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Abstract
Prediction of pulp yield of Eucalyptus globulus wood samples based on partial least 
squares (PLS) regression can be optimized by utilizing specific near infrared (NIR) 
wavelengths. A critical feature of this approach is the weighting of constraint con-
ditions. Equal weighting balances optimization in terms of calibration and predic-
tion; however, there is a lack of knowledge regarding prediction performance of 
wood property models when different weight factors are used. In this study, pulp 
yield models were developed using two E. globulus data sets characterized by nar-
row (5%) and extreme (22.6%) yield ranges and represented by untreated and second 
derivative NIR spectra. The global optimization solver pySOT was used to optimize 
the performance of a PLS regression model in terms of wavelengths selected and 
number of latent variables. A linear function of R-squares for calibration ( R2

c
 ) and 

prediction ( R2

p
 ) sets was utilized as the objective function with the aim of maximiz-

ing �R2

c
+ (1 − �)R2

p
 for all values of � between 0 (maximizing R2

p
 without concern 

for R2

c
 ) and 1 (only maximizing R2

c
 ). Values of � ≤ 0.8 provided good predictive 

performance, whereas � ≥ 0.9 tended to overfit the calibration data indicating that 
models are robust for values of � from 0 to 0.8. Representative wavelengths for each 
data set were identified and assigned to corresponding wood components through a 
band assignment process. Strong agreement was observed for � ≤ 0.8 ; however, for 
� ≥ 0.9, identified wavelengths generally occurred in regions unrelated to vibrations 
arising from specific wood components.
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Introduction

Near infrared (NIR) spectroscopy has been widely utilized for analyzing wood 
(Tsuchikawa and Kobori 2015; Schimleck and Tsuchikawa 2021). Among existing 
nondestructive methods of wood analysis (e.g., SilviScan, acoustics, resistograph), 
NIR spectroscopy is unique in that it can be used to estimate properties related to 
wood chemistry (Schimleck et  al. 2019). From an industrial perspective, the most 
important of these properties is pulp yield (Greaves and Borralho 1996), which is 
defined (in percent) as the yield of pulp from a given volume of wood (Raymond 
et  al. 2001). Traditional assessment of pulp yield, which involves cooking wood 
chips to a fixed Kappa number (lignin content) in a laboratory digestor, is time-con-
suming, costly, and limits the number of samples that can be examined (Raymond 
et al. 2001). NIR diffuse reflectance spectroscopy provides a viable alternative for 
estimation of pulp yield (Downes et al. 2011; Trung et al. 2015), as the variation at 
specific wavelengths in the range 1100–2500 nm is directly related to variation in 
pulp yield (Michell and Schimleck 1996). Indeed, it has been successfully applied 
in tree breeding programs to improve pulp yield of short rotation plantations that 
are established on a large-scale to provide wood for pulping facilities worldwide 
(Schimleck 2008).

NIR spectroscopic estimation of pulp yield involves two main components, 
namely data collection and model development. Spectra of milled wood from a 
large number of samples with known pulp yield are first collected. These samples 
are expected to typically represent individual trees or composites of several trees 
(Downes et al. 2006) and should ideally be from a variety of sites (Downes et al. 
2011). Then, a partial least squares (PLS) regression model is built based on the 
collected spectral and pulp yield data. The model relates the spectral information 
of each sample to its pulp yield and is used to predict the pulp yield of unexamined 
samples.

Increasingly sophisticated approaches are available for model development (Cog-
dill et  al. 2004; Mora and Schimleck 2010; Fernandes et  al. 2013; Li et  al. 2019; 
Nasir et al. 2019; Ayanleye et al. 2021); however, exploration of their use for pulp 
yield estimation, or for estimating other wood properties, is rare in wood-related 
research. Recent papers (Ho et al. 2021, 2022) have investigated the potential to uti-
lize genetic algorithms (GA) in model development (Bangalore et al. 1996; Villar 
et  al. 2014; De et  al. 2017). Ho et  al. (2021) focus on optimization of pulp yield 
models for Tasmanian blue gum (Eucalyptus globulus Labill.) samples, and Ho 
et al. (2022) expand the investigation to several loblolly pine (Pinus taeda L.) wood 
properties (density, microfibril angle, modulus of elasticity and tracheid coarse-
ness, radial diameter, tangential diameter, and wall thickness), which were measured 
by SilviScan (Evans 1994, 1999, 2006). It is shown that the GA can improve PLS 
regression models in calibration and prediction by identifying critical wavelengths 
for model building. Furthermore, the most representative wavelengths selected by 
the GA consistently have band assignments arising from the wood components that 
directly impact pulp yield (e.g., cellulose, hemicellulose, or lignin) and SilviScan 
measured properties.
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In both studies (Ho et  al. 2021, 2022), the coefficients of determination of the 
PLS regression model for calibration and prediction sets ( R2

c
 and R2

p
 , respectively) 

and corresponding standard errors (SEC and SEP, respectively) are specified as con-
straint conditions. In effect, the performance indicators of optimized models have 
to be better than those in the model using all wavelengths with a small number of 
latent variables. The GA is employed to optimize an objective function consisting 
of R2

c
 and R2

p
 with equal weight to balance the optimization process equally in terms 

of calibration and prediction and to avoid overfitting. However, there are knowledge 
gaps in utilization of optimization methods to the wood properties prediction models 
based on NIR data. For example, how is the prediction performance of optimized 
models affected when different weight factors are used? Or how will the most rep-
resentative wavelengths, which are selected from optimization process, change with 
different weight factors?

The objective of this paper is to address these questions by investigating the per-
formance of optimized models and the most representative wavelengths with differ-
ent weight factors in the objective function. The state-of-the-art global optimization 
solver pySOT (Eriksson et  al. 2015), which implements a surrogate optimization 
technique as developed in Regis and Shoemaker (2007, 2013), is utilized in this 
paper to investigate these questions. The optimization process is illustrated by a flow 
chart shown in Fig. 1. In essence, pySOT evaluates the objective function at several 
points, internally constructs an approximation to the objective function based on this 
data and attempts to find points that either maximize the approximation (and hope-
fully maximize the objective) or explore areas where the objective function has not 
been evaluated. As the points evaluated are generated randomly at each iteration, 
pySOT also is a non-deterministic algorithm. Its advantage over the GA is that a 
smaller number of function evaluations are required and hence more practical for 
computationally expensive objective functions (Eriksson et  al. 2019). Wavelength 
selection and number of PLS components result from the optimization process using 
pySOT, and, in addition, the performance of optimized model based on selected 
wavelengths and different weight factors are compared. Furthermore, a robustness 
analysis is conducted to suggest sensible choices of the weights used in the objective 
function.

Materials and methods

Data sets

Two data sets (pulp yield-min and pulp yield-max) containing Tasmanian blue gum 
samples with different pulp yield variation are used as in Ho et  al. (2021). Pulp 
yield-min contains 67 clonal blue gum samples of the same age and similar pulp 
yields (ranging from 50.8% to 55.8%), while pulp yield-max consists of 30 blue 
gum samples from different forests of various ages and with more diverse pulp 
yields (ranging from 37.6% to 60.2%) (Ho et al. 2021). Both untreated and second 
derivative datasets for pulp yield-min and pulp yield-max are utilized with the same 
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partitioning as Ho et al. (2021) into calibration and prediction datasets based on the 
DUPLEX selection method (Snee 1977).

Optimization problem

Wavelength selection and number of latent variables ( Ncomp ) for PLS regression are 
investigated at a specific number of wavelengths ( NWvl ). Specifically, NWvl wave-
lengths are selected from the 700 wavelengths ranging from 1100 to 2500  nm in 
2-nm increments (i.e., {1100, 1102, …, 2496, 2498}). These wavelengths, together 
with Ncomp , result in ( NWvl + 1) variables for each PLS model.

The performance of the PLS model is assessed using associated R2 scores, 
denoted as R2

c
 and R2

p
 for the calibration dataset and prediction datasets, respectively, 

with the aim of maximizing both. Noting that these two quantities may be in con-
flict (i.e., in order to increase one quantity, the other must be decreased), therefore, 

Define variables, 
objective function and 

constraints 

Generate initial candidate 
points

Evaluate objective at new 
candidate point(s) – PLS

regression

Update surrogate model 
for objective using new 

evaluations

Generate new candidate 
point using surrogate 

model

Maximum objective 
evaluations reached?

Terminate

No

Yes

Fig. 1   Flowchart of pySOT optimization process for NIR wavelength selection
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the problem presented here is a multi-objective optimization problem (Ehrgott 2005) 
with R2

c
 and R2

p
 being the two objective values to optimize simultaneously.

The most common goal of an optimization method is to find inputs, which are 
Pareto optimal—where one objective value cannot be unilaterally improved without 
causing another to worsen. Selecting an optimal input from a collection of Pareto 
optimal points is a difficult problem, where the relative trade-offs in each objective 
value must be assessed using expert judgment. In this case, all Pareto optimal points 
may be found by maximizing an objective function �R2

c
+ (1 − �)R2

p
 for all values of 

� between 0 and 1 inclusive (Ehrgott 2005). Here, � represents a relative weighting 
of the two objective values: � = 0 corresponds to only maximizing R2

p
 without con-

cern for R2

c
 , and � = 1 corresponds to only maximizing R2

c
.

The optimization in Ho et al. (2021) corresponds to considering � = 0.5, and this 
study extends the analysis by considering the robustness of the wavelength selection 
process relative to the choice of � . It is expected that choosing � too large would 
cause overfitting to the calibration data; however, there is no way of knowing what 
numerical values are “too large” in any single instance. The extent of any possi-
ble overfitting and whether the negative impact would be substantial is also unclear. 
Hence, multi-objective optimization techniques are applied in this study to extend 
the work of Ho et al. (2021) in order to assess both the overall quality of calibrated 
NIR models based on automatic wavelength selection and also the impact of the 
choice of � on the results.

Optimization method

Optimization for � = 0, 0.1, …, 0.9, 1 is performed to estimate the full set of Pareto 
optimal points. There is a standard (single-objective) optimization problem for each 
value of � with ( NWvl+1) variables that take discrete values within lower and upper 
bounds. PySOT is employed to solve the optimization problems, and the budget of 
each optimization is set to be 500 function evolutions. Moreover, each optimization 
is run 5 times as pySOT is a non-deterministic algorithm.

In order to investigate the impact exerted by the number of latent variables on the 
performance of the PLS model, the ranges for Ncomp is selected to be 1–7 or 8–14 or 
15–20 for pulp yield-min datasets, and 1–7 or 8–15 for pulp yield-max datasets. As 
mentioned in Ho et al. (2021), the upper bounds for the number of latent variables 
(20 for pulp yield-min datasets and 15 for pulp yield-max datasets) are large enough 
to explain the variance of the full datasets. All the results for NWvl from 20 to 30 
with different ranges of Ncomp are saved to compare performance of the PLS model 
among different ranges of Ncomp.

To investigate the robustness of model performance with respect to � and suggest 
sensible choices of � , the regions in R2

c
/R2

p
 space, which are covered by the optimized 

values obtained by different weight vectors with all ranges of Ncomp and all values of 
NWvl , are analyzed.

Finally, representative wavelengths for PLS regression in different ranges of � 
are inspected. The frequency of each wavelength present in the optimal sets of all 
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optimization cases is determined, as some optimized wavelengths can be just a local 
maximizer for the objective values and lack generalizability (Ho et al. 2021).

Results and discussion

There are 1210 optimization cases for pulp yield-max datasets and 1815 optimiza-
tion cases for pulp yield-min datasets. These include the combination of 11 choices 
of NWvl (varying from 20 to 30), 11 choices of � (varying from 0 to 1 by 0.1 incre-
ments), and two/three different sets of constraints on Ncomp , with each combination 
being run five times. The optimization results presented in the following sections 
consist of the combined results of all five iterations.

Performance of PLS model with different numbers of latent variables

To investigate the impact of Ncomp on the performance of PLS regression, R2

c
 is plot-

ted against R2

p
 for all optimization cases with the ranges of the number of latent vari-

ables being specified in Fig.  2, and the extreme values are listed in Table 1. It is 
observed that the R2

c
 scores of PLS models with the ranges of larger Ncomp are sig-

nificantly greater than that of PLS models with the ranges of smaller Ncomp , suggest-
ing that larger Ncomp generally results in better performance in calibration. However, 

Fig. 2   PLS model performance for different ranges of Ncomp and different sets of NIR spectra a pulp 
yield-max untreated, b pulp yield-max second derivative, c pulp yield-min untreated, and d pulp yield-
min second derivative
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improvement in prediction performance is small with an increase in Ncomp , espe-
cially for second derivatives datasets. A slight improvement of 0.005 in the highest 
R2

p
 scores of PLS models is observed in pulp yield-max raw dataset when increasing 

Ncomp from 1–7 to 8–15, and no notable difference is observed in the second deriv-
ative pulp yield-max dataset. The highest R2

p
 score of PLS models increases from 

0.953 to 0.989 and drops to 0.985 when Ncomp varies from 1–7 to 8–14 to 15–20 
for pulp yield-min dataset. A similar trend is observed for second derivative pulp 
yield-min dataset with much smaller improvement when increasing Ncomp from 1–7 
to 8–14. Moreover, the lowest R2

p
 scores with the ranges of larger Ncomp are signifi-

cantly lower than that of smaller Ncomp . As shown in Table 1, negative R2

p
 scores for 

PLS models are observed with large Ncomp(-1.092 when Ncomp is 8–15 for pulp yield-
max dataset; -0.185 and -0.344 when Ncomp is 15–20 for pulp yield-min datasets). 
These indicate that if Ncomp is chosen to be too large, it may exacerbate the overfit-
ting of PLS regression (with improper choice of � ), leading to poor performance in 
prediction. Hence, lower Ncomp may be selected to decrease computing time while 
still providing equivalent model performance.

Furthermore, the variation of R2

p
 in untreated pulp yield-max is larger than that in 

untreated pulp yield-min as PLS models with extremely poor performance in predic-
tion ( R2

p
≤ −0.5 ) are observed for untreated pulp yield-max. This observation may 

result from the large variation (both in terms of origin and pulp yield) in the samples 
contained in pulp yield-max.

Choice of Alpha

There are a number of PLS models with nearly perfect calibration performance but 
poor prediction performance from Fig. 2, suggesting that focusing only on calibra-
tion performance (by setting large alpha) results in overfitting. To investigate the 
range of alpha generating reasonable fit to the prediction data, optimal objective val-
ues ( R2

c
 and R2

p
 ) achieved by each value of alpha are analyzed. The regions (con-

vex hulls) of optimal objective values (in R2

c
/R2

p
 space) for each value of alpha are 

plotted in Fig. 3, and the mean and variance of R2

p
 for each value of alpha are also 

Table 1   Extreme values 
comparison for different ranges 
of N

comp

Dataset N
comp Min R2

c
Min R2

p
Max R2

c
Max R2

p

Pulp yield-max raw 1–7 0.960 0.771 0.995 0.982
Pulp yield-max raw 8–15 0.969  − 1.092 1.000 0.986
Pulp yield-max 2nd 1–7 0.966 0.816 1.000 0.999
Pulp yield-max 2nd 8–15 0.981 0.744 1.000 0.999
Pulp yield-min 1–7 0.751 0.698 0.912 0.953
Pulp yield-min 8–14 0.795 0.150 0.987 0.989
Pulp yield-min 15–20 0.818  − 0.185 0.991 0.985
Pulp yield-min 2nd 1–7 0.740 0.345 0.967 0.991
Pulp yield-min 2nd 8–14 0.843 0.048 0.992 0.992
Pulp yield-min 2nd 15 − 20 0.817  − 0.344 0.996 0.988
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Fig. 3   R2

c
/R2

p
 of different values of � for a pulp yield-max untreated, b pulp yield-max second deriva-

tive, c pulp yield-min untreated, d pulp yield-min second derivative, e pulp yield-min untreated omitting 
small N

comp
 , and f pulp yield-min second derivative omitting small N

comp
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calculated. The smaller variance and smaller region indicate more robust model per-
formance relative to the choice of value of alpha. As shown in Fig. 3, the variance of 
R2

p
 increases dramatically when � varies from 0.9 to 1, which is consistent with the 

rightmost large convex hulls in the figures. The means of R2

p
 are remarkably small 

at � = 1 , and significant decreases in R2

p
 start to be observed at � = 0.9 as in Fig. 3.

Interestingly, even if a small � is chosen, relatively good calibration results are 
still obtained, especially for pulp yield-max datasets ( R2

c
≥ 0.96 for all values of � ). 

The variation in R2

c
 for pulp yield-min datasets is larger than that for pulp yield-

max datasets. It is probably because the number of samples in the pulp yield-min 
dataset are around two times of the number of samples in the pulp yield-max data-
set, and the number of latent variables varying from one to seven is not enough for 
PLS regression. Omitting the results for model performance with 1 ≤ Ncomp ≤ 7 , the 
variation in R2

c
 is much smaller for untreated data as shown in Fig. 3(e), and R2

c
 is 

larger than 0.8 for all values of � for both untreated and second derivate treated data 
as shown in Fig.  3(e–f). Though these results are to some extent dataset specific, 
the similarities in the performance across the datasets are sufficient to conclude that 
� ≤ 0.8 should be chosen in order to obtain a reasonably good predictive perfor-
mance, and � ≥ 0.9 tends to overfit the calibration data.

Representative wavelengths

For each wavelength in the domain (i.e., {1100, 1102, …, 2496, 2498}), the num-
ber of optimization cases for which it was present in the optimum wavelength set 
selected by pySOT was counted. Since � ≥ 0.9 tends to overfit the calibration data, 
the spectra for � ≤ 0.8 and � ≥ 0.9 are plotted separately to observe if the most rep-
resentative wavelengths selected from the optimization process are impacted by the 
choice of weight vector. The frequency plots for the four datasets are presented in 
Figs. 4 and 5, with the ten most frequently identified wavelengths being marked. 

The selected wavelengths for � ≤ 0.8 are more concentrated than wavelengths 
selected when � ≥ 0.9 . Moreover, untreated spectra and second derivative spectra 
for different datasets also show different frequency distributions. Yet similarities 
exist across the datasets in the wood components corresponding to the representa-
tive wavelengths, and these wood components are observed to directly impact pulp 
yield (cellulose, lignin, and hemicellulose).

For � ≤ 0.8 and untreated NIR spectra, wavelengths utilized most frequently are 
listed in Table  2. Origins of the wavelengths are based on band assignments pre-
sented by Schwanninger et  al. (2011) for the primary components of wood. As 
observed in Ho et  al. (2022), regions arising from CH and OH bond vibrations 
are consistently utilized and include 2100–2400  nm (predominately CH and CH2 
combination bands), 1350–1800  nm (first overtone CH stretch bond vibrations), 
1400–1600 nm (first overtone OH stretch bond vibrations) and 1140–1225 nm (sec-
ond overtone CH stretch bond vibrations), regions where bands assigned to cellulose 
and lignin are common.
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(a)

(b)

(c)

(d)

Fig. 4   Pulp yield-max for a untreated spectra for � ≤ 0.8 , b untreated spectra for � ≥ 0.9 , c second deriv-
ative spectra for � ≤ 0.8 , and d derivative spectra � ≥ 0.9
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(a)

(b)

(c)

(d)

Fig. 5   Pulp yield-min for a untreated spectra for � ≤ 0.8 , b untreated spectra for � ≥ 0.9 , c second deriv-
ative spectra for � ≤ 0.8 , and d derivative spectra � ≥ 0.9
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With the exception of 1862 nm (pulp yield-min), all important wavelengths had 
recognized bond vibrations occurring at, or within 5 to 10  nm of, a wavelength 
band assigned to a wood component. For second-derivative-treated NIR spectra and 
� ≤ 0.8 , similar correspondence is observed with only two wavelengths in the region 
1120–1130 nm (pulp yield-max) not related to a bond vibration arising from a spe-
cific wood component (Table 2).

Table 2   Band assignments for optimization when � ≤ 0.8

OT overtone, str. stretching vibration, bend bending vibration, def. deformation vibration, + combination 
band; ar aromatic; t.a. tentative assignment; N/A no vibration specific to wood component assigned

Identified wavelengths (nm) Band location (nm) Bond vibration Wood component

Pulp yield-max untreated
1220–1230 1212–1225 2nd OT C-H str Cellulose
1580 1580 1st OT O–H str Cellulose
1660 1666 1st OT C-H str Hemicellulose
1740–1750 1731 1st OT C-H str Cellulose
2070–2080 2080 O–H str. + C-H def Cellulose
2280 2277 O–H str. + C-O str. and/or Cellulose

C-H str. + C-H def
Pulp yield-max 2nd deriv
1120–1130 N/A
1148 1143 2nd OT Car-H str

2nd OT C-H str. CH3 groups
Lignin

1652 1666 1st OT C-H str Hemicellulose
1784 1780, 1788 1st OT C-H str Cellulose
1976, 1978 1980 O–H str. + O–H def Water
2380 2384 N/A Lignin
2466 2461 C-H str. + C–C str Starch (cellulose)
2498 2491 C-H str. + C–C str Cellulose
Pulp yield-min untreated
1218, 1232 1212–1225 2nd OT C-H str Cellulose
1780–1790 1731 1st OT C-H str Cellulose
1862 N/A
2356–2370 2352 C-H str. + C-H def

2nd OT C-H2 bend
Cellulose

2361 O–H def. or C-H def
 + C-H str. or C-H2 str

Cellulose

2498 2491 C-H str. + C–C str Cellulose
Pulp yield-min 2nd deriv
1612, 1614 1616 1st OT C-H str N/A
1964, 1966, 1974 1980 O–H str. + O–H def Water
2190, 2192 2200 C-H str. + C = O str Lignin
2498 2491 C-H str. + C–C str Cellulose
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For � ≥ 0.9 , the most frequently used wavelengths generally occurred in regions 
unrelated to vibrations arising from specific wood components. While weaker 
predictive performance may be expected for models emphasizing calibration sta-
tistics, this observation may help explain why they do not perform as well as the 
models developed using values of � that balance both calibration and prediction 
performance.

Discussion on wavelength selection problem and optimization algorithms

Optimization can improve PLS calibration performance by identifying a relatively 
small number of NIR wavelengths for model development (Ho et al. 2021, 2022). 
Weighting of objective values is a critical decision in this approach, and it was cho-
sen to balance calibration and prediction performance, i.e., � = 0.5. To understand 
the impact of different values of � (0, 0.1, …, 0.9, 1) on the robustness of wave-
length selection, the global optimization solver pySOT was utilized to optimize PLS 
regression model performance. Using pySOT, it was demonstrated that models are 
robust over a wide range of � values (0 to 0.8).

A key feature of optimized PLS models is the consistent identification of wave-
lengths occurring in NIR regions associated with C-H and O–H bond vibrations 
arising from cellulose, hemicellulose, and lignin. The identification of wavelengths 
whose origin is directly related to the main components of wood explains why both 
calibration and prediction performance (for samples included in the optimization 
process) can be improved.

Further work is required to investigate the applicability of optimized mod-
els to the estimation of wood properties, for example a comparison of estimated 
pulp yield genetic parameters (Raymond et  al. 2001; Schimleck 2008) based on 
predicted pulp yield data from PLS models and optimized PLS models. Ho et  al. 
(2022) investigated GA optimized model prediction of microfibril angle (MFA) for 
loblolly pine; however, the prediction set employed (referred to as “Maps”) differed 
in age and geographic origin and was unrelated to the calibration / prediction sam-
ples (“Agenda 2020”) used for model development. Ho et al. (2022) recognized this 
issue and stated: “The Agenda 2020 model did not perform as well as the optimized 
MFA model that incorporated the Maps data for its prediction phase, indicating that 
characteristic wavelengths for the Maps data set differ from those of the Agenda 
2020 samples.” This is an important finding and while consistent with other NIR-
based studies of wood that have attempted to apply models based on samples from 
one location to those from a different location (Schimleck 2008). It indicates that 
optimized models are also site(s) limited and that important wavelengths likely dif-
fer to some extent with age and location. Hence, an assessment of optimized model 
performance should be based on samples sharing the same characteristics (age and 
location) as those used for model development but exclusive of the calibration/pre-
diction phases of optimization. This question should be explored in future studies.

Furthermore, the performance of optimized models can be evaluated by com-
paring among different optimization methods in terms of associated computa-
tional times and trade-offs between optimized and unoptimized models. Utilizing 
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an optimization approach not only likely results in better models, but also adds 
time and complexity (in terms of model development). Further studies will answer 
whether better predictive models help achieve incremental increases in the value of 
wood products derived from forests whose wood properties are accurately character-
ized, and what types of applications will most benefit from the optimization results.

Conclusion

In this study, pySOT is utilized to develop PLS regression pulp yield models based 
on two Eucalyptus globulus data sets (characterized by narrow and extreme yield 
ranges) and examine predictive performance of models using different weight fac-
tors (i.e., factor � in the objective function �R2

c
+ (1 − �)R2

p
 to be maximized in the 

optimization algorithm). Values of � ≤ 0.8 provided good predictive performance, 
whereas � ≥ 0.9 tended to overfit the calibration data indicating that models are 
robust for values of � from 0 to 0.8. Representative wavelengths for each data set 
were identified. For � ≤ 0.8 , almost all wavelengths arose from C-H and O–H bond 
vibrations observed in cellulose, hemicellulose, and lignin. However, identified 
wavelengths for � ≥ 0.9 generally occurred in regions, which are unrelated to vibra-
tions arising from specific wood components.

The reliability with which pySOT identified chemically relevant representative 
wavelengths indicates its usefulness as a global optimization algorithm in this set-
ting. However, because the underlying algorithm is randomized, repeated runs of the 
optimization are important to assess the variability in results, so deterministic meth-
ods may be overall faster (and give more reproducible representative wavelengths).

There was consistency between the optimal ranges of alpha between the two 
Eucalyptus globulus data sets, but it would be useful in future work to assess whether 
this generalizes to other species/data sets, or whether alternative metrics of PLS per-
formance (such as RMSE) are suitable. Testing the generalizability of the identified 
representative wavelengths on a separate partition of data (i.e., not calibration or 
prediction) would also give further evidence of the utility of this framework but is 
more suited to larger data sets than those used in this work. In addition, the appli-
cability of optimized models to the estimation of wood properties, the comparison 
between optimization methods and associated computational times, and trade-offs 
between optimized and unoptimized models are recommended for future studies.

Declarations 

Conflict of interest  The authors declare no conflict of interest.



1849

1 3

Wood Science and Technology (2022) 56:1835–1850	

References

Ayanleye S, Nasir V, Avramidis S, Cool J (2021) Effect of wood surface roughness on prediction of 
structural timber properties by infrared spectroscopy using ANFIS, ANN and PLS regression. Eur J 
Wood Prod 79(1):101–115

Bangalore AS, Shaffer RE, Small GW, Arnold MA (1996) Genetic algorithm -based method for selecting 
wavelengths and model size for use with partial least-squares regression: application to near-infra-
red spectroscopy. Anal Chem 68(23):4200–4212

Cogdill RP, Schimleck LR, Jones PD, Peter GF, Daniels RF, Clark A (2004) Estimation of the physical 
wood properties of Pinus taeda L. radial strips using least squares support vector machines. J Near 
Infrared Spectrosc 12(4):263–270

De A, Chanda S, Tudu B, Bandyopadhyay RB, Hazarika AK, Sabhapondit S, Baruah BD, Tamuly P, 
Bhattachryya N (2017) Wavelength Selection for Prediction of Polyphenol Content in Inward Tea 
Leaves Using NIR. In: IEEE 7th international advance computing conference (IACC), Hyderabad, 
2017 pp 184–187

Downes GM, Meder R, Bond H, Ebdon N, Hicks C, Harwood C (2011) Measurement of cellulose con-
tent, Kraft pulp yield and basic density in eucalypt woodmeal using multisite and multispecies near 
infra-red spectroscopic calibrations. South for 73(3–4):181–186

Downes GM, Worledge D, Schimleck LR, Harwood C, French J, Beadle CL (2006) The effect of growth 
rate and irrigation on the basic density and kraft pulp yield of Eucalyptus globulus and E. nitens. N 
Z J For 51(3):13–22

Ehrgott M (2005) Multicriteria Optimization. Springer, Berlin Heidelberg, Germany
Eldridge KG, Davidson J, Harwood CE, vanWyk G (1993) Eucalypt domestication and breeding. Oxford 

University Press, Oxford
Eriksson D, Bindel D, Shoemaker CA (2015) Surrogate optimization toolbox (pySOT) (2015) Available 

from https://​github.​com/​dme65/​pySOT
Eriksson D, Bindel D, Shoemaker CA (2019) pySOT and POAP: An event-driven asynchronous frame-

work for surrogate optimization. ArXiv, abs/1908.00420
Evans R (1994) Rapid measurement of the transverse dimensions of tracheids in radial wood sections 

from Pinus radiata. Holzforschung 48:168–172
Evans R (1999) A variance approach to the X-ray diffractometric estimation of microfibril angle in wood. 

Appita J 52(283–289):294
Evans R (2006) Characterization of the cellulosic cell wall. Stokke DG, Groom L (ed) pp 138–146. 

Blackwell Publishing, Ames, IA, USA
Fernandes A, Lousada J, Morais J, Xavier J, Pereira J, Melo-Pinto P (2013) Measurement of intra-ring 

wood density by means of imaging VIS/NIR spectroscopy (hyperspectral imaging). Holzforschung 
67(1):59–65

Greaves BL, Borralho NMG (1996) The influence of basic density and pulp yield on the cost of eucalypt 
kraft pulping: A theoretical model for tree breeding. Appita J 49(2):90–95

Ho TX, Schimleck LR, Sinha A (2021) Utilization of genetic algorithms to optimize Eucalyptus globulus 
pulp yield models based on NIR spectra. Wood Sci Technol 55(3):757–776

Ho TX, Schimleck LR, Sinha A, Dahlen J (2022) Utilization of genetic algorithms to optimize loblolly 
pine wood property models based on NIR spectra and SilviScan data. Wood Sci Technol 56:1419–
1437. https://​doi.​org/​10.​1007/​s00226-​022-​01403-z

Li Y, Via BK, Cheng Q, Zhao J, Li Y (2019) New pretreatment methods for visible–near-infrared calibra-
tion modeling of air-dry density of Ulmus pumila wood. For Prod J 69(3):188–194

Michell AJ, Schimleck LR (1996) NIR spectroscopy of woods from Eucalyptus globulus. Appita J 
49(1):23–26

Mora C, Schimleck LR (2010) Kernel regression methods for the prediction of wood properties of Pinus 
taeda using near infrared (NIR) spectroscopy. Wood Sci Technol 44(4):561–578

Nasir V, Nourian S, Zhou Z, Rahimi S, Avramidis S, Cool J (2019) Classification and characterization 
of thermally modified timber using visible and near-infrared spectroscopy and artificial neural net-
works: a comparative study on the performance of different NDE methods and ANNs. Wood Sci 
Technol 53(5):1093–1109

Raymond CA, Schimleck LR, Muneri A, Michell AJ (2001) Genetic parameters and genotype-by-envi-
ronment interactions for pulp yield and pulp productivity in Eucalyptus globulus predicted using 
near infrared reflectance analysis. For Genet 8(3):213–224

https://github.com/dme65/pySOT
https://doi.org/10.1007/s00226-022-01403-z


1850	 Wood Science and Technology (2022) 56:1835–1850

1 3

Regis RG, Shoemaker CA (2007) A stochastic radial basis function method for the global optimization of 
expensive functions. INFORMS J Comput 19(4):497–509

Regis RG, Shoemaker CA (2013) Combining radial basis function surrogates and dynamic coordinate 
search in high-dimensional expensive black-box optimization. Eng Optim 45(5):529–555

Schimleck L, Apiolaza L, Dahlen J, Downes G, Emms G, Evans R, Moore J, Pâques L, Van den Bulcke 
J, Wang X (2019) Non-destructive evaluation techniques and what they tell us about wood property 
variation. Forests 10:728

Schimleck LR (2008) Near infrared spectroscopy: A rapid, non-destructive method for measuring wood 
properties and its application to tree breeding. N Z J for Sci 38(1):14–35

Schimleck LR, Tsuchikawa S (2021) Application of NIR spectroscopy to wood and wood derived prod-
ucts (Chapter 37). In: Ciurczak E, Igne B, Workman J, Burns D (eds) The handbook of near-infrared 
analysis, fourth edition, newly revised and expanded. CRC Press, Boca Raton, FL, pp 759–780

Schwanninger M, Rodrigues JC, Fackler K (2011) A review of band assignments in near infrared spectra 
of wood and wood components. J near Infrared Spectrosc 19:287–308

Snee R (1977) Validation of regression models: methods and examples. Technometrics 19:415–428
Trung T, Downes G, Meder R, Allison B (2015) Pulp mill and chemical recovery control with advanced 

analysers - from trees to final product. Appita J 68(1):39–46
Tsuchikawa S, Kobori H (2015) A review of recent application of near infrared spectroscopy to wood sci-

ence and technology. J Wood Sci 61(3):213–220
Villar A, Fernandez S, Gorritxategi E, Ciria JI, Fernandez LA (2014) Optimization of the multivariate 

calibration of a Vis-NIR sensor for the on-line monitoring of marine diesel engine lubricating oil by 
variable selection methods. Chemometr Intell Lab Syst 130:68–75

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and 
applicable law.


	On the selection of the weighting parameter value in optimizing Eucalyptus globulus pulp yield models based on NIR spectra
	Abstract
	Introduction
	Materials and methods
	Data sets
	Optimization problem
	Optimization method

	Results and discussion
	Performance of PLS model with different numbers of latent variables
	Choice of Alpha
	Representative wavelengths
	Discussion on wavelength selection problem and optimization algorithms

	Conclusion
	References




