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Abstract
Catalpa bungei is an economically important native hardwood in China whose 
hygroscopic behavior is vital for industrial applications as it influences the final 
product’s dimensional stability and mechanical properties. In this study, the adsorp-
tion and desorption behavior of earlywood and latewood in the same growth ring of 
C. bungei wood samples was documented using a dynamic vapor sorption resolution 
and analyzed using the Guggenheim–Andersen–de Boer (GAB) model. The early-
wood and latewood exhibited varying sorption isotherms and hysteresis degrees, and 
the reasons were analyzed in terms of structure and chemical composition (mainly 
hemicellulose and lignin). The influence of benzene–alcohol extracts and vessels on 
sorption characteristics was also examined. The GAB model perfectly fits the exper-
imental data (R2 ≥ 99.7%) over the full relative humidity range. Specifically, parame-
ters such as the internal specific surface area of wood can be obtained from the GAB 
model to help explain the differences in sorption properties between earlywood and 
latewood. The maximum water content bound to the primary sites for earlywood and 
latewood is 6.87% and 7.47%, respectively. Correspondingly, two internal specific 
surface areas are 261 m2/g and 284 m2/g, respectively. The adsorption isotherms of 
earlywood and latewood in C. bungei cannot be fully classified as type II.
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Introduction

Moisture content is an important factor affecting wood’s performance and utility. 
The wood–water relation, including the adsorption/desorption behavior, is still 
the focus of research both from theoretical and practical points of view (Hill and 
Xie 2011; Hill et al. 2015; Salmén and Larsson 2018; Chen et al. 2020; Hou et al. 
2022). Meanwhile, the wood structure is highly heterogeneous and hierarchically 
organized; therefore, the moisture sorption behavior of wood in response to rela-
tive humidity (RH) variations is complex (Bonnet et  al. 2017). Several studies 
have shown that the sorption isotherm differs between wood species (Popper and 
Niemz 2009; Albrektas and Ukvalbergienė 2015; Gao et al. 2019; Ouertani et al. 
2022). Moreover, the sorption characteristics of different sampling positions of 
the same wood species and the sorption behavior between juvenile and mature 
wood also differ (Lenth and Kamke 2001; Majka and Olek 2008; Esteban et al. 
2015; Lopes et  al. 2022; Garcia et  al. 2022). The heartwood and sapwood in 
wood can also influence the sorption isotherm (Ball et  al. 2001; Obataya et  al. 
2006; Broda et  al. 2019; Quartey et  al. 2021; Lopes et  al. 2022). Experiments 
have also revealed differences in hygroscopicity between normal and compres-
sion (tension) wood (Gorišek and Straze 2006; Huda et al. 2018; Zhan et al. 2021; 
Majka et  al. 2022a). The hygroscopicity differences of samples studied above 
are due to variations in structure and chemical composition. Earlywood and late-
wood are derived from the same cambial initial cells in the cambium layer, while 
their cell morphology and cell wall structure differ dramatically according to the 
season. Earlywood cells are produced during the spring growth period and have 
expanded lumens and relatively thin cell walls. Latewood tracheid has smaller 
lumens with thicker cell walls that provide the mechanical strength to support 
the large tree size (Kurata et al. 2018). Therefore, theoretically, the structure and 
chemical composition of earlywood and latewood will be different, affecting their 
sorption properties.

As early as the 1970s, Ahlgren et  al. (1972) began to study the differences 
in sorption characteristics between earlywood and latewood. The fiber saturation 
point (FSP) was determined to be higher in earlywood than in latewood in Doug-
las fir (Pseudotsuga menziesii) and aspen (Populus tremuloides) by the exclusion 
solute method. However, due to the technical level constraints, the measured FSP 
was too high, and the accuracy remains to be discussed. Kärenlampi et al. (2005) 
showed that the equilibrium moisture content (EMC) of spruce latewood was 
slightly higher than that of earlywood, and the EMC of the two did not change 
after multiple moisture sorption cycles. Derome et  al. (2011) and Patera et  al. 
(2013) also showed that the EMC of Norway spruce (Picea abies) latewood was 
higher than that of earlywood at the same RH, attributed to the thicker S2 layer 
of latewood. Their article focused on the swelling and shrinkage of wood, and did 
not deeply explore the sorption characteristics of earlywood and latewood. Hill 
et  al. (2015) used a dynamic vapor sorption (DVS) analyzer to study the sorp-
tion characteristics of earlywood and latewood in different annual rings of Japa-
nese larch wood (Larix kaempferi), confirming the difference between the two, 
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showing that the hygroscopicity of earlywood was stronger than that of latewood 
in the same growth ring, which became more pronounced as the distance from 
the pith increased. In addition, the results indicated that the sorption isotherms of 
earlywood had good reproducibility after two sorption cycles, while the sorption 
isotherms of latewood showed significant differences. Research by Bonnet et al. 
(2017) showed that the difference in sorption isotherms between earlywood and 
latewood was caused by the difference in sorption capacity, and the environment 
and role of bound water in earlywood and latewood was similar. However, not all 
studies were as speculated; that is, the sorption characteristics of earlywood and 
latewood were different. Neimsuwan et  al. (2008), Sargent et  al. (2010), Shar-
ratt et  al. (2010) and Hill et  al. (2011) studied the sorption isotherms of early-
wood and latewood of loblolly pine (Pinus taeda), radiata pine (Pinus radiata), 
Scots pine (Pinus sylvestris) and Sitka spruce (Picea sitchensis), respectively. 
The results indicated that the sorption isotherms of earlywood and latewood 
almost overlapped under any RH condition. Compared with latewood, earlywood 
responded more rapidly to changes in environment RH, and the sorption rate of 
earlywood was higher than that of latewood. Therefore, it is still controversial 
whether the sorption characteristics of earlywood and latewood are different, and 
further discussion and research are needed.

Desorption gives higher EMC than adsorption at equal environmental condi-
tions, a phenomenon termed sorption hysteresis. Hysteresis can be interpreted by 
the ‘ink-bottle’ theory (McBain 1935), the hydroxyl groups concentrations par-
ticipating in adsorption and desorption (Urquhart 1960), or the ‘contact angle’ 
theory (Chen and Wangaard 1968), changes in the free volume in the glassy state 
of the polymer (Vrentas and Vrentas 1996) and the formation of metastable states 
of adsorbate in fixed pores (Sander et al. 2005). Both the ‘ink-bottle’ and ‘con-
tact angle’ theories assume the presence of liquid water, that is, capillary water. 
Based on the conceptual framework of Vrentas and Vrentas (1996), researchers 
proposed that the sorption hysteresis of wood is related to changes in the sof-
tening properties of the constituent wood polymers during water vapor sorption; 
in other words, adsorption and desorption take place in materials with different 
physical properties (Hill et al. 2010; Engelund et al. 2013; Fredriksson and Thy-
bring 2018; Salmén and Larsson 2018). Although the sorption hysteresis behav-
ior of wood has been documented, the investigations on the sorption hysteresis 
behavior of earlywood and latewood were very limited.

The aim of this study was to investigate the sorption behavior of earlywood 
and latewood in the same growth ring of C. bungei and explain mechanisms in 
terms of their sorption behavior. Adsorption and desorption behavior of early-
wood and latewood in the same growth ring of C. bungei wood samples was doc-
umented using a dynamic vapor sorption (DVS) resolution. The results were ana-
lyzed using the Guggenheim–Andersen–de Boer (GAB) model, and the sorption 
isotherms and hysteresis of C. bungei earlywood and latewood were compared. 
The effects of structure and chemical components on earlywood and latewood’s 
sorption isotherms and hysteresis were discussed.
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Materials and methods

Sample preparations

Clear wood samples without any visible defects or knots were cut from the 32nd 
growth ring of the heartwood of a 44-year-old C. bungei tree. The earlywood and late-
wood from the 32nd growth ring were used because they have representative oven-dry 
density. Most importantly, the 32nd growth ring is wider than other growth rings allow-
ing obtaining an equal volume of earlywood and latewood samples. Earlywood and 
latewood samples were rectangular solids within 2.5 (radial) × 4 (tangential) × 4 (longi-
tudinal) mm3 dimensions. All samples were dried in a sealed container with phospho-
rus pentoxide at room temperature until a constant mass was achieved. The oven-dry 
density of earlywood and latewood was 330 kg/m3 and 410 kg/m3, respectively. The 
average values of five replicates per sample are reported.

Determination of chemical components

The contents of cellulose, hemicellulose and lignin in earlywood and latewood of C. 
bungei were determined by Van Soest’s analytical method, and the results are shown in 
Table 1. The Soxhlet extraction-rotary evaporation method was used to determine the 
benzene–alcohol extract content, and the results are shown in Table 2.

Dynamic water vapor sorption

Wood samples’ water vapor sorption behavior was determined using a dynamic 
vapor sorption apparatus (DVS Resolution, Surface Measurement Systems, UK). 

Table 1   Chemical components 
of earlywood and latewood in 
Catalpa bungei 

Results represent the average ± SD from three independent experi-
ments

Polymers in the cell wall Earlywood Latewood

Cellulose (%) 43.43 ± 0.2 45.46 ± 0.4
Hemicellulose (%) 12.13 ± 0.5 16.16 ± 0.2
Lignin (%) 27.38 ± 0.1 21.95 ± 0.7

Table 2   Extract content and average hysteresis coefficient of bamboo, rattan and C. bungei 

References Species Extract (%) Average hyster-
esis coefficientBenzene–alcohol

Zhang et al. (2002) Bamboo 6.47 0.88
Wu (2007) Rattan 4.02 0.80

C. bungei of latewood 3.98 0.77
C. bungei of earlywood 2.05 0.70
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The samples were exposed to relative humidity (RH) variations for adsorption and 
desorption, as shown in Fig. 1. The adsorption and desorption periods were taken at 
a constant temperature of 25 ± 0.1 °C for approximately 9 days. Adsorption started 
at 0% RH and increased in 10% RH increments up to 95% RH, and desorption 
decreased to 0% RH, also in 10% RH decrements. Referring to the findings of Glass 
et  al. (2017, 2018), combined with the authors’ previous experimental experience 
(Ouyang et al. 2022), samples were maintained at a constant RH, until the weight 
change was less than 0.002% min−1 for 10 min and then continued at the current RH 
for 180 min. Data on weight changes were acquired every minute.

Guggenheim–Andersen–de Boer (GAB) model

The GAB model, frequently applied to modeling the sorption isotherms of bam-
boo and wood (Bratasz et al. 2012; Olek et al. 2013; Florisson et al. 2020; Su et al. 
2020; Charupeng and Kunthong 2022; Majka et  al. 2022b), was used to describe 
the water vapor sorption isotherms of earlywood and latewood samples because it 
is capable of describing the full shape of type II isotherm and yields meaningful 
physical parameters (Hartley 2000; Timmermann 2003), and the GAB parameters 
can provide the internal specific surface area of water. The GAB model is based 
on the theoretical concept of multilayer sorption. The model describes water mol-
ecules bonding to sorption sites to form a monomolecular layer; water molecules 
in the monolayer become secondary sorption sites, and additional water layers are 

Fig. 1   Humidity conditions at each step for adsorption and desorption runs; red line represents the equi-
librium stage of moisture content; blue line represents the maintenance stage of equilibrium moisture 
content (Colour figure online)
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formed (multilayer sorption) (Basu et al. 2006). Briefly, the model equations were 
as follows:

where EMC refers to the equilibrium moisture content of earlywood and latewood 
(%); Xm is the monolayer capacity (%); C is the equilibrium constant related to the 
monolayer sorption; K is the equilibrium constant related to the multilayer sorption; 
and RH is the relative humidity (%). Origin 2018 (Origin Lab Corporation, North-
ampton, MA, USA) analysis software was used to obtain the models’ parameters by 
the least square method and fit isothermal adsorption data.

Results and discussion

Adsorption and desorption isotherms

The water vapor adsorption and desorption isotherms for earlywood and latewood 
samples reported as EMC against RH are depicted in Fig. 2. The adsorption–des-
orption isotherms for all samples formed a closed loop. Meanwhile, all samples 
showed noticeable moisture sorption hysteresis over the full RH range. The EMC 
of each sample in the adsorption isotherm was lower than that in the desorption iso-
therm. However, the EMC values of the two sample types differ during the sorption 

(1)EMC =
100 ⋅ X

m
⋅ C ⋅ K ⋅ RH

(100 − K ⋅ RH) ⋅ (100 + (C − 1) ⋅ K ⋅ RH)

Fig. 2   Equilibrium moisture content of earlywood and latewood plotted against relative humidity during 
adsorption and desorption. Ad: adsorption; De: desorption
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process. During adsorption (0–95% RH) or desorption (95–0% RH), the EMC of 
the latewood sample was higher than that of the earlywood under any RH. At the 
highest RH (95%), earlywood and latewood samples reached EMCs of 14.54% and 
15.66%, respectively. Structurally, earlywood and latewood densities  were 330 kg/
m3 and 480  kg/m3, respectively. On the one hand, earlywood contains a larger 
lumen and thinner cell wall, while latewood consists of thick-walled cells with small 
lumens. On the other hand, hygroscopic behavior has also shown the difference in 
the main components of the cell wall, as hemicelluloses provide the highest number 
of OH groups available for water sorption, followed by cellulose and lignin (Chris-
tensen and Kelsey 1959). It can be seen from Table 1 that the content of cellulose 
and hemicellulose in latewood was higher than that in earlywood, and the content 
of lignin was lower than that in earlywood. Therefore, compared with earlywood, 
latewood has a higher density, higher cellulose content, higher hemicellulose con-
tent and lower lignin content, so it has more accessible OH groups (Bertaud and 
Holmbom 2004; Bonnet et al. 2017; Kurata et al. 2018). While the large earlywood 
vessels commonly become embolized or occluded with tyloses by the end of the 
growing season in ring-porous tree species, blocking the sorption of the earlywood 
cell wall (Li et  al. 2019). In contrast, the smaller and safer latewood vessels may 
remain functional for many years (Kitin and Funada 2016).

In addition, during adsorption at 80–95% RH, the sorption rate of the earlywood 
and latewood suddenly increased. The reason for this sudden increase in the upper 
end of the hygroscopic range was unknown. The different EMC values between ear-
lywood and latewood under the same RH during moisture adsorption (desorption) 
are shown in Fig.  3. In water adsorption or desorption, the different EMC values 
between earlywood and latewood increased first and then decreased. The turning 
point was 80% RH. It could be speculated that the number of micro–nano-pores in 
the earlywood is higher than in latewood (Engelund et al. 2013); more capillary con-
densed water was formed when the RH was higher than 80%, hence the phenom-
enon shown in Fig. 3.

Sorption hysteresis

Absolute hysteresis (obtained by subtracting the EMC of adsorption from the EMC 
of desorption isotherm at a constant RH) and the hysteresis coefficient (the EMC 
for adsorption to EMC for desorption ratio at constant RH) are two common mois-
ture sorption hysteresis characterization methods (Olek et  al. 2013; Zhang et  al. 
2018; Ouyang et  al. 2022). The changes in the absolute moisture sorption hyster-
esis and moisture sorption hysteresis coefficients are shown in Fig. 4. As shown in 
Fig. 4a, the absolute hysteresis values of the earlywood and latewood samples were 
1.05–2.78% and 0.92–2.56%, respectively. Regardless of earlywood or latewood, 
when the RH was 10–70%, the absolute hysteresis increased with the increase in 
RH; when the RH was 70–90%, the absolute hysteresis decreased with the increase 
in RH. Many previous studies (Bertolin et al. 2020; Chen et al. 2020; García-Iruela 
et  al. 2020) had also observed this phenomenon. The absolute hysteresis of sam-
ples decreased at 70% RH, most likely due to hemicelluloses softening (Olsson and 
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Salmén 2003). One explanation is that it crosses the glass transition point at this 
moisture range at room temperature, allowing the accommodation of more water 
molecules within the wood’s cell wall (Engelund et al. 2013). Another explanation 
is that when a glassy solid absorbs or desorbs water, it is affected by the “rigidity” 
of the macromolecules. It is likely that molecular chains cannot be quickly arranged 
to adapt to the entry and exit of water molecules, so the adsorption and desorption 
processes occur in different physical environments and cause hysteresis (Hill et al. 
2009, 2010); while RH is higher than 70%, the molecule is in a rubbery state, it 
is more flexible and can respond immediately to the entry and exit of water mol-
ecules. Hence, the hysteresis weakens or even disappears (Hou et al. 2022). In addi-
tion, under any RH condition, earlywood absolute hysteresis was larger than that 
of latewood, which is also due to earlywood lignin content being higher than that 
of latewood (27.38% > 21.95%); higher lignin content will cause more absolute 
hysteresis in the wood cell wall (Hill et  al. 2009; Kulasinski et  al. 2015; Derome 
et al. 2018; Yang et al. 2018). There are many unsaturated groups in the molecular 
structure of lignin, reducing the lignin molecules’ flexibility and increasing hyster-
esis (Lu and Pignatello 2004). Hemicellulose also affects absolute hysteresis. Zhou 
et al. (2016) found that the higher the hemicellulose content, the greater the absolute 
hysteresis. According to Hou et al. (2022), this was because the complex network 
formed between hemicellulose and lignin reduces the mobility of hemicellulose; the 
molecular chain cannot be arranged quickly enough to adapt to the entry and exit of 
water molecules, showing an absolute hysteresis increase. However, Table 3 shows 
that the lignin content of latewood was lower than in earlywood (21.95% < 27.38%), 
while the hemicellulose content was higher than in earlywood (16.16% > 12.13%). 

Fig. 3   Difference of equilibrium moisture content for earlywood and latewood during adsorption or des-
orption as a function of relative humidity
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Moreover, from previous studies (Hill et al. 2009; Kulasinski et al. 2015; Zhou et al. 
2016; Derome et al. 2018; Yang et al. 2018; Hou et al. 2022), lignin and hemicellu-
lose contents were positively correlated with the absolute hysteresis. Therefore, it is 
speculated that lignin has a more pronounced influence on absolute hysteresis than 
hemicellulose. Furthermore, many tyloses in vessels of earlywood can also increase 
absolute hysteresis. The existence of many tyloses in the vessels of earlywood exerts 
a physical barrier effect on the moisture sorption of earlywood (Li et al. 2019).

As shown in Fig. 4b, the hysteresis coefficient ranges of earlywood and latewood 
were 0.56–0.91 and 0.65–0.95, respectively. Under any RH condition, the hysteresis 
coefficient of latewood was larger than that of earlywood. Zhang et al. (2018) cal-
culated the hysteresis coefficient of fourteen kinds of bamboos, and the hysteresis 
coefficient with an average of 0.88; the average hysteresis coefficient of rattan was 
0.80 (Yang et al. 2021). However, hysteresis coefficients in earlywood and latewood 

Fig. 4   Absolute hysteresis (a) and hysteresis coefficient (b) of earlywood and latewood samples



516	 Wood Science and Technology (2023) 57:507–521

1 3

of C. bungei were 0.70 and 0.77, respectively. Compared with rattan and bamboo, 
hysteresis coefficient of C. bungei was relatively small, which might be related to 
its low extract content, as shown in Table 2. It is known that the presence of extrac-
tives in wood can influence the sorption isotherm (Popper et al. 2007). The presence 
of extractives clogs pores and other channels inside the material preventing the free 
entry and exit of water molecules (Kymäläinen et al. 2018). Therefore, the hysteresis 
coefficient increased. It could also be seen that the extract content of earlywood was 
the lowest, so its hysteresis coefficient was less than that of latewood.

The water sorption hysteresis variation of different samples seems to be a very 
complex phenomenon. Hou et al. (2022) showed in their research that the interaction 
and cross-linking between wood components influenced hysteresis. Hence, a more 
detailed study is required to explain the difference in the water sorption hysteresis 
behavior of different samples.

Fitting the GAB model to the date

The results of fitting the GAB model to the data of the earlywood and latewood 
samples are presented in Table 3. The GAB model perfectly fits the experimental 
data (R2 ≥ 99.7%) over the full RH range. The fits were valid as all the R2 values 
were above 99.0% (Esteban et al. 2015). GAB parameters can be used to compare 
the hygroscopic properties of the earlywood and latewood samples. Among them, 
the Xm obtained from the adsorption branch refers to the moisture content when the 
monolayer is full and can be used to estimate the internal specific surface area cor-
responding to the monolayer capacity. The internal specific surface area (SGAB) is 
defined as

Table 3   Fitted model parameters and internal specific surface areas for earlywood and latewood in 
Catalpa bungei, bamboo, rattan, Spruce (Picea abies), and Douglas fir (Pseudotsuga menziesii) based on 
the GAB model

Xm is the monolayer capacity (%), C equilibrium constant related to the monolayer sorption, K equilib-
rium constant related to the multilayer sorption, R2 coefficient of determination, SGAB is the internal spe-
cific surface area
a Zhang et al. (2018)
b Yang et al. (2021)
c Gao et al. (2018)

Samples Adsorption Desorption

Xm (%) C K R2 (%) SGAB (m2/g) Xm (%) C K R2 (%)

Earlywood 6.87 3.84 0.58 99.74 261 9.80 5.94 0.47 99.76
Latewood 7.47 4.46 0.60 99.81 284 11.07 5.91 0.47 99.79
Bambooa 4.47 4.70 0.80 95.69 170 9.07 3.91 0.61 96.17
Rattanb 7.67 5.42 0.74 99.43 293 10.33 5.95 0.53 99.46
Sprucec 5.18 11.41 0.76 99.66 197 –
Douglas firc 5.07 12.12 0.75 99.68 194 –
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where ρ is water density; NA is the Avogadro number, 6.022 × 1023; σ is the aver-
age area where water occupies the complete monolayer (0.114 nm2 was used in this 
study), and M is the molar mass of water, 18 g/mol. As shown in Table 3, Xm of ear-
lywood and latewood samples is 6.87% and 7.47% for adsorption, respectively. Cor-
respondingly, SGAB of the two is 261 m2/g and 284 m2/g, respectively. Both Xm and 
SGAB are higher in the latewood samples than in the earlywood samples, correspond-
ing to the greater cellulose and hemicellulose content in latewood than in earlywood 
(Table  1), indicating that both the hydrophilic group content and the monolayer 
adsorption capacity are greater in the latewood than in the earlywood. As shown 
in Table 3, Xm and SGAB of the earlywood and latewood of the hardwood C. bungei 
are similar to those of rattan and higher than bamboo and some softwoods, indicat-
ing that their hydrophilic group content is greater than that of bamboo and some 
softwoods. The Xm values were consistently lower for adsorption than desorption 
processes (Olek et al. 2013; Majka et al. 2022b). This is consistent with the results 
reported by Krupińska et al. (2007) and indicates that during adsorption, the binding 
energy between the active sites and multilayer water molecules is higher than during 
desorption.

The values of the C in Table 3 are higher than 2 for earlywood and latewood 
samples. Therefore, the necessary condition for classifying the isotherms as type 
II was satisfied (Olek et  al. 2013; Majka et  al. 2022b). Lewicki (1997) states 
that type II isotherms should also satisfy the following two inequalities, where 
5.57 ≤ C < ∞ and 0.24 < K ≤ 1. These additional conditions were met for desorp-
tion isotherms only. That means, the adsorption isotherms cannot be fully clas-
sified as type II. Except for bamboo, higher C values were noticed during des-
orption than adsorption (Table 3). Hess et al. (2018) attributed differences in C 
values for desorption and adsorption to sorption hysteresis. The additional ther-
modynamic analysis of the GAB model was made by Pradas et  al. (2004), and 
the so-called jamming phenomenon was found. The phenomenon was related to 
forming the first layer of the adsorbed water. It was indicated that not all sorp-
tion sites were occupied during adsorption, not even at saturation. The sufficient 
condition for the jamming phenomenon was given by the relation K (equilibrium 
constant related to the multilayer sorption) < 1. The fraction of the total number 
of sorption sites occupied at saturation f was defined as:

For all adsorption processes analyzed in the present study, K was always lower 
than 1 (Table 3). The f for earlywood and latewood was 0.84 and 0.86, respectively, 
i.e., the proportion of the total number of sorption sites occupied by latewood sam-
ples in the saturated state was high. The observed values of C were always signifi-
cantly higher than K in corresponding isotherms (Table 3). This suggests that mon-
olayer water molecules might be much stronger bound than those with multilayer 
bonding (Hess et al. 2018).

(2)S
GAB

=
X
m
⋅ � ⋅ N

A
⋅ �

M

(3)f =
K ⋅ C

K ⋅ C + (1 − K)
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Conclusion

The following conclusions could be drawn from the sorption isotherm behavior of 
homogenous catalpa wood samples documented by DVS Resolution:

(1)	 During adsorption or desorption, the EMC of latewood was higher than in ear-
lywood under any RH: meanwhile, the EMC difference between earlywood and 
latewood increased first and then decreased, and the turning point was 80% RH, 
related to the different number of micro–nano-pores in earlywood and latewood.

(2)	 Adsorption–desorption isotherms formed a closed loop, all samples showed 
noticeable water sorption hysteresis over the full RH range, and the absolute 
hysteresis increased and then decreased due to hemicelluloses softening, with 
an inflection point at 70% RH. The absolute hysteresis of earlywood was larger 
than that of latewood, while its hysteresis coefficient was smaller, related to the 
differences in structure and chemical composition.

(3)	 The GAB model could predict the sorption isotherms of earlywood and latewood. 
The Xm for earlywood and latewood was 6.87% and 7.47%, respectively. In par-
ticular, the GAB model confirmed more SGAB in latewood than in earlywood, 
indicating greater hydrophilic group content and monolayer adsorption capacity 
in latewood than in earlywood. The adsorption isotherms of earlywood and late-
wood in C. bungei cannot be fully classified as type II. The f for earlywood and 
latewood was 0.84 and 0.86, respectively, i.e., the proportion of the total number 
of sorption sites occupied by latewood samples in the saturated state was high.
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