
Abstract Coral reef conservation management policy

often focuses on larval retention and recruitment of

marine fish with scant data available on important, less

motile reef-building species such as corals. To evaluate

the concept of population connectivity in corals, we

tested whether broadcast spawning reproduction per se

confers the same degree of dispersal to two sister

species, Montastraea annularis (Anthozoa: Scleractinia;

Ellis and Solander 1786) and M. faveolata (Ellis and

Solander 1786), both dominant taxa in reefs of the

northern Caribbean. Genetic analyses of ten nuclear

DNA loci (seven microsatellite and three single-copy

RFLP) reveal strikingly different patterns of popula-

tion genetic subdivision for these closely related,

sympatric species, in spite of likely identical dispersal

abilities. Strong population genetic structure typified

the architecture of M. annularis, whereas M. faveolata

populations were principally genetically well mixed. A

higher level of clonality was observed in M. annularis

potentially because of a susceptibility to physical

fragmentation. Clonality did not, however, significantly

contribute to population genetic structure or low-level

Hardy–Weinberg and linkage disequilibria observed in

some populations. The lack of consistent association

between reproductive mode and dispersal reinforces

the perspective that population connectivity is not so

much a function of predictable marine population

source and sink relationships as is due to a more

complex interface of oceanic currents interacting with

and amplifying stochastic fluctuations in larval supply

and settlement success. Our results support others

promoting an overall ecosystem approach in marine

protected area design.

Introduction

Stony corals are the foundation of highly diverse

marine ecosystems, providing structure, habitat, and

primary productivity over vast areas of tropical near-

shore habitat. Globally, many coral reef ecosystems are

on a declining trajectory, as bleaching, disease, pollu-

tion, siltation from terrestrial run-off, fishing, and a

variety of other natural and anthropogenic pressures,

singly and in combination, take their toll (Gardner

et al. 2003; Pandolfi et al. 2003; Bellwood et al. 2004;

Jones et al. 2004). Degradation frequently is noted for

Caribbean coral reefs (Hughes 1994; Hughes and

Tanner 2000; Gardner et al. 2003) with a growing

indication that the Great Barrier Reef system of
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Australia also is deteriorating (Bellwood et al. 2004). A

current focus of coral reef conservation is on estimat-

ing the degree of ecological interconnectivity of spa-

tially disjunct reef systems (e.g., Bode et al. 2006;

Cowen et al. 2006). Understanding the scale of dis-

persal for reef organisms will, in theory, provide a

spatial context for drawing marine reserve boundaries

as either protecting locally self-propagating popula-

tions or as encompassing larger-scale areas that rely on

regionally separated larval pools. The actual degree of

population connectivity in organisms capable of long

distance dispersal, however, has been the subject of

considerable debate (Roberts 1997; Jones et al. 1999;

Swearer et al. 1999; Cowen et al. 2000, 2006; Rocha

et al. 2002; Palumbi 2003; Taylor and Hellberg 2003).

Levels of genetic subdivision indicative of local larval

retention have been observed for a number of species

with pelagic larvae, contradicting paradigms that pe-

lagic larvae are effective long distance dispersers

(Hamm and Burton 2000; Taylor and Hellberg 2003;

Cowen et al. 2006).

Inferring degrees of connectivity may be particularly

difficult for taxa within the reproductively-protean or-

der Scleractinia because its members are known to

outcross (Knowlton et al. 1997; Szmant et al. 1997),

inbreed (Knowlton and Jackson 1993), hybridize

(Knowlton et al. 1997; Szmant et al. 1997; Vollmer and

Palumbi 2002) and propagate clonally (Veron 2000),

all of which contribute in differing ways to population

subdivision. Sedentary as adults, corals rely on free-

floating larvae for dispersal and recruitment, and as

expected, brooding species of coral, generally charac-

terized as dispersal-challenged, have lower levels of

gene flow than species with mass-spawning gametic

phases (Hellberg 1994, 1996; Ayre and Hughes 2000).

The degree to which corals with higher dispersal

potentials are genetically structured, however, is not

clear. When considering the population structure of

only mass-spawning species, genetic mixing among

reefs has been moderate to high and often if present,

the resulting genetic subdivision is generally distance-

dependent (Hellberg 1996; Ayre and Hughes 2000;

Mackenzie et al. 2004). In other cases, however, even

proximate sites within reefs exhibit genetic differenti-

ation, particularly for highly clonal, broadcast-spawn-

ing species (Ayre and Hughes 2000). In the Caribbean

basin, populations of Acropora palmata cluster into

two major regions, one eastern and one western, be-

tween which no recent genetic interchange has oc-

curred (Baums et al. 2005). Even patterns of

population subdivision within a single mass-spawning

species (Plesiastrea versipora) are not consistent, with

highly restricted gene flow along the southeast

Australian coast contrasting to genetic homogeneity

over a similar range in the Ryukyu Archipelago of

Japan (Rodriguez-Lanetty and Hoegh-Guldberg 2002).

Clearly, no consensus view of dispersal and population

subdivision in coral species has yet emerged.

Members of the Montastraea annularis species com-

plex (Anthozoa: Scleractinia; M. annularis and M. fa-

veolata [Ellis and Solander 1786] and M. franksi

[Gregory 1895]) are generally slow growing and long-

lived, and show low rates of sexual recruitment

(Knowlton et al. 1997; Hughes and Tanner 2000).

Ecologically, these boulder corals provide the structural

reef integrity throughout much of the Caribbean and

consequently are important conservation targets. As

such, they are one of the most extensively studied reef-

building corals in the western Atlantic (Knowlton et al.

1997; Szmant et al. 1997; Hughes and Tanner 2000;

Budd and Pandolfi 2004; Fukami et al. 2004; Levitan

et al. 2004). Reports that reef communities are shifting

from these framework-building genera (e.g., Montast-

raea spp. and Acropora spp.) to non-framework build-

ing taxa (e.g., Agaricia spp. and Porites spp.) (Edmunds

and Carpenter 2001; Knowlton 2001; Cho and Woodley

2002) make it particularly important that baseline

genetic information for putatively declining species

(such as Montastraea spp.) be garnered quickly. Mon-

tastraea spp. are hermaphroditic with gametes that are

synchronously mass spawned annually in the late sum-

mer (Sammarco and Andrews 1988; Szmant 1991).

Planulae larvae develop within 24 h of spawning and

can remain at the surface for up to 96 h before settling

(Wellington and Fitt 2003). Broadcast spawning and

pelagic larva confer upon Montastraea spp. an expected

ability to disperse widely. Previous studies in these

corals have focused on their potential for hybridization

because of their similar biology, overlapping spawning

periods and the morphological diversity present among

and within each of the species (Knowlton et al. 1992;

Knowlton et al. 1997; Szmant et al. 1997; Fukami et al.

2004; Levitan et al. 2004). Although the three species,

M. annularis, M. faveolata and M. franksi, exhibit sim-

ilar spawning schedules over a 4–8 day period typically

following the full moon in August, multiple isolating

mechanisms appear to maintain the sympatry of these

species (Levitan et al. 2004). For example, M. franksi

begins spawning a day earlier than M. annularis and

M. faveolata, and, if in a given day, all three are

spawning, M. franksi precedes the other two species by

at least 2 h. This temporal lead for M. franksi is par-

ticularly important with respect to its relationship with

M. annularis, because laboratory-mating studies indi-

cate a substantial degree of compatibility between

gametes of these two species. M. annularis and
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M. faveolata, on the other hand, spawn nearly syn-

chronously, but fertilization trials have shown that their

gametes are predominantly, but not completely,

incompatible (Knowlton et al. 1997; Szmant et al. 1997;

Levitan et al. 2004). Until the issue of hybridization in

these corals formalizes, the species designations are at

best tentative, but for our purposes, evaluating such

closely related taxa with similar range distributions and

mass-spawning reproductive strategies allows us to

analyze the interdependence of dispersal potential and

hydrodynamics on reef connectivity.

Here, we use a combination of ten polymorphic

nuclear DNA markers constituted by three single-copy

restriction-fragment-length polymorphisms (RFLP)

and seven microsatellite, to test for associations be-

tween gene flow and reproductive strategy in popula-

tions of the dominant Caribbean coral reef species,

M. annularis and M. faveolata. By including and com-

paring two marker types, we can minimize any marker-

specific effects that could potentially distort an accu-

rate picture of population connectivity. Although

mitochondrial DNA often is used in population

genetics studies of animals, it evolves much too slowly

in coral to be useful at the population or even species

levels (Shearer et al. 2002). Single-copy RFLP gene

markers have predominantly been used in gene map-

ping and domestic animal and plant breeding studies

(Paterson et al. 1988; Martin et al. 1989). These

markers, however, also have proven effective in pop-

ulation genetics of natural populations for sorting out

anomalies or uncovering hidden molecular variation

not detected by other means (Karl and Avise 1992;

Karl et al. 1992; Cattell and Karl 2004). Microsatellites

are the current favorite tool of population biologists

and as highly polymorphic loci are particularly useful

for genotyping reproductively complex organisms such

as corals because unique genets usually can be identi-

fied with a high degree of accuracy and precision. As

one facet of a multidisciplinary and comprehensive

evaluation of the state of Caribbean coral reefs, this

genetic component can aid management authorities in

matters concerning connectivity, heritable bleaching

susceptibility, and transplantation strategies geared to

maximize genetic diversity, and to maintain genetically

distinct populations.

Materials and methods

DNA markers

Seven microsatellite and three anonymous single-copy

nuclear DNA markers were isolated as described

previously (Severance et al. 2004a, b). For the single-

copy locus analyses, RFLP of polymerase chain

reaction (PCR) amplification products were used to

genotype individuals. In this di-allelic system, indi-

viduals were scored as either homozygous for the

presence of, homozygous for the absence of, or het-

erozygous for cleavage at an endonuclease recogni-

tion site. Microsatellite genotypes were determined by

the size of fluorescently labeled PCR fragments that

were size sorted on an ABI 377 automated sequencer

(Iowa State University Sequencing Facility). PCR

conditions for amplifying field samples using both sets

of markers were reported previously (Severance et al.

2004a, b).

Field samples

Using SCUBA, a total of 127 M. annularis and 152

M. faveolata samples were collected in water at

depths from 0 to 25 m at four locations in the

Western Atlantic (Table 1; Fig. 1). Unlike with fast-

growing branching corals, collecting samples from the

massive boulder-like corals is more threatening to

the health of the coral; consequently utmost care was

taken to minimize damage to sampled colonies. The

number of samples collected at any one location was

highly restricted by the governing marine authorities

and by the number of colonies present at any given

site. With respect to the latter, we collected fewer

M. annularis individuals simply because they were

less abundant at some sites and completely absent at

others. Approximately 2–4 cm2 sections of M. annu-

laris and M. faveolata were removed with a hammer

and chisel from the basal portion of the colony and

placed in labeled plastic zip-lock bags. Samples were

stored on ice immediately following the dive and

placed in 90% ethanol for longer term storage as

soon as feasible. Multiple sites separated by less than

10 km were sampled within each geographic location.

At all sites, only one sample per coral head was

collected and to the extent possible, only nonadja-

cent coral heads were collected to minimize multiple

recording of the same individuals or clone mates.

Likewise, our sampling methods specifically targeted

colonies that were morphologically unambiguously

either M. annularis or M. faveolata. Consequently,

any colony of questionable taxonomic identity was

avoided and the potential of collecting hybrids

(Szmant et al. 1997) was minimized. Details con-

cerning collection sites including the reefs sampled,

depth, longitude and latitude coordinates, and the

number of samples taken from each location are

summarized in Table 1.
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DNA extraction

DNA was extracted using a modified Chelex protocol

(Walsh et al. 1991). Colony fragments of approxi-

mately 4 mm2 were placed in 500 lL of 5% Chelex and

boiled for 15 min. Samples were vortexed for 15 s and

centrifuged for 5 min at 15,000 rpm. The supernatant

was removed, placed in a new tube and extracted three

times with 25:24:1 phenol:chloroform:isoamyl alcohol

and once with 24:1 chloroform:isoamyl alcohol. The

solution was incubated for 1 h at 65�C and then over-

night at room temperature with a 4 M lithium chloride

solution. The mixture was centrifuged for 30 min and

the pellet resuspended in 50 lL of 1x TE (10 mM Tris–

HCl, pH 7.5, 5 mM EDTA). Maintaining the stability

of the DNA isolated in this way proved challenging;

therefore, amplifications were performed as soon as

possible after DNA isolation.

Population genetic analyses

Tests for conformance to Hardy–Weinberg genotype

frequency equilibrium (HWE) expectations and for

significant deviations from linkage equilibrium were

performed using ARLEQUIN v. 2.00 (Schneider et al.

2000). Population sample pairwise FST estimates for

single-copy RFLP data and significance tests also were

performed using ARLEQUIN v. 2.00. FST values were

estimated based on a count of the number of each al-

lele (Weir and Cockerham 1984; Michalakis and

Excoffier 1996; Schneider et al. 2000) and significance

levels estimated by permuting genotypes between

populations for 3,024 iterations and the probability (P)

reflecting the proportion of permutations leading to an

FST value equal to or larger than the observed. For

microsatellite loci, sample pairwise Rho values, an

unbiased estimator of Slatkin’s RST (Slatkin 1995), and

Table 1 Details of sample collection location and sites and numbers of individuals collected at each site

Collection location and site Depth (m) Coordinates Number of samples

M. annularis M. faveolata

La Parguera Reef, Puerto Rico
Beril Reef (PR1) 20 17�55¢N 4 5

67�56¢W
San Cristobal Reef (PR2) 0–5 17�54¢N 12 10

67�04¢W
Media Luna Reef (PR3) 1–20 17�56¢N 14 15

67�03¢W
Total 30 30

Tulum Region, Yucatan, Mexico
Patch Reef (YC1a) 7–14 20�02¢N 12 15

87�28¢W
Spur and Groove Reef 1 (YC1b) 7–14 20�02¢N 19 26

87�28¢W
Spur and Groove Reef 2 (YC2) 0–3 18�53¢N 7 7

87�38¢W
Total 38 48

Lower Florida Keys, Florida, USA
West Washerwoman Reef 1 (LK1) 15–25 24�33¢N 12 23

81�34¢W
West Washerwoman Reef 2 (LK2) 15–25 24�32¢N 15 19

81�37¢W
Total 27 42

Dry Tortugas, Florida, USA
Fort Shoals Reef (DT1) 10–15 24�37¢N 26 20

82�52¢W
Little Africa Reef (DT2) 0–3 24�38¢N 6 0

82�55¢W
NE Loggerhead Reef (DT3) 0–3 24�38¢N 0 12

82�55¢W
Total 32 32
Grand total 127 152

Sample site abbreviations used in the text are in parentheses
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significance tests were calculated using RSTCALC

version 2.2 (Goodman 1997). We chose Rho because

there is an explicit consideration of mutation and mi-

crosatellite loci clearly do not evolve under the infinite

allele model assumed with FST. Estimates of Rho were

calculated across all loci and tested for significance

based on 1,000 bootstraps, each with 1,000 permuta-

tions. All population genetic analyses were done sep-

arately for each set of molecular markers and with and

without clonal replicates included (see text beyond).

To minimize the possibility that null allele effects were

contributing to the observed population genetic struc-

ture, analyses were also performed with and without

the dinucleotide locus, MS2-17, which seemed to am-

plify some individuals less efficiently than the other

markers. Sample sites within reefs were pooled if

sample pairwise comparisons of FST and Rho values

were not significantly different from zero. Isolation by

distance was tested using a linear correlation coeffi-

cient of log transformed geographic distance versus

Nei’s D (Nei 1972), dl2 (Goldstein et al. 1995), and

chord distance (Cavalli-Sforza and Edwards 1967)

which were calculated using the program MICROSAT

(Minch 1995). Geographic distances were estimated as

the most direct aquatic route between sites.

For each population, multi-locus genotypes, includ-

ing microsatellite and single-copy loci, were sorted in

Microsoft Excel and unique genotypes were identified.

Evaluating clonality using microsatellite markers offers

distinct advantages over other marker based systems

because the high mutation rate at these loci generates a

large number of alleles per locus (Sunnucks et al. 1996;

Gomez and Carvalho 2000; Reusch et al. 2000). The

microsatellites used here averaged approximately 21

alleles per locus (Severance et al. 2004a), indicating

that they are likely to be highly sensitive in the iden-

tification of clonal genotypes. Nevertheless, we tested

the probability that each identical genotype could be

the result of sexual reproduction using MLGSIM

(Stenberg et al. 2003). Corresponding critical P values

were calculated using 10,000,000 simulations. Signifi-

cant differences between species in the number of

clonal genotypes relative to non-clonal genotypes were

tested by chi-square analyses.

Results

Hardy–Weinberg equilibrium

For both species, significant deviations from HWE

were present and all but one were heterozygote defi-

cits. In M. annularis, 13 of the 44 locus-by-population

tests (29.5%) deviated significantly before sequential

Bonferroni correction. Seven of these were for the loci

MS12 and MS2-17, which were two of the most diverse

loci with 29 and 27 alleles, respectively, (Severance

et al. 2004a). In M. faveolata, 9 of the 49 tests (18.4%)

deviated significantly before sequential Bonferroni

correction. Seven of these were for MS12 and MS2-17

where 24 and 29 alleles were seen in this species. No

other locus showed consistent deviations across sam-

ples. The Dry Tortugas samples of both M. annularis

and M. faveolata deviated at seven and three of the ten

loci, respectively. This result persisted when clonal

genotypes were removed and when sites within the Dry

Tortugas were analyzed separately. No other sample

had a preponderance of loci that deviated from HWE

expectations. All significant differences remained so

after sequential Bonferroni correction (P = 0.01) (Rice

1989).

Population genetic structure

Sample pairwise FST and Rho estimates between col-

lection sites within locations were not statistically dif-

ferent from zero so they were pooled except for the

Yucatan locations. Here, M. annularis individuals from

the two YC1 sites (YC1a and YC1b) were indistin-

guishable but different from YC2, so we pooled the

YC1 sites but not YC1 with YC2. Although the M. fa-

veolata samples from these sites were not genetically

statistically differentiated, they were kept separate to

facilitate interspecific comparisons. The resulting mi-

crosatellite Rho and single-copy FST values for pairwise

comparisons of major locations are shown in Tables 2

and 3. In M. annularis, significant inter-reef genetic

subdivision was indicated for eight of the ten micro-

satellite and for seven of the ten single-copy pairwise

location comparisons (Table 2). The average pairwise

 

DT  LK
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Atlantic Ocean

 

Caribbean Sea

Gulf of Mexico

Fig. 1 Major geographic locations sampled in this study. Site
abbreviations are as in Table 1
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population Rho was 0.11 ± 0.07 (SD) and
�FST ¼ 0:38 � 0:29: Conversely, for M. faveolata there

was little to no significant among location differentia-

tion with only one each of the ten pairwise Rho or FST

values significantly different from zero (Table 3). The

average Rho (0.01 ± 0.02) and �FSTð0:03 � 0:03Þ for

M. faveolata also were significantly less than the values

estimated for M. annularis (P £ 0.01; 1-tailed t test;

Sokal and Rohlf 1995). FST values of the single-copy

markers were generally larger than the Rho values of

the microsatellites, which was not surprising given the

mutational mode differences between these two types

of loci. Nevertheless, both sets of markers reflected the

same pattern of interspecific differences (i.e., M. ann-

ularis was more genetically structured than M. faveo-

lata), thus verifying that the observed structure is not a

marker-specific phenomenon. Similarly, removal of the

possible null-allele-associated locus MS2-17 from the

analyses did not significantly change resulting Rho

values in these comparisons. There was no significant

association between genetic and geographic distance

even for M. annularis where most pairwise tests of

population differentiation were significant (data not

shown).

It is possible that ascertainment bias from develop-

ing the markers with M. annularis may account for at

least some of the difference seen between the species.

We do not, however, believe that this is the case here.

We have shown that these loci are highly polymorphic

(Severance et al, 2004a, b) and that the degree of

variability is nearly identical in both species (see sup-

plemental material A and B). Further, if ascertainment

bias existed, we would expect to see a higher hetero-

zygosity and lower FST in the species from which the

markers were developed (i.e., M. annularis) when, in

fact, we observe just the opposite.

Clonality

Individuals that possessed an identical set of alleles

(i.e., genotype) at all ten nuclear loci were considered

clones. Most individuals appear to have been produced

by sexual reproduction as evidenced by a preponder-

ance of unique genotypes in the sample (Table 4).

Identical multi-locus genotypes, however, were ob-

served in all populations (except YC2) from both

species. No sharing of identical genotypes occurred

between populations in major geographic regions. By

using the program MLGSIM (Stenberg et al. 2003), we

estimated the probability that any of the observed

putative clonal genotypes was actually the result of

sexual reproduction was less than 10–15. This proba-

bility was significant compared to the simulated critical

values at P £ 0.05. We conclude, therefore, that the

Table 2 Population pairwise genetic divergence estimates for Montastraea annularis individuals surveyed and the number of
individuals screened (N; first number is for single copy and second number is for microsatellite loci)

N PR YC1 YC2 LK DT

PR 28/28 – 0.08 (0.07) 0.19 (0.24) 0.01 (0.01) 0.10 (0.09)
YC1 26/31 0.00 (0.00) – 0.11 (0.12) 0.02 (0.02) 0.12 (0.10)
YC2 7/7 0.74 (0.72) 0.70 (0.70) – 0.14 (0.19) 0.23 (0.23)
LK 27/27 0.04 (0.04) 0.00 (0.00) 0.67 (0.66) – 0.06 (0.05)
DT 29/31 0.48 (0.45) 0.40 (0.40) 0.47 (0.46) 0.33 (0.31) –

Below the diagonal are single-copy FST estimates and above are microsatellite Rho values. Numbers in parenthesis are Rho and FST

values recalculated excluding clonemates (see text for details)

Values statistically different from zero (P £ 0.05) are in bold

Table 3 Population pairwise genetic divergence estimates for Montastraea faveolata individuals surveyed and the number of
individuals screened (N; first number is for single copy and second number is for microsatellite loci)

N PR YC1 YC2 LK DT

PR 28/29 – 0.02 (0.01) 0.00 (0.00) 0.01 (0.02) 0.05 (0.04)
YC1 40/41 0.00 (0.00) – 0.00 (0.00) 0.01 (0.03) 0.03 (0.03)
YC2 7/7 0.02 (0.01) 0.04 (0.04) – 0.00 (0.01) 0.00 (0.00)
LK 31/42 0.03 (0.04) 0.01 (0.01) 0.10 (0.10) – 0.01 (0.01)
DT 30/31 0.00 (0.01) 0.00 (0.00) 0.05 (0.05) 0.00 (0.00) –

Below the diagonal are single-copy FST estimates and above are microsatellite Rho values. Numbers in parenthesis are Rho and FST

values recalculated with clonal individuals excluded (see text for details)

Values statistically different from zero (P £ 0.05) are in bold
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identical genotypes observed were generated via

asexual reproduction.

Over all samples, the total percent of clonally pro-

duced individuals in M. annularis (x = 18.6%) was

significantly higher than that observed in M. faveolata

(x = 9.2%; P £ 0.025; v2 test). The magnitude of asex-

ual reproduction varied among populations (Table 4).

For M. annularis, Puerto Rico and the Dry Tortugas

had the highest percentage of clonal individuals (21.4

and 25.8%, respectively). In general, the M. faveolata

populations had few clones, except for the LK sample

where 14.6% of the sampled individuals were clonally

derived (Table 4). Although clonality did not represent

the predominant mode of reproduction among our

populations, we felt compelled to reanalyze our genetic

structures excluding clonemates, especially with re-

spect to M. annularis, since this species was associated

with both higher levels of genetic subdivision and clo-

nality. The degree of significant population genetic

subdivision remained unchanged following re-analysis

(Tables 2, 3).

Linkage disequilibria

Nonrandom associations between loci revealed that

significant associations of microsatellite alleles oc-

curred in most populations of both species (data not

shown). No locus pairs, however, consistently were

linked, suggesting that the deviations are not due to

physical linkage. For M. faveolata, none of the 15

possible single-copy dilocus comparisons and only 11

of the 105 (10.5%) possible microsatellite dilocus

comparisons showed statistically significant linkage

(P £ 0.01). For M. annularis, zero of the 15 single copy

and 33 of the 105 (31.4%) microsatellite dilocus

comparisons were statistically significantly linked

(P £ 0.01). Two populations, the Dry Tortugas and the

Lower Keys, accounted for 27 of the significant mi-

crosatellite disequilibria (16 and 11, respectively).

These populations also indicated relatively higher fre-

quencies of clonal reproduction. Surprisingly, Puerto

Rico, despite a high frequency of clones, had only three

di-locus comparisons, which were in disequilibrium.

Reanalysis of linkage disequilibria with clonal indi-

viduals removed resulted in a decrease of the number

of linked loci for the Lower Keys population from 11 to

7 but no change for the Dry Tortugas population.

Reanalysis without pooling sample sites within regions

did not change the number of linked loci.

Discussion

In our study, two sister species of mass-spawning

Scleractinian coral exhibited very different population

genetic structures, indicating that common reproduc-

tive mode need not imply common patterns of gene

flow. Whereas sites within reefs were generally undif-

ferentiated, populations of M. annularis among major

geographic regions showed significant interpopulation

genetic divergence. This is characteristic of a restric-

tion in gene flow among the northern Caribbean pop-

ulations examined in our analysis. To the contrary,

M. faveolata populations were genetically indistin-

guishable throughout the same range in spite of nearly

identical larval dispersal ability. These results demon-

strate that realized dispersal, at least for Montastraea

spp. cannot be accommodated under a single model of

larval exchange. In reference to geography or larval

strategy, the genetic patterns revealed here do not

correspond to either a strictly open model of larval

dispersal mediated by oceanic currents, or a closed

model of restricted dispersal and local recruitment.

Spawning strategy or putative larval dispersal ability

simply are not reliable predictors of the potential for

panmixia, and other ecological or evolutionary pro-

cesses must underlie the discordant genetic patterns. It

is conceivable that even if two species were identical in

all important respects, as long as there is non-syn-

chronized variance around mean life history parame-

ters among species, confluence of this variance with

environmental variance can result in a benefit to one

species without necessarily benefiting the other. In

other words, even in the absence of differences in

larval biology, M. faveolata can have a good spawning

and settlement year, whereas M. annularis does

not. Given the rarity of sexual recruitment and the

longevity of the species, the effect of any chance

Table 4 Clonality in Montastraea spp. observed in this study

N Genotypes Individuals

Number
of unique

Number
of clonal

Clonal
(%)

Number
of clonal

Clonal
(%)

M. annularis
PR 28 25 3 12.0 6 21.4
YC1 31 29 2 7.0 4 12.9
YC2 7 7 0 0.0 0 0.0
LK 27 24 2 8.3 5 18.5
DT 31 26 3 11.5 8 25.8
Total 124 111 10 9.0 23 18.6

M. faveolata
PR 30 29 1 3.5 2 6.7
YC1 41 39 2 5.1 4 9.8
YC2 7 7 0 0.0 0 0.0
LK 41 38 3 7.9 6 14.6
DT 33 32 1 3.1 2 6.1
Total 152 145 7 4.8 14 9.2
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differences is likely to persist for a long time. Collec-

tively, this and other studies (e.g., Ayre and Hughes

2000, 2004; Miller and Ayre 2004) reinforce that coral

population structure, like coral life-history, is complex

and likely influenced by numerous factors including

geographic scale and micro- and macro-physicalities

specific to individual reefs.

The dominant mode of reproduction for Montast-

raea spp. is considered to be sexual (Szmant 1991), and

therefore, the finding of clonality in both species in the

present study is noteworthy. Clonality in these species

contrasts with previous allozyme studies where all

M. annularis and M. faveolata samples from Curaçao

and Panama had unique genotypes (sample sizes were

25 and 43, respectively; Knowlton et al. 1992; Van

Veghel and Bak 1993). The degree of clonality,

therefore, is more likely a consequence of extrinsic

influences rather than an inherent aspect of the

organism’s mode of reproduction. For example, asex-

ual propagation via polyp expulsion during periods of

unfavorable conditions has been reported in Favia fa-

vus in the Red Sea and Oculina patagonia in the

Mediterranean Sea (Kramarsky-Winter et al. 1997).

Given the declining population sizes and health of

Caribbean corals (Gardner et al. 2003), this asexual

survival strategy cannot be ruled out, although its

occurrence in Montastraea spp. has not been docu-

mented. A more likely explanation and one that ac-

counts for the differences observed between the

species, however, may be physical colony fragmenta-

tion. The importance and association of clonality via

colony fragmentation and disturbance has been well

documented for coral (Tunnicliffe 1981; Hughes et al.

1992; Coffroth and Lasker 1998). Fragmentation and

disturbance also may explain the differences in the

apparent rates of clonality seen among the Montastraea

morphotypes. Unlike the broad-based M. faveolata, the

more columnar and sometimes top-heavy growth form

of M. annularis is particularly predisposed to physical

fragmentation (Edmunds 1994), and lobes could be

broken off and scattered by storms. A similar growth

form was believed to have enabled a now extinct or-

gan-pipe M. annularis-like morphotype to colonize

regions of high illumination in shallow water habitats,

but predisposed it to fragmentation during times of

disturbance (Pandolfi et al. 2002). Hurricanes can

cause substantial damage to coral reefs, and because

coral reefs in the Caribbean have been subjected to

considerable storm activity over the past few decades

(Rogers et al. 1991; Rogers 1992; Gardner et al. 2003),

such disturbances likely are a proximate force for col-

ony fragmentation in M. annularis. In addition, con-

cerns about changes in ocean chemistry due to global

warming resulting in carbon-dioxide-induced coral

skeletal dissolution (Kleypas et al. 1999; Hughes et al.

2003) are particularly relevant to this species, as this

predicted climate change would act to compound an

already structurally compromised physical morphology

of M. annularis.

During the initial colonization of these reefs, it is

possible that they were settled by cohorts of larvae

from geographically subdivided and genetically differ-

entiated subpopulations resulting in admixture. Reefs

would be similarly admixed if, over the course of the

history of a reef, self-recruitment (i.e., larvae recruiting

back to reefs from which they were spawned) was low

and larval sources for particular locations frequently

changed depending on hydrodynamic conditions

(Wolanski 1994). Our observed deviations from

Hardy–Weinberg genotypic frequency equilibrium and

linkage equilibrium in some populations are consistent

with mixing of genetically differentiated populations

resulting in admixture (e.g., Dry Tortugas). We do not,

however, see indications of widespread departures

from equilibrium and therefore do not believe it is a

dominant feature of underlying evolutionary processes

occurring in these Montastraea species. Nevertheless, it

is interesting that the population most affected by both

Hardy–Weinberg and linkage disequilibria was the Dry

Tortugas M. annularis population, even when the fac-

tors of clonality and null-allele effects were removed

from the analyses. This location is considered to reside

in an oceanographic hotspot (Lee et al. 1994; Lee and

Williams 1999) that is particularly subjected to tem-

poral micro- and meso-scale current fluctuations.

Large and small-scale oceanic water circulation

patterns can interpose between random events and the

biology of a species and may account for the con-

trasting patterns of genetic connectivity observed in

this study. Water flow in the Caribbean basin is com-

plex with current patterns characterized by the pres-

ence of eddies, meanders, and transient gyres that can

act as mechanisms for larval access to and retention in

inshore settlement sites (Yeung and McGowan 1991;

Lee et al. 1992, 1994; Criales and Lee 1995; Lee and

Williams 1999; Limouzy-Paris et al. 1997; Yeung and

Lee 2002, Cowen et al. 2006). Figure 2 illustrates the

complexity of surface current movement as tracked by

294 drift buoys released from 1978 to 2003 and ar-

chived and analyzed by the National Oceanographic

and Atmospheric Administration, Atlantic Oceano-

graphic and Meteorological Laboratory program

(Gyory et al. 2005). This plot shows a considerable

number of areas devoid of tracks as well as numerous

eddies where buoys are temporarily entrained in local

vortices (e.g., Fig. 2 bold track). Similarly, Murphy and
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Hurlburt (1999) using linear and non-linear simulation

models have demonstrated how decaying rings broken

off from the North Brazil Current during retroflection

are advected through the Lesser Antilles and form

anticyclonic eddies. These eddies transit the Carib-

bean, often intensifying greatly along the way, before

emerging into the Gulf of Mexico through the Yucatan

Channel approximately 10 months after entering the

basin. Larvae entrained in these eddies would only be

able to settle if or when these cohesive water masses

next encounter suitable habitat. A linear relationship

of geographic distance between reefs and degree of

genetic connectivity, therefore, would not be expected.

With our data, correlations of genetic [(dl)2 and Nei’s

D] with geographic distances were not significant (data

not shown) for either M. annularis where most pairwise

tests of population differentiation were significant or

for M. faveolata where genetic homogeneity indicative

of widespread dispersal would presumably reflect iso-

lation-by-distance mechanisms. Given a somewhat

limited geographical sampling, however, we may lack

the power to detect isolation-by-distance, if present.

With respect to our genetic data in the context of

ongoing oceanographic research in this locale (Yeung

and McGowan 1991; Lee et al. 1992, 1994; Criales and

Lee 1995; Lee and Williams 1999; Limouzy-Paris et al.

1997; Yeung and Lee 2002), we posit that genetic con-

nectivity among reefs due to ocean currents will be

significantly influenced by factors peculiar to each spe-

cies, spawning season, spawning year, and geographical

location as well as inherent biological factors. The het-

erozygote deficiencies of the Dry Tortugas, for example,

could very well be the result of localized eddies resulting

in enhanced settlement of related recruits in this region

for M. annularis but not for M. faveolata. The lack of

divergence among M. faveolata populations or the

presence of divergence among M. annularis may simply

be a result of chance timing of larval entrainment in

eddies either enhancing or retarding inter-reef dis-

persal. Since these are long-lived organisms as adults

(a typical one-meter diameter, adult colony is at least a

century old [Hughes and Tanner 2000]), the genetic

signal of historical events also will be detected far into

the future. Taken together, we believe that the highly

variable and sometimes counterintuitive inferences

drawn from studies of population connectivity in corals,

Caribbean and Pacific alike, are a reflection of the var-

iable hydrodynamic regime in which the species live.

The inability of species to realize a level of popu-

lation connectivity commensurate with intrinsic dis-

persal potential can be attributed to a complex web of

interactions (Hedgecock 1986; Connell et al. 1997).

The population genetics of these two Montastraea spp.

indicate that connectivity must be gauged on a species

by species basis even for sympatric, closely related taxa

with seemingly identical life history characteristics.

This conclusion holds important implications for the

conservation and management of natural marine sys-

tems. The establishment of marine reserves as a fish-

eries management and conservation tool is fast

replacing classical, target-species catch and effort

quota approaches, but debate centers on the place-

ment, size, and arrangement of marine protected areas

(MPAs) (Ogden 1997; Roberts and Schmidt 1997). In

theory, MPA design and management strategies pre-

serve processes acting at ecological scales (i.e., dis-

persal and recruitment among present-day

populations); yet genetically defined connectivity

encompasses evolutionary scales (Leis 2002). The re-

sults of this research emphasize that indirect assess-

ments based solely on presumed dispersal potential or

even population genetic structure may be misleading.

Considerations such as the frequency of clonal repro-

duction or temporal variation in reproductive success

may be more important than larval dispersal potential

in defining the health or connectivity of coral reefs. As

such, the results add additional support for the need for

a total ecosystem approach to the design of marine

protected areas. Accurately defining distinct species

groups or habitats as open (Roberts 1997) or closed

(Cowen et al. 2000) may be impossible at anything but

the species level. Delineating marine reserves, there-

fore, may be as data intensive as traditional single-

species catch quotas.

Mexico

South America
Pacific Ocean

90° W 80° W 70° W 60° W

Fig. 2 Spaghetti plot tracks for 294 near-surface drift buoys from
1978 to June 2003. This figure is based on, and modified from, the
National Oceanographic and Atmospheric Administration,
Atlantic Oceanographic and Meteorological Laboratory Drifting
Buoy Data Assembly Center data (see Gyory et al. 2005). All of
the buoys were released in the southeastern Caribbean (i.e.,
lower right of the figure) and the principle direction of flow is to
the northwest (i.e., upper left of the figure). The bold path
corresponds to the track of buoy 09526392 from late March to
early November 1996. During the August spawning season of
Montastraea spp., the buoy spent the first three weeks in the loop
indicated with an arrow
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