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An analytic model for air drying
of impermeable wood

A. J. Hunter

Abstract An analytic model for the process of air drying of boards of
impermeable wood was developed in the light of some new experimental results.
The work includes a new and informative way of plotting the data, a formula for
the drying time and a derivation for the diffusion coefficient function within the
wood. It was found necessary to take into account the aspect ratio of the board,
and that the correction term for evaporative cooling was also significant. The
notion of impermeability implies that there is no movement of cell lumen water
under the influence of capillary pressure.

Symbols

a, b half thickness and half width of board respectively, m
D(r) diffusion coefficient function for wood as a function of equilibrium
relative humidity, kg/m s Pa

film coefficient for mass transfer, kg/m2 s Pa

mass flux, kg/m2 s

pressure of water vapour, Pa

relative humidity

surface area of board, m>

temperature, K

time, s (unless otherwise specified)

volume of board, m>

distance parameters

average moisture content parameter

o y axis intercept, Fig. 1

shape factor, (15)
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Ap  wet-bulb depression vapour pressure, Pa
AT  wet-bulb depression temperature, K

v distance parameter

pg  basic density, kg/m3

o  moisture content of wood

@  average moisture content

Subscripts

d drying

e empty lumen

i initial

s surface

w  wet-bulb

X corresponding to the position parameter, x
0 corresponding to y = 0; except for y,
1 corresponding to y = 1

oo  ambient conditions

Introduction

Traditionally drying models for wood have relied on an analogy with Fick’s law
for the diffusion of a solute in a liquid solution. This gives rise to the “diffusion
equation” with moisture content as the potential, and enables standard solutions
of this equation to be applied to wood drying. Such solutions usually assume one-
dimensional flow. The present model takes the pressure of water vapour to be the
potential for water movement, and flow towards the short sides of the board is
taken into account.

King (1945) and then Joy (1951) used a graphical method of differentiation to
evaluate the diffusion coefficient as a function of moisture concentration and
equilibrium relative humidity respectively. Skaar (1954) then formalised the
process by differentiating under the integral sign to make the determination
explicit. Such method is employed here and extended to enable the diffusion
coefficient function to be determined from the drying curve.

Experiment
The experimental work under consideration concerned a section of Eucalyptus
regnans (basic density, 485.6 kg/m’), 200 mm long X 90 X 40 mm” cross-section.
It was dried under nominally constant conditions of 43 °C, 0.47 rh and about
0.5 m/s air flow velocity. For the purpose of the simulation, the drying was
deemed to commence when the average moisture content returned to its initial
value after some increase took place through condensation. The initial average
moisture content was 1.127 and the empty lumen moisture content (fibre satu-
ration) was taken as 0.28. The term “empty lumen” has been used because it may
be that the cell wall is saturated over the entire hygroscopic range (see Hunter
1996).

A useful descriptor for the average moisture content is defined

Wi — @

y=a=? (1)

Wi — We

o; is the initial, @ the average and w, the empty lumen moisture content.



In terms of y we have for the mass flux

F="E (0 - 00 @)

where p, is the basic density, S is the surface area where drying takes place, V the
volume of the board and t is time.
At the beginning of the drying, the flux F is also given by

F =dAp (3)

where d is the film coefficient for mass transfer, and Ap is the wet-bulb depression
vapour pressure. From (2) and (3) we have for the film coefficient

ng(wi - Cl)e) ﬂ

d= SAp  dt

(4)

0

Now also at the start of drying, both t and y approach zero and so by L’Hospitals
rule (Taylor 1952)

d
_1 / dy
0 dt
It is useful therefore to graph the drying data in the form y versus t/y and from

the intercept with the t/y axis, d can be calculated immediately from (4).
Referring to Fig. 1 for the above experiment we find
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(t/y)p,=48.3h

and d = 4.64 x 1078,

10
08
y
06 [
04
02 |
0 .
i 200 300
2 ty (hours)
04
06 F7 %
08
- Fig. 1. Drying data. y is the moisture

10 b content parameter and t is time
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Clearly the data in Fig. 1 present the shape of a logarithm and so in Fig. 2,
In t/y is plotted against y.
The functional relationship is

Y = voIn[(t/y)/(t/y)] (6)

If y =1 we have
1

Yo = R[] @)

Yo is also the negative of the y intercept of the tangent to the data at y = 0.

If the drying time t4 corresponds to when the moisture content parameter y = 1,
then from (6)

ta = (t/y)oe!/ (8)

Psychrometry and the mass flux

A vapour pressure — temperature diagram for the process is shown in Fig. 3. The
wood surface initially achieves the wet-bulb temperature of the drying air. The
surface then rises in temperature (assumed to prevail throughout the board), and
follows the wet-bulb line, ultimately to the state of the drying air.

The mass flux
Differentiating (6) and using (2) and (3) we find for the mass flux at the surface

-v/Yo
E, — dAp y,e (9)
Y+Yo
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Again at the surface we have

Fs = d(p, — P.) (10)
so with (9) we have

AP Yoe_Y/Yo

(11)
Y+Yo

Ps = Poo T

With reference to Fig. 3 therefore, a reasonable approximation for the relative
humidity at the surface is

(1 — roo>yoe7Y/Y0

s = I + (12)
Y+
and also
T,—T. - AT(rs — 1) (13)
1 —ry

The moisture plateau

If the wood is considered to be impermeable (no movement of cell lumen water
under the influence of capillary pressure), then we may assume a plateau of
moisture content of fixed, uniform height whose plan area is diminishing (Fig. 4).
Most of the water resides within this plateau and so it is reasonable to neglect
accumulation in the hygroscopic region.
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Front position

Fig. 4. Moisture content diagram showing square
front

The shape factor, o
With reference to Fig. 5, it is clear that at any time the mass flux is at a minimum

at the external surface (F,), and the variation of flux is described approximately
by

Fs

where a is the half thickness of the board, za is the distance in from the surface
and

a+b
2a (15)

If the drying front progresses the same distance za in from each surface, it will be
found that the parameter y above, is related to z by

2b

l_/

2(b - a)

1 2(a+b) | Fig. 5. Defining the shape
f 1 factor, o




z(200 — 2z)
200—1

y = (16)

Hence

1—z/o=+/1— (20— 1)y/o? (17)

and
200 — 1
de_ 2271 (18) 487
dy 201 —z/a) A

Note that for large o, the flux becomes one-dimensional and y = z. With reference
to (9), for small y, z

Y0e7Y/Y0

~1-2y/y (19)
Y+ Yo 0
and with (16) above

—Y/Yo
Yo€ a1 4oz (20)
Y + Yo (200 — 1)y,

Substituting into (12)

4oz

(I —r15) (1 —rw)m

(21)

The diffusion coefficient function D(r)
The diffusion coefficient function D(r), where vapour pressure is the potential, is
defined by

_ D(r)dp
T (22)

where ax is the distance from the surface. The value of D(r) at r = 1, D, (satu-
ration or empty lumen) is therefore the value of the diffusion coefficient at the
wood surface at the commencement of drying. At such time we can write

F, = dAp =~ %ﬁrps) (23)

and therefore

dAp =~ M (24)

Za

Substituting for 1 — r, from (21)
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Dep(1 — 1) 4o

dAp =~ 25
P ay, 200—1 (25)
In the limit as y — 0, p. becomes p,, and we have
20—1 da A
De — o a p YO (26)

4o (1 - roo)pw

From our experiment, y, = 0.585 and inserting the remaining values we find
for D, the value 5.23 x 10™'". Equation (26) gives a means for calculating the
value of the diffusion coefficient D, at saturation from the intercept yy; the other
parameters in the equation are known. Substituting from (4), (5) and (26) into
(8), we have for the drying time

V(w; — we —
G- JAY ) 20—1  daAp (27)
SdAp 40 De(1 —roo)py,
or by eliminating o using (15)
P V(w; — we) 1Vvd A
= T o8 2P (28)
Sd Ap 2SDe (1 — ro0)Py,

For times for different stages of drying, the y value corresponding to particular
average moisture content should multiply the coefficient and the exponent in
(28).

Determining the diffusion coefficient function D(r) from the drying curve
For the flux within the hygroscopic region we have

F=Pepp &

" o (29)

where va is measured in from the wood surface. Applying (14) and integrating in
from the surface

Z 1

F, / 1 _dvv /a:% / D(r)dr (30)

Is

1

or —oFIn(l—z/a)= %/D(r)dr (31)

Taking the flux F; from (9) and differentiating (31) with respect to r; we have

e7Y/Y0 1
1+y/y,Pe

d
D(r;) =ada Apa

In(1 — z/a)} (32)



Performing the differentiation

D(r;) e RS d In(1 — /)dzdy
ada Ap 1 +y/y0pedz
-Y/¥,
—eiiln(l —z/a) dp dT.
1+7v/y,Pe dT. dr,
e7Y/YO 1 dy
e T In(l —z/a)-L (33
dy 1+y/y,Pe b=, )
g—}Z’ is obtained from (18), ((11—3: from (12), c(lﬁ": from (13) and
dp. _p.|B
e _Fe |/ 4
ar, =T, [Te 5} .

which is a form of the Clapeyron equation (Hunter 1991).
With these substitutions

D(rs)(1 — 1o pe _ 1 \/1

(200 — 1)y/o?
ad a Ap vy, %= Ly/

1 “¥/Yo AT
¢ [——5]1 V11— (20— 1)y/o?
Yo H‘Y/Yo T

+20c—1 1+7v/y,
2 (1—(2a—1)y/a?)(24y/y,)

With a substitution for y, from (26) into the left hand side of (35) we have

(35)

(1+ Y/Yo)
(1= (20— 1)y/o2)(2+y/,)
D(rs) _ Py C R T e v ey
R = [1n/(T= (22— 1))y/ (36)
e "0 AT [ 5
41+y/YOT—e{T—e—5]1\/1 (20— 1)y/a

A substitution of zero for y in terms (i), (ii) and (iii) in (36) gives zero for terms
(ii) and (iii). If pe = pw, term (i) gives D(r;) — D, as required. In order to graph
D(rs), (1) is given in terms of y in (12).

The function D(r;) corresponding to the above experiment is shown in Fig. 6
together with a previous determination for Scots pine (Hunter 1993). Refer also to
Table 1.

Relative humidity in the hygroscopic region
The equilibrium relative humidity in the hygroscopic region enables the moisture
content profile to be determined.

If the distance into an arbitrary position is xa where the relative humidity is r,,
the lower limit in (30) can be changed to give
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Fig. 6. The diffusion coefficient function.
The curve intersecting the humidity axis is
from the present work

Relative humidity (r)

Table 1. The diffusion coefficient function

Y z ﬁ Is T, °C Pe Ps D(r)/D,
0 0 1 1 32.05 4775 4775 1
0.05 0.0350 0.8458 0.9183 33.74 5251 4667 0.748
0.10 0.0708 0.7198 0.8515 35.12 5670 4579 0.561
0.20 0.1449 0.5294 0.7506 37.20 6356 4443 0.297
0.30 0.2230 0.3958 0.6798 38.67 6883 4349 0.108
0.40 0.3057 0.2998 0.6289 39.72 7282 4282 —0.041
0.50 0.3939 0.2294 0.5916 40.49 7587 4232 —-0.164
0.60 0.4889 0.1770 0.5638 41.06 7820 4195 —-0.261
0.70 0.5927 0.1376 0.5429 41.49 8000 4167 -0.313
0.80 0.7081 0.1076 0.5270 41.89 8171 4146 —-0.269
0.90 0.8404 0.0846 0.5148 42.07 8249 4130 0.016
1.0 1.0 0.0668 0.5054 42.27 8336 4117 1.096
1
oF iM% P / D(r)dr (37)
1—x/a a

Iy
Eliminating F using (31)

ln% 7fr1xD(r)dr
In(1 —z/a)  [*D(r)dr

which is the required result.
If, for example, we take



1

D(r) x ——— 39
T (39)
which is quite realistic (Hunter 1993) we find
1-X/o
1 = arctan[(l - rx)\/ﬂ (40)

In(1 —z/a) arctan[(l - rs)\/ﬂ

For the above experiment the equilibrium relative humidity curves are shown in
Fig. 7.

Discussion

The model described arose out of the observation of the logarithmic relationship
presented by the data when graphed in the form of Figs. 1 and 2. A one di-
mensional, constant temperature model, when examined in the light of the above
data proved to be inadequate and so the geometric factor and the wet-bulb de-
pression terms were incorporated. The resulting model shows how, for example,
the drying time may be affected by changes in the humidity of the drying air.
Also, graphing of the data in the forms suggested by Figs. 1 and 2 gives a direct
determination of the internal and external diffusion coefficients. Reference is
made to Egs. (4), (5) and (26).

The diffusion coefficient function derived from the experiment is very similar
to such a function derived directly from diffusion cup experiments although from
a different wood species.

The diffusion coefficient function derived in this way is limited to the range of
relative humidity greater than that of the drying air. It will be noticed also that in
the vicinity of r, the diffusion coefficient function exhibits some negative values.
Such values are, of course, impossible and must be attributed to the sensitivity of
such values to the approximations involved in the model.
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It is interesting to note that (28) suggests that for given values of the other
parameters, the product dAp could be selected to minimise the drying time. This
is achieved when the exponent in (28) is equal to unity.
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