooled together for the same depth

Average similarity values and percentage contribution of the
most representative species to the average similarity within each
group, after log (x + 1) transformation of abundance data, are
shown. Cut-oV for low contributions = 95%

Taxa Average 
similarity

Contribution
(%)

Cumulative
(%)

Surface 25.73
Sparidae sp.1 4.88 18.96 18.96
Serranus spp. 4.18 16.23 35.19
Parablennius pilicornis 3.39 13.18 48.37
Sardina pilchardus 3.20 12.44 60.80
Coris julis 1.80 7.00 67.80
Tripterygion delaisi 1.44 5.60 73.40
Engraulis encrasicolus 1.22 4.76 78.16
Sparidae spp. 0.93 3.63 81.79
Coryphoblennius galerita 0.85 3.30 85.09
Gobius niger 0.83 3.22 88.31
Symphodus spp. 0.48 1.87 90.18
Arnoglossus thori 0.34 1.31 91.49
Trachurus trachurus 0.28 1.08 92.57
Pomatoschistus pictus 0.25 0.98 93.54
Diplodus spp. 0.22 0.84 94.39
Callionymus spp. 0.21 0.83 95.22

Bottom 33.99
Pomatoschistus pictus 19.27 56.68 56.68
Gobius xanthocephalus 5.82 17.11 73.79
Tripterygion delaisi 2.48 7.29 81.08
Symphodus melops 2.24 6.59 87.67
Boops boops 1.58 4.64 92.31
Symphodus spp. 1.17 3.44 95.75

Fig. 4 Overall size class dis-
tribution of larvae caught at 
the surface and bottom sam-
ples. BL body length
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several Wsh families (including the Gobiidae) in four
lagoons at two atolls and one island in the French Poly-
nesia. In temperate waters, Beyst et al. (1999) sampled
the hyperbenthos at a maximum depth of 10 m, in subtidal
and tidal marshes at the Dutch Delta, and found
Pomatoschistus microps and Pomatoschistus lozanoi
larvae within the full range of developmental sizes (3–
20 mm). Drake and Arias (1991) sampled larvae in a
shallow coastal inlet at south-west Spain and described
that P. microps was the most abundant species with lar-
vae ranging from 5 to 13 mm while Gobius paganellus
ranged from 7 to 13 mm. Brogan (1994) also found lar-
vae of reef-associated species to be present in all size
classes near reefs at the Gulf of California.

The larvae from the surface assemblage were mostly
small and undeveloped. This indicates that these larvae
are essentially newly hatched, which is in accordance
with the presence of spawning grounds for most of
these species in the study area. The absence of bigger
larvae could be indicative of net avoidance by more
developed larvae at the surface, given the small size of
the net. However, more developed larvae were caught
near the bottom with a similar net. On the other hand,

the light intensity is not much attenuated near the
shallow bottom and therefore the ability of larvae to
visually avoid the net is probably similar at both
depths. Furthermore, samples collected at night also
contained mostly less developed larvae (own unpub-
lished results).

For some of the most abundant species occurring at
the bottom, our results provide evidence of depth-
related ontogenetic distribution patterns, with smaller
larvae, mostly newly hatched, at the surface and larger
and more developed larvae at the bottom. This is true
for Pomatoschistus pictus, Gobiusculus Xavescens,
Gobius niger, Boops boops and probably for Sympho-
dus melops. Moreover, larvae of these species were
found at the bottom in the whole size range of their
planktonic phase. Size at settlement varies with the
species considered: around 17–18 mm for P. pictus;
12 mm for G. Xavescens; and 9 mm for G. niger (Peter-
sen 1919; Russell 1976). In Gobius xanthocephalus, size
at settlement is unknown, but larvae were present in
the bottom samples at up to the 14–16 mm size class.
This indicates that this species is, most likely, also
completing its planktonic life nearshore. In the case of

Table 6 Body lengths (in 
mm) for larvae of the most 
abundant species present in 
the surface and bottom sam-
ples

Family Species Surface Bottom Statistics

Mean SD N Mean SD N

Atherinidae Atherina presbyter 6.26 0.44 14 – – –
Blenniidae Coryphoblennius galerita 3.23 0.22 27 – – –

Parablennius pilicornis 2.66 0.16 229 2.45 0.18 3
Bothidae Arnoglossus thori 2.35 0.34 21 2.82 0.33 5 t = 2.78 *
Callionymidae Callionymus spp. 1.70 0.20 34 1.54 0.15 9 t = 2.27*
Carangidae Trachurus spp. 1.81 0.60 11 – – –

Trachurus trachurus 3.31 0.97 19 2.30 0.06 2
Clupeidae Sardina pilchardus 4.56 1.21 156 4.68 1.62 22 t = ¡0.44 ns
Engraulidae Engraulis encrasicolus 3.53 0.64 103 3.20 – 1
Gobiesocidae Lepadogaster candolii – – – 4.71 0.60 10
Gobiidae Gobius niger 2.83 0.56 60 5.23 1.54 27 Z = 6.49***

Gobius xanthocephalus 5.55 3.75 2 6.38 1.50 674
Gobiusculus Xavescens 2.73 1.07 12 6.37 1.28 37 t = 8.87***
Pomatoschistus spp. 2.96 0.88 4 6.77 1.51 14
Pomatoschistus pictus 2.47 0.61 23 8.44 2.10 1191 t = 21.67***

Labridae Centrolabrus exoletus – – – 7.39 1.19 19
Coris julis 2.28 0.50 61 2.16 0.34 2
Ctenolabrus rupestris 2.55 0.23 3 8.48 5.56 7
Symphodus spp. 2.83 0.17 63 6.97 2.39 53 Z = 8.90***
Symphodus bailloni – – – 5.36 0.82 14
Symphodus melops – – – 6.47 1.18 104
Symphodus roissali 2.86 0.19 13 5.42 1.77 14 Z = 3.62***

Serranidae Serranus spp. 2.15 0.39 135 1.97 0.32 3
Soleidae No id. 2.13 0.35 12 1.47 0.13 3
Sparidae Boops boops 5.91 1.17 9 9.05 2.13 62 t = 4.31***

Diplodus spp. 2.90 0.30 20 – – –
No id. 2.47 0.46 59 2.74 1.42 11 t = 0.54 ns
Sparidae sp.1 2.31 0.68 222 1.79 0.35 12 Z = 2.34*
Pagellus sp.1 2.95 0.30 14 – – –

Trachinidae Trachinus draco 2.52 0.34 16 – – –
Tripterygiidae Tripterygion delaisi 5.39 1.15 127 4.67 0.62 119 Z = 5.06***

Statistical tests were com-
puted for species with at least 
Wve individuals at both depth 
strata

t = t test for independent sam-
ples; Z = Mann–Whitney U 
test; ns not signiWcant; No 
id. = unidentiWed larvae

*P < 0.05, **P < 0.01, 
***P < 0.001
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B. boops, larvae settle within 16–18 days at a TL of
12 mm (Raventós and Macpherson 2001).

The vertical distribution of Wsh larvae may inXuence
larval dispersal (Sponaugle et al. 2002; Paris and
Cowen 2004; Leis 2006); in particular, remaining near
the bottom where Xow is reduced may favour larval
retention near reefs (Leis 1986b; SteVe 1990; Breitburg
1989, 1991; Breitburg et al. 1995). Retention of larvae
near reefs has been documented in recent years in
diVerent systems and is presently identiWed as an
important mechanism of self-recruitment for some
coral reef populations (e.g. Jones et al. 1999, 2005;
Swearer et al. 1999, 2002; Sponaugle et al. 2002; Taylor
and Hellberg 2003; Paris and Cowen 2004). One of the
advantages of nearshore retention for coastal species is
the ability to Wnd a suitable habitat to settle. Disper-
sion may increase mortality since oceanographic pro-
cesses inXuencing larval transport are variable, both
temporally and spatially, and if larvae are not trans-
ported to an adequate habitat, they can be lost (Hick-
ford and Schiel 2003). Although the length of larval life
has been proposed as one of the primary determinants
of dispersal ability (Thresher et al. 1989; Sponaugle
et al. 2002; Lester and Ruttenberg 2005), this relation-
ship is not universal (see Lester and Ruttenberg 2005).
Nonetheless, larvae with a small PLD would have
more diYculty in returning to coastal habitats after
pelagic dispersal in the ocean and in choosing the right
habitat to settle. The data available on PLDs for some
of the main species found at our study site show that,
for Boops boops and Symphodus melops, PLD is less
than 19 days (Raventós and Macpherson 2001). For
Pomatoschistus pictus and Gobius xanthocephalus,

PLDs are not known, but for other gobies which occur
at our study area somewhat longer times have been
described (25 and 22 days for Gobius paganellus and
Gobius cobitis, respectively; Gil et al. 1997; Borges
et al. 2003).

When compared with larvae hatching from pelagic
eggs, shoreWsh larvae hatching from demersal eggs are
larger and typically have functional eyes, developed
Wns and guts, and better swimming abilities (Thresher
1984; Hickford and Schiel 2003). Therefore, retention
is more likely to occur in these kinds of larvae (Spo-
naugle et al. 2002). However, larvae from some of
these species seem to disperse. For instance, for the
most abundant blenny at our site, Parablennius pilicor-
nis, small larvae were very abundant in surface samples
but almost no larvae were caught at the bottom. Drake
and Arias (1991) also found only small Parablennius
sp. larvae (3–5 mm) inshore. Some authors have sug-
gested that blenniids disperse away from reefs (Brogan
1994). The long PLD (over 70 days at controlled condi-
tions, personal communication by C. Faria) and well-
developed pectoral Wns of P. pilicornis larvae make
them good candidates for dispersal. Larvae of this spe-
cies are often found oVshore in the upper layers of the
water column (Olivar 1990).

Our results seem to indicate that, although PLD,
size and development characteristics at hatching can be
important in determining the larval capability to
remain near the adults’ habitat in these coastal species,
other factors must be involved. Larval swimming and
sensory abilities and orientation capabilities may also
have a strong impact in dispersal patterns as larvae can
actively inXuence their position in the water column

Fig. 5 Size class distribution 
at the surface and bottom 
samples for species that occur 
with >25 individuals at the 
bottom samples. Dashed line 
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(Leis and Carson-Ewart 1999, 2000a; Victor and Wel-
lington 2000; Montgomery et al 2001; Cowen 2002;
Fisher and Bellwood 2002b; Leis 2002, 2006; Leis and
McCormick 2002; Mora and Sale 2002; Myrberg and
Fuiman 2002; Fisher and Wilson 2004; Fisher 2005).

The data presented herein indicate that, for some of
the most abundant coastal Wsh species that occurred at
our study site, larvae can complete their entire plank-
tonic phase in the vicinity of the adults’ habitats. More-
over, they seem to be able to actively choose bottom
habitats very early in their pelagic phase and not just in
the pre-settlement stage, as is most commonly reported
(Leis 2006). For many of these species, larvae are prob-
ably able to remain near the bottom, as soon as their
swimming and sensory abilities develop. The observed
vertical distribution patterns, combined with other fac-
tors, could inXuence horizontal positioning, promoting
retention near the benthic rocky habitats at the study
area. Larval distribution patterns depend on the inter-
action between physical oceanographic features and
biological factors, like the adults’ behaviour and ecol-
ogy, life history traits, PLD, larval behaviour and sen-
sory capabilities (Cowen 2002; Leis 2002, 2006;
Sponaugle et al. 2002), and are most likely species-spe-
ciWc. The extent to which the results presented in this
paper could inXuence self-recruitment in these assem-
blages needs further investigation. For instance, the
relationship often found in temperate waters between
larval dispersal patterns and mode of spawning can in
fact be stronger in sheltered coasts (Hickford and
Schiel 2003). Although this relationship was not found
in our study, the degree of larval retention near reefs
can be favoured by the sheltered conditions of the
Arrábida Marine Park shore. It is therefore possible
that the vertical distribution patterns found in this
study diVer, for some species, from those found in
more exposed shores (Leis 2006). Studies focusing on
the active behaviour of larvae and their sensory and
swimming abilities as well as comparisons of larval dis-
tributions for the same species in more exposed shores
may further contribute to understand the very near-
shore distribution patterns described in this paper.
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