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Abstract
Image-based local fibre direction data, generated based on the analysis of the med-
ullary spindle pattern, were used to improve the prediction of the tensile strength 
parallel to the grain of European beech (Fagus sylvatica L.) boards. An approach 
to characterise the local fibre orientations in a board using a single numerical grad-
ing parameter was further developed. This parameter was used, in combination with 
the dynamic modulus of elasticity, to develop a regression model providing very 
good predictions of the experimentally determined tensile strength parallel to the 
grain (R2 = 0.84). Subsequently, machine-learning techniques were used to improve 
the strength model. Non-destructive and destructive tests were performed on (N =) 
47 boards. A data (sub-) set (n = 36) was used to train different machine-learning 
techniques (Support-Vector Machines, Decision Tree, Random Forest, and Artificial 
Neural Network) using a 6-k cross-validation approach. The generalisation ability of 
the models was then assessed by a hold-out dataset (n = 11). The results showed that 
all machine-learning models presented good prediction accuracy (R2 up to 0.88 and 
MAPE below 8%). The support-vector machine and random forest methods showed 
the best performance. The combination of experimental methods with machine 
learning allows for a more precise strength grading of timber and, thus, can contrib-
ute to a more resource-efficient use of wood and may open new and more demand-
ing fields for high-level timber applications in structures.
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Introduction

Background

Timber is a material with an excellent strength–weight ratio, the possibility of being 
sustainably sourced, and usually perceived as aesthetically very pleasant. However, 
human influence on its physical and mechanical properties is generally very limited 
due to the natural growth, leading to a high variability in timber properties. Without 
taking measures to reduce the variability, large safety factors would be needed when 
designing timber structures, limiting the efficiency in utilising the material. For 
instance, during the production of glued laminated timber (GLT) or cross-laminated 
timber (CLT), the raw material needs to be strength graded to ensure minimum per-
formance requirements and optimise its use. Strength grading of timber into differ-
ent strength classes based on parameters obtained from non-destructive tests allows 
for a reduction in the material’s variability and, thus, for a more efficient utilisation 
of the raw material. Therefore, strength grading depends mainly on the correlations 
between the measured (indicating) parameters and the target mechanical parameters.

State of the art

Anatomical characteristics, such as large single knots, knot clusters, bark inclusions 
and fibre deviations, cause the most significant reduction in the strength of timber. 
Regarding glued laminated timber, the tensile strength of the laminations is the key 
property for allocating timber boards to a certain strength class (e.g. Ehlbeck et al. 
1985; Brandner and Schickhofer 2008; Fink 2014). Close to knots and in knot clus-
ters, the tensile strength of a board is reduced due to local deviations to the mainly 
longitudinal fibre direction and due to the reduction in cross-sectional area available 
for these fibres in the presence of knots. This results in non-uniform stress distri-
butions in these cross sections, especially in case of eccentric knots (Foley 2001). 
Limits regarding the knot size are provided for different grades in current strength 
grading standards, such as DIN 4074-1 (2012), for strength grading of coniferous 
sawn timber, and DIN 4074-5 (2008), for strength grading of deciduous sawn tim-
ber. For boards with fewer and smaller knots, the influence and importance of other 
characteristics increase. In particular, the local fibre direction becomes more impor-
tant. DIN  4074-1 (2012) and DIN 4074-5 (2008) specify threshold values of this 
grading parameter that correspond to the various grades too. The local fibre direc-
tion also has a high influence on the strength of finger joints in beech wood lamina-
tions (Aicher et al. 2001). The detection and quantification of the fibre direction are 
much more complex than the determination of the size of knots and are particularly 
relevant to machine grading (Ridley-Ellis et  al. 2016). On the one hand, the fibre 
direction is often difficult to detect with the naked eye; on the other hand, the fibre 
direction changes continuously along the length and width of a board. To overcome 
these problems, procedures and instruments have been developed to automatically 
evaluate the fibre direction (Schlotzhauer et al. 2018).
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Multiple physical principles are employed to evaluate the fibre direction. Among 
them are the dielectric properties of wood (Baradit et al. 2006; Denzler and Weiden-
hiller 2015; Norimoto and Yamada 1972), the electrical field strength (Cramer and 
McDonald 1989; Norton et  al. 1974; Steele et  al. 1991), the thermal conductivity 
(Belkacemi et al. 2016; Daval et al. 2015; Krapez et al. 1996), and the so-called tra-
cheid effect (Matthews et al. 1976, 1986; Metcalfe et al. 2002; Nyström 2003; Sarén 
et al. 2006; Simonaho et al. 2004; Soest 1997). The method based on the tracheid 
effect has been frequently used in descriptions and models of timber and its ana-
tomical structure (Briggert et al. 2016; Foley, 2001; Lukacevic and Füssl 2014). The 
tracheid effect has been used to improve the strength grading of coniferous timber 
(Brännström et al. 2008; Olsson et  al. 2013; Olsson and Oscarsson 2017; Viguier 
et al. 2015, 2017). More recently, it has also been applied successfully to fibre orien-
tation measurements on hardwoods (Besseau et al. 2020), on beech veneers to esti-
mate the modulus of elasticity of LVL (Viguier et al. 2018), and to strength grading 
of oak (Olsson et al. 2018).

The vast majority of the mentioned investigations focussed on coniferous tim-
ber species, mainly Norway spruce (Picea abies (L.) Karst.). For European beech 
(Fagus sylvatica L.) timber, significantly fewer studies are available. In Switzerland, 
Germany, and Austria, European beech amounts to 18, 15, and 10% of the total for-
est stock, respectively, corresponding to shares between 50 and 80% of the hard-
wood stock in these countries (FOEN 2018; Sauter and Breinig 2016). European 
beech timber is also among the European native species with the highest strength 
and stiffness properties. Compared to timber from coniferous trees, European beech 
timber exhibits significantly fewer knots and knot-free boards predominate in high-
strength classes. Consequently, the strength grading parameter fibre direction is of 
utmost importance.

Ehrhart et al. (2018a) presented a non-contact method for the identification, quan-
tification, and documentation of the fibre direction in European beech timber based 
on the analysis of the medullary rays. Making use of image-analysis techniques, the 
spindle pattern formed by the medullary rays was used to predict the fibre direction 
in European beech boards. Curti et al. (2018) adapted this method to investigate the 
effect of fibre direction on cutting forces and chip geometry during machining of 
beech timber in the fibre-saturated state.

To further increase the reliability and utilisation efficiency of timber in general, 
improved machine grading procedures are required to measure various grading 
parameters at high speed, with greater accuracy and precision. In general, the cor-
relation between the measured grading parameters and the structural properties is 
performed using simple linear or multilinear correlations (Ehlbeck et al. 1985; Fink 
2014), neglecting that the structure of timber is complex and that these correlations 
are often nonlinear. Machine-learning techniques are particularly suited to over-
come challenges related to finding patterns in complex systems. These data-driven 
approaches are able to identify hidden patterns in data of different type and create 
classification and predictive models (Fathi et al. 2020; Schubert and Kläusler 2020). 
Combining machine-learning techniques with non-destructive optical and digital 
image analysis methods is therefore a promising strategy for grading high-strength 
timber boards with few obvious visual defects. These advanced grading techniques 
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can be further complemented with mechanical constitutive models, which establish 
the relation between material parameters and external loads (e.g. Sarnaghi and van 
de Kuilen 2019), leading to hybrid strength grading approaches.

Objective, scope, and overview

The objective of this study was to develop a model to improve the prediction of 
the tensile strength of European beech (Fagus sylvatica L.) boards without obvi-
ous visual defects. The developed model considers the measured dynamic modulus 
of elasticity and new information on the fibre direction, obtained through a non-
destructive and non-contact method developed by Ehrhart et al. (2018a). Different 
machine-learning techniques are applied, and their potential for maximising the pre-
diction quality of the models is evaluated.

Materials and methods

Overview

This study was based on 47 flat sawn planed beech boards supplied by four Swiss 
sawmills. The dimension of the boards was lb × wb × tb = 3000 × 160 × 25  mm3. The 
thickness of the beech laminations tb = 25  mm is significantly smaller than usual 
thicknesses of softwood laminations (up to 40 mm), but this is due to delamination 
problems arising when beech laminations thicker than 30 mm are used (Ohnesorge 
et al. 2010) for glulam production. The average moisture content of the boards at the 
time of testing was ω = 8 ± 2%. This moisture content corresponds to an environment 
with 24 °C and 35% relative humidity, which is not uncommon in offices and resi-
dential buildings and also corresponded to the expected environmental conditions in 
the laboratories where the tests were performed. Since the focus of this study was on 
improving the grading of high strength boards, only boards free of knots, bark inclu-
sions and other obvious structural characteristics affecting the tensile strength paral-
lel to the grain were considered. The wide faces of the boards were mostly parallel 
to the longitudinal-tangential plane of the wood. In such knot-free boards, the influ-
ence of fibre orientation on the tensile strength becomes more important. Ehrhart 
et  al. (2018a) have shown that the medullary ray spindle pattern, which is clearly 
visible on the face sides, can be used to assess the local fibre orientation. About 
75% of the 47 boards were comprehensively photographed, documented, and tested 
to failure in tension parallel to the grain by Ehrhart et al. (2016b). The other 25% 
of the boards were analysed, and the density, the dynamic MOE, the surface pho-
tographs and the experimental tensile strength were documented by Jungo (2016). 
The data sets collected by Ehrhart et al. (2016a) and Jungo (2016) were combined 
and subsequently randomly split into two data sets: a training or calibration data set 
(used to fit models) and a test data set (used to evaluate the models). The training 
data set consisted of 36 boards (77%) and the test data set of 11 boards (23%). The 
total number of boards used in this study is limited, but was shown to be adequate to 
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assess the ability of the proposed method of using image-based local fibre direction 
data to very significantly improve the prediction of the tensile strength of European 
beech boards.

2.2 Strength grading parameters measured using non‑destructive methods

Density and dynamic modulus of elasticity

The devices Brookhuis MTG Timber Grader and Microtec ViScan were used to 
determine the density and the dynamic modulus of elasticity of the beech boards 
(Ehrhart (2019) showed that the two systems provide almost identical results). The 
dynamic modulus of elasticity Edyn is calculated using Eq. (1), based on the first lon-
gitudinal eigenfrequency fe, the density ρ and the length lb of the board.

The statistical parameters of the dynamic modulus of elasticity and density are 
summarised in Table 1 for both the training (n = 36) and the test (n = 11) data sets. 
The range of density is wider for the training data set (647–817 kg/m3) than for the 
test data set (671–759 kg/m3). However, the mean values of density at a moisture 
content of ω = 8 ± 2% (ρ8,mean) and the coefficients of variation (cov) of both data 
sets agree well (726 and 710 kg/m3 and 0.05 and 0.04, respectively). Similar values 
of densities of European beech are reported by Frühwald and Schickhofer (2005), 
Frese (2006), Hübner (2013), and Westermayr et al. (2018).

(1)Edyn = 4 ⋅ f 2
e
⋅ l2

b
⋅ �

Table 1  Statistical parameters for the density ρ, dynamic modulus of elasticity Edyn, static modulus of 
elasticity Et,0 and tensile strength parallel to the grain ft,0 of the training and test data sets (ω = 8 ± 2%)

*Number of boards
**The data were split into two data sets: one for training (i.e. calibrating) the models and one for testing 
the fitted models

Parameter Symbol Unit n* [-] Min Mean Max Cov [-]

All boards Density ρ kg/m3 47 647 722 817 0.05
Dynamic modulus 

of elasticity 
(MOE)

Edyn MPa 12,805 16,466 23,371 0.13

Static MOE Et,0 MPa 12,102 15,479 20,457 0.12
Tensile strength ft,0 MPa 42.2 88.5 132 0.25

Training data set** Density ρ kg/m3 36 647 726 817 0.05
Dynamic MOE Edyn MPa 12,805 16,520 23,371 0.14
Static MOE Et,0 MPa 12,102 15,428 20,457 0.11
Tensile strength ft,0 MPa 42.2 85.4 132 0.25

Test data set** Density ρ kg/m3 11 671 710 759 0.04
Dynamic MOE Edyn MPa 13,613 16,291 20,791 0.14
Static MOE Et,0 MPa 12,288 15,646 18,985 0.13
Tensile strength ft,0 MPa 49.5 90.4 119 0.26
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The range of the dynamic modulus of elasticity is also wider for the training 
(12,805–23,371 MPa) than for the test data set (13,613–20,791 MPa), and the mean 
value of the training data set is slightly higher than that of the test data set (16,520 
and 16,291 MPa, respectively). Frese (2006) reported a range of 9656–20,613 MPa 
and a mean value of 14,506 MPa.

Local fibre direction

The local fibre direction was identified, quantified, and documented using the 
non-destructive and non-contact method developed by Ehrhart et al. (2018a). This 
method assumes that the medullary rays and the annual rings form corridors, along 
which the wood fibres run and, thus, are a proxy for the fibre direction. Due to the 
low shear strength of European beech wood in the longitudinal-radial plane (Ashby 
et al. 1985), the spindles formed by the medullary rays were found to be an excellent 
indicator for the critical fibre direction, i.e. the fracture path developing in destruc-
tive tension tests.

The two opposite face sides of the middle 2000 mm (= tested free-length of the 
boards in the tension tests, see Subsection  Tensile strength parallel to the grain 
measured in tension tests to failure) of the 3000 mm long boards were documented 
by taking four consecutive photographs of 500-mm-long segments. Hence, eight 
photographs were taken of each board. Figure 1a shows a part of one of the resulting 
digital photographs. Subsequently, these digital images were batch-processed to iso-
late and identify the medullary ray spindles using the programme Adobe Photoshop 
2020. The steps of this pre-processing were: (i) smart sharpening (amount: 500%, 
radius: 7.5 pixels); (ii) convert mode (to grayscale); (iii) apply a cut-out filter (lev-
els = 4, edge simplicity = 1; edge fidelity = 3); set a threshold (level: 75). Each file 
covers a board length of 500 mm, and the resulting PNG-files have an approximate 
size of 100 kB (the original size of the photograph was approximately 5 MB). The 
black-and-white image showing the isolated medullary ray spindles of the photo-
graph in Fig. 1a is shown in Fig. 1b.

The black-and-white PNG images were analysed using the programme ImageJ 
(Image Processing and Analysis in Java) (Schindelin et  al. 2012). By applying a 

-2 3 6 10 6 -5 -12

-1 4 8 10 6 -8 -12

3 6 8 10 4 -9 -13

4

8 11 11 8 -5 -15 -17

8 10 9 1 -12 -16

(a) (b) (c)

Fig. 1  Non-contact determination of the fibre direction: based on a photograph (a), the medullary ray 
spindles are isolated (b), and their coordinates and geometrical properties are documented. Post-process-
ing of the resulting data allows generating discretised fields of fibre direction, e.g. average local angle 
between the fibre directions and the longitudinal direction of the boards (c)
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threshold, the medullary ray spindles were identified as objects. (An example based 
on an image of segment no. 4 of board no. 1004 is shown in Fig. 2a.) Subsequently, 
a list of the properties of all objects was generated, including: coordinates xM and 
yM of the centre of mass (in pixels); area A (in pixels); circularity c (calculated using 
Eq.  (2), in which P is the perimeter of the object in pixels); and angle α between 
the major axis of an ellipse fitted to the object and the longitudinal direction of 
the board (in degrees). The angle α was measured in counter-clockwise direction; 
objects with angles above 90° were considered as having negative orientations, i.e. 
α = αmeasured − 180 (Fig. 2b).

Only objects that represent medullary ray spindles should be considered in the 
analysis of the field of fibre direction. Thus, objects resulting from dirt, markings or 
other sources were removed by filtering the resulting object list. The filtering criteria 
to define valid objects were: object area A between 50 and 500 pixels (approximately 
0.45 to  4.50   mm2); circularity c between 0.02 and 0.60 and; absolute orientation 
α below 45°. Fields of local fibre direction were then obtained by discretising the 
boards into surface elements with a size of (e × e =) 20 × 20  mm2 and calculating the 
average fibre direction in each element taking into account the results for both face 
sides. This element size was chosen as a compromise between enough resolution to 
reliably detect fibre orientation and avoiding "empty" grid elements, for which no 
fibre orientation could be determined. If less than five elements were present in an 
element, no fibre direction was calculated. Figure 1c presents the resulting field of 
fibre direction for the segment shown in Fig. 1a and b.

Tensile strength parallel to the grain measured in tension tests to failure

Test set‑up

The tensile strength parallel to the grain of the European beech boards was 
determined in accordance with EN  408 (2012), using a Gehzu  850 horizontal 
testing machine (Fig.  3). The boards had a total length lb = 3000  mm, but the 

(2)c = 4 ⋅ � ⋅

A

P2

(a) (b)

Object no. 6478 Object no. 6478

261
0.21

Area =
Circularity =

3821.77
1496.61

xM =
yM =

Angle = 172.7° → -7.3°

Fig. 2  Detail image of board no. 1004, segment no. 4, after isolation of the medullary ray spindles (a). 
As an example, information on the coordinates, the area, the circularity, and the angle of object no. 6478 
is shown (b)
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free testing-length between the clamps (Fig. 3b) was ltest = 2060 mm, which was 
very approximately the part of the boards for which the local fibre direction 
was analysed (see Subsection  Local fibre direction). In addition to the tensile 
strength parallel to the grain ft,0, also the static modulus of elasticity parallel 
to the grain Et,0 was determined in accordance with EN  408 (2012), based on 
measurements performed using linear variable differential transformers (LVDT) 
attached to both edge faces of the boards (Fig. 3c).

Test results

The statistical parameters of the tensile strength and static MOE parallel to the 
grain are summarised in Table  1 for the training (n = 36) and the test (n = 11) 
data sets. The range of tensile strength is slightly wider for the training data 
set (42.2–132  MPa; cov = 0.25) compared to the test data set (49.5–119  MPa; 
cov = 0.26). The mean value of tensile strength is about 6% lower in the training 
data set (ft,0,mean = 85.4 MPa) compared to the test data set (ft,0,mean = 90.4 MPa). 
Similarly, a wider range but a slightly lower mean value of the static MOE was 
found for the training data set (Et,0,mean = 15,428 MPa) compared to the test data 
set (Et,0,mean = 15,646 MPa).

The results of previous tensile testing campaigns on European beech boards 
are summarised in Table 2. The tensile strengths were between 4.3 and 142 MPa 
(Blaß et  al. 2005; Ehrhart 2019; Frühwald and Schickhofer 2005; Glos and 
Lederer 2000; Plos et  al. 2018; and Weidenhiller et  al. 2019). Since only flat 
sawn boards free of knots were investigated in this study, the variation of results 
is significantly lower. No strength values below 40 MPa were observed. Never-
theless, the maximum values in the data sets are close to those reported in other 
studies (Table 2).

(a) (b) (c)

Fig. 3  Tensile testing machine Gehzu 850, used to determine the tensile strength parallel to the grain ft,0 
(a). Vertical hydraulic jacks that apply the clamping pressure and horizontal load cells to measure the 
applied tensile force (b). Displacement transducers on the edge faces, used to determine the static modu-
lus of elasticity parallel to the grain Et,0 (c)
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Failure patterns

As described in Ehrhart et  al. (2018a), the dominating failure mode was shear 
failure along the spindles formed by the medullary rays. As an example of a 
board with the spindles formed by the medullary rays running mostly parallel to 
the x-axis, i.e. the longitudinal axis of the board, a segment of board no. 3002 
is shown in Fig.  4a. The objects identified in this board segment are shown in 
Fig. 4b, where the almost horizontal orientation of the spindles is even clearer. 
The stain at the bottom part of the image is not considered in the calculation of 
the fibre direction matrix due to its circularity (> 0.6) and the orientation of the 
main axis of the fitted ellipse (> 45°) (see filtering criteria in Subsection Local 
fibre direction). Failure cracks created in the tension tests are shown in Fig. 4c. 
It can be seen that these cracks run mostly parallel to the x-axis, meaning that 
the fibres are quite straight (α ≈ 0). Due to the small fibre inclination, a relatively 
high tensile strength of ft,experimental = 112 MPa was observed with board no. 3002.

As an example of a board with a higher fibre inclination, a segment of board 
no. 2058 is shown in Fig.  5. Both in the original image (Fig.  5a) and the image 
showing the objects (Fig.  5b), a negative inclination of the spindles (α  ≈ − 15°) 
is clearly seen. The actual fibre direction, revealed by the failure pattern shown in 
Fig. 5c, agrees well with this observation. A significantly lower tensile strength of 
ft,0,experimental = 42 MPa was observed in the tensile test.

Numerical methods

Data‑fitting methods

The regression parameters were calibrated by minimising the residual sum of 
squares (RSS) between the estimated and the experimentally determined tensile 
strengths. This was done using the generalised reduced gradient (GRG) nonlinear 

Table 2  Tensile strength parallel to the grain of European beech boards reported in other studies

*Number of tests

Study Remark Tensile strength parallel to the grain [MPa]

n* [-] Min Mean Max Cov [-]

Glos and Lederer (2000) – 219 11.3 48.7 117 0.46
Frühwald and Schickhofer (2005) – 112 16.7 62.3 115 0.40
Blaß et al. (2005) – 354 – 68.1 – 0.50
Plos et al. (2018) – 191 19.1 72.1 142 0.38
Weidenhiller et al. (2019) Training/test data sets 21/20 – 58.7/51.3 – 0.46/0.55
Ehrhart (2019) All boards 294 4.3 63.4 132 0.65

tKAR ≤ 0.05 170 26.1 78.2 132 0.29
This study tKAR = 0

(only boards free of 
knots were used)

47 42.2 86.6 132 0.25
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solver implemented in MS Excel 2016. Only the training dataset (36 boards) was 
used in the model calibration.

Machine‑learning techniques

The main objective of using machine-learning techniques is to properly adjust 
important hyperparameters of the algorithms and to avoid overfitting, in order to 
achieve a good generalisation with respect to the unseen test data (Mansfield et al. 
2007). Thus, the choice of a proper experimental methodology is crucial. There-
fore, as mentioned before, the data set (N = 47) was divided in: a training data set 
(n = 36) and a test data set (n = 11). The training data set was used to identify and 
adjust important model hyperparameters by applying a (k =) sixfold cross-validation 
approach (Kohavi 1995). Cross-validation is a resampling procedure used to effec-
tively evaluate machine-learning models on a limited data set (Kohavi 1995). In the 
process of cross-validation, one part of the training data set (n = 36) was set as the 

(a)

x

y

(b) (c)

Fig. 4  Detail image of a segment of board no. 3002, the spindles formed by the medullary rays running 
mostly parallel to the longitudinal axis of the board (a), identified objects (b) and fracture path in the 
same segment (c). This board exhibited a tensile strength of 112 MPa in the tensile test to failure

(a) (b) (c)

x

y

Fig. 5  Detail image of a segment of board no. 2058, with the spindles formed by the medullary rays run-
ning mostly at an angle of 15° to the longitudinal axis of the board (a), identified objects (b) and fracture 
path in the same segment (c). This board exhibited a tensile strength of 42  MPa in the tensile test to 
failure
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validation data set, while the remaining k−1 = 5 parts were used as the training data 
set.

After training the machine-learning algorithms using the cross-validation 
method, the generalisation ability was assessed with the test data set (hold-out 
evaluation) based on the accuracy measures: coefficient of determination (R2); root 
mean square error (RMSE); and mean absolute percentage error (MAPE). The 
results from this evaluation serve as a quality measure (generalisation ability) for 
these models. Typical MAPE values for performance evaluation are categorised as 
follows (Lewis 1982): MAPE ≤ 10% corresponds to a ‘high accuracy prediction’; 
10% < MAPE ≤ 20% corresponds to a ‘good prediction’; and 20 < MAPE ≤ 50% cor-
responds to a ‘reasonable prediction’. A MAPE above 50% indicates an ‘inaccurate 
prediction’. The input parameters for the machine-learning techniques were the same 
that were used in the developed physically based model.

Deep learning approaches, for example convolutional neural networks, would 
be particularly suited to predict the tensile strength based solely on images of the 
boards, but require extremely large data sets and are computationally intensive. 
Therefore, shallow machine-learning algorithms were used instead. Shallow algo-
rithms require the data to be described by pre-defined features, which in this case are 
the grading parameters and the local fibre direction.

The machine-learning techniques applied in this study were Support-Vector 
Machines (e.g. Vapnik 1995), Decision Trees (e.g. Kotsiantis 2013), Random Forest 
(e.g. Breiman 2001), and Artificial Neural Network (e.g. Hinton and Salakhutdinov 
2006).

Introduced by Vapnik (1995), Support-Vector Machines are supervised learning 
models for classification and regression. Since support-vector machine regression 
relies on kernel functions, it is considered a nonparametric technique. In this study, 
the scaling factor, i.e. the kernel scale, and the cost function were optimised using 
sequential minimal optimisation (SMO). Decision Trees build regression or classifi-
cation models in the form of a tree structure (Kotsiantis 2013). Thereby, the data are 
split into at least two homogeneous sets (also called sub-populations) based on the 
most significant features of the input variables. An associated decision tree, featur-
ing decision nodes and leaf nodes, is incrementally developed. Decision trees are 
precursors to Random Forests (Kotsiantis 2013). Operated by constructing a mul-
titude of decision trees, a Random Forest is an ensemble learning method for (e.g.) 
classification and regression. Thereby, each tree is generated using a random varia-
ble subset from the candidate’s predictor variables and a random subset of data, gen-
erated by means of a bootstrap (Breiman 2001). Artificial Neural Networks comprise 
three functional parts (Hinton and Salakhutdinov 2006): (i) input layer; (ii) hidden 
layers; and (iii)  an output layer. The hidden part can consist of many layers that 
enable multi-level and nonlinear operations (Hinton and Salakhutdinov 2006). The 
interconnections between nodes, the parameters that represent the strengths of the 
interconnections (weights), and the activation function, which is a nonlinear func-
tion that converts the weighted sum of the input signals to output at each node, are 
important features for the performance of the network and are adjusted through 
learning (LeCun et  al. 2015). The learning process for updating weights is called 
“training”, which occurs in an iterative way. During each optimisation step, the 
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weights are adjusted in order to reduce the difference between the prediction and the 
measured activity (Hinton and Salakhutdinov 2006).

All algorithms were programmed in MATLAB R2018b (using the statistics and 
machine-learning toolbox). The hyperparameters of the Support-Vector Machines, 
Decision Trees, and Random Forests were optimised using Bayesian optimisation 
(Snoek et al. 2012). The optimal configuration, i.e. the decision about the type of 
training algorithm, learning rate, activation function (e.g. radial basis, tanh, ReLU) 
and number of layers and neurons per layer for the artificial neural network, was 
obtained by a trial and error approach until no further improvement could be 
achieved. A detailed mathematical description of the algorithms has been presented 
by Bishop (2006).

Development and evaluation of strength models

Overview

This study focussed on grading high-strength European beech boards free of knots. 
Thus, knot-related parameters, such as the single knot (DEB) and the knot cluster 
(DAB) parameter, or the knot area ratio (KAR) and the total knot area ratio (tKAR), 
could not be used in the models to estimate the tensile strength.

The potential of using the board density (ρ) and the dynamic modulus of elastic-
ity (Edyn) as grading parameters for the tensile strength parallel to the grain (ft,0) of 
beech boards was investigated in several studies (Glos and Lederer 2000; Frühwald 
et  al. 2003; Frühwald and Schickhofer 2005; Plos et  al. 2018; Weidenhiller et  al. 
2019; Ehrhart, 2019). The reported coefficients of determination between the den-
sity and the tensile strength parallel to the grain, i.e. R2(ρ, ft,0), were consistently 
very low (R2 < 0.20) (Table 3). Low coefficients of determination of R2 = 0.06 were 
also found in the present study (Fig. 6a).

The coefficients of determination for a linear correlation between the dynamic 
MOE and the tensile strength parallel to the grain reported in the literature are 
much more diverse (Table  3). While Ehrhart (2019), Frühwald et  al. (2003), and 
Frühwald and Schickhofer (2005) reported relatively low coefficients of determina-
tion (R2 between 0.19 and 0.27), Weidenhiller et al. (2019) observed much higher 
coefficients of determination (R2 ≈ 0.60). In this study, a coefficient of determina-
tion between the dynamic MOE and the tensile strength parallel to the grain, i.e. 
R2(Edyn, ft,0), of 0.48 (Fig. 6b) was found.

Sub‑model to estimate the minimum local tensile strength of a board

As described above, the fibre orientation within a board is not constant. It changes 
continuously both along the longitudinal as well as along the transverse axis 
of a board. Generally, the tensile strength is locally reduced in areas with high 
fibre inclination. However, not only the tensile strength but also the static MOE 
is smaller for elements with high fibre inclination. Consequently, the stresses in 
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a cross section are distributed depending on the stiffnesses of its elements and 
failure will not necessarily occur in the element with the highest fibre inclina-
tion. To take this into account, a sub-model to calculate the minimum local ten-
sile strength of a board min(ft,ij) is implemented. A preliminary study based on 
this approach was presented by Ehrhart et  al. (2018b). The minimum local ten-
sile strength corresponds to the external stress that leads to the failure of the first 
element.

For calculating min(ft,ij), the local fibre orientation matrices (see Subsection Local 
fibre direction) are taken into account. Constant strain across each cross section is 
assumed, i.e. the stresses within a cross section are distributed according to the local 
static MOE of each element in the cross section. The local MOE used herein (Et,ij) 
is calculated based on the local fibre direction αij of each element (Fig. 7a) using the 
Hankinson model (Eq. 3) (Hankinson 1921). The resulting matrix of Et,ij has a size of 
m (= wb/e = 160 mm/20 mm = 8) × n (= lrelevant/e = 2000 mm/20 mm = 100).

In Eq. (3), the local fibre direction (αij), the reference static MOE parallel (Et,0,ref) 
and perpendicular to the grain (Et,90,ref) as well as the exponent (a) are considered. Sub-
sequently, the average MOE of each cross section (Et,i) was calculated. The exponent 
(a) was calibrated through a data-fitting procedure on the training data set (see Subsec-
tion Calibration and testing of the model).

The matrix of local tensile strengths ft,ij (Fig. 1c), i.e. the external stress that would 
cause failure in the element eij, was calculated considering the local fibre direction αij, 
the local stiffness Et,ij, and the mean stiffness of the cross section i using Eq. (4). The 

(3)Et,ij =
Et,0,ref ⋅ Et,90,ref

Et,0,ref ⋅ sin
a
(

�ij

)

+ Et,90,ref ⋅ cos
a
(

�ij

)

Table 3  Coefficients of determination R2 between the potential strength grading parameters density (ρ) 
and dynamic MOE (Edyn) and the target parameter tensile strength parallel to the grain (ft,0) reported in 
previous studies (listed in the first column of the table) and found for the data training and test sets used 
in the present study

*Global coefficients of determination for three hardwood species (European beech (Fagus sylvatica L.), 
oak (Quercus robur L.), and ash (Fraxinus excelsior L.))
**For training and testing of the model, the data were split into two data sets

Remark n [-] R2(ρ, ft,0) R2(Edyn, ft,0)

Glos and Lederer (2000) – 219 0.02 –
Frühwald et al. (2003) – 70 0.17 0.19
Frühwald and Schickhofer (2005) * 202 0.03 0.26
Plos et al. (2018) – 191 0.05 –
Weidenhiller et al. (2019) Training/test data 21/20 – 0.62/0.57
Ehrhart (2019) All boards 294 0.00 0.27

tKAR ≤ 0.05 170 0.03 0.10
Present study All boards 47 0.06 0.48

Training data set** 36 0.07 0.48
Test data set** 11 0.10 0.53
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reference tensile strength parallel (ft,0,ref) and perpendicular to the grain (ft,90,ref) were 
chosen according to Wagenführ (2006). The calibration parameter b was determined 
through a data-fitting procedure on the training data set (see Subsection Calibration and 
testing of the model).

In the modelling of the tensile strength (ft,estimated), the grading parameter Edyn and 
the grading parameter min(ft,ij) are taken into account. The latter one allows consid-
ering the influence of the local fibre orientation. In accordance with previous studies 

(4)ft,ij =
ft,0,ref ⋅ ft,90,ref

ft,0,ref ⋅ sin
b
(

�ij

)

+ ft,90,ref ⋅ cos
b
(

�ij

)
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Fig. 6  Correlation of potential grading parameters density (R2 = 0.06) (a) and dynamic modulus of elas-
ticity (R2 = 0.48) (b) with the target parameter tensile strength parallel to the grain (ft,0)
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(Frühwald and Schickhofer 2005; Blaß et al. 2005; Plos et al. 2018), no significant 
influence of the density on the tensile strength could be determined. Hence, this 
grading parameter is not considered in the developed model.

Sub‑model to estimate the tensile strength parallel to the grain of a board

The model to estimate the tensile strength parallel to the grain of a board is based 
on two independent variables Edyn and min(ft,ij). It has been shown that the dynamic 
modulus of elasticity Edyn exhibits a medium linear correlation with the tensile 
strength (R2  (X1, ln(ft,0)) = 0.48; Fig.  6b) (correlation categorisation based on the 
JCSS Probabilistic Model Code (JCSS 2006): 0.8 ↔ high correlation, 0.6 ↔ medium 
correlation, 0.4 ↔ low correlation, 0.2 ↔ very low correlation). The independent 
variable min(ft,ij) represents the minimum of the estimated local tensile strengths of 
each cross section and is related to the local fibre orientation as described in Subsec-
tion Sub-model to estimate the minimum local tensile strength of a board and Fig. 7. 
The model assumes a multilinear correlation between the variables Edyn and min(ft,ij) 
and the logarithm of the estimated tensile strength (ft,estimated) and includes three cali-
bration parameters (Ci) (Eq. 5).

Calibration and testing of the model

The model to estimate the tensile strength of a board, resulting from combining the 
sub-models described in the previous subsections, is presented in Eqs. (5) and (6). 
Thereby, Edyn is the measured dynamic MOE (see Subsection  Sub-model to esti-
mate the tensile strength parallel to the grain of a board), aij is the computed local 
fibre orientation, and m is the number of cross sections in the considered discretisa-
tion of the board (see Subsection Sub-model to estimate the minimum local tensile 
strength of a board). The calibration parameters of the model are the exponents a 
and b (model to estimate the minimum local tensile strength of a board, Subsec-
tion Sub-model to estimate the minimum local tensile strength of a board) and C0, 
C1, and C2 (model to estimate the tensile strength of a board, Subsection Sub-model 
to estimate the tensile strength parallel to the grain of a board). To ensure that the 
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calibration parameters remain within reasonable values, i.e. that they make physical 
sense, the threshold values presented in Table 4 were enforced during the calibration 
procedure.

Since it is not the actual value but the ratio between the two parameters that has 
an influence on the stress distribution in the cross section, the moduli of elasticity 
parallel and perpendicular to the grain were combined in a single parameter, which 
was assumed to be (Et,0,ref/Et,90,ref =)  30 (Wagenführ, 2006). The reference tensile 
strength parallel to the grain (ft,0,ref = 180  MPa) and the reference tensile strength 
perpendicular to the grain (ft,90,ref  = 7 MPa) were chosen according to Wagenführ 
(2006).

The calibration parameters were determined by minimising the residual sum 
of squares (RSS) between the estimated (ft,0,estimated) and the experimentally deter-
mined tensile strengths (ft,0,experimental) and are presented in Table 4. Only the training 
data set (n = 36) was considered in this procedure. The other 11 boards remained 
“unseen”. Equation  (7) results from this procedure. It can be used to estimate the 
tensile strength of a board based on the dynamic MOE (Edyn), the minimum local 
tensile strength min(ft,ij), computed based on the local fibre direction (αij), and an 
error term ε. The independent variable min(ft,ij) alone, which is only based on the 
local fibre direction αij, shows a medium–high linear correlation with the logarith-
mic value of tensile strength ln(ft) (R2 = 0.65).

Figure 8 summarises all process steps: based on photographs of the board sec-
tions (Fig.  8a), the medullary ray spindles were identified (Fig.  8b), and the field 
of fibre direction was generated (Fig. 8c). The dynamic MOE (constant along the 
board) and the minimum local tensile strength of each cross sections i min(ft,j) are 
shown in Fig. 8d. Such information on the tensile strength for each cross section/
along the board’s axis could be especially of importance for choosing the location 
of finger joints during fabrication. However, for the estimation of the tensile strength 
parallel to the grain of the board ft,0,estimated, the lowest local tensile strength in the 
entire board min(ft,ij) is considered in Eq. (7).

In Fig.  9a, the tensile strength predicted by the developed model (ft,0,estimated) 
is compared to the tensile strength determined in the destructive tension tests 
(ft,0,experimental). A coefficient of determination of R2 = 0.74 was found. The model 
error is described by a normally distributed error term (Fink 2014) with the param-
eters ε ~ N(με = 0; σε

2 = 0.018). Taking only the calibration data into account, the root 
mean square error (RMSE) of the model is 11.0, and the mean absolute percentage 
error (MAPE) of the model is 9.99.

In the training data set, the maximum deviation between the modelled and the 
experimentally determined tensile strength was found for board no.  2008 with 
a relative error of 43% (model: 82.8  MPa; experiment: 58.0  MPa). The predic-
tions (ft,0,estimated) for all other 35 boards lie within the 95% confidence interval and 
show a maximum deviation from the experimentally determined tensile strength 
(ft,0,experimental) of ± 25%. For 22 of the 36 boards (61%), the relative error between 
modelled and experimentally determined tensile strength is below ± 10% (Fig.  9). 

(7)ln
(

ft,0,estimated

)

= 1.91 + 5.06 ⋅ 10−5 ⋅ Edyn + 1.21 ⋅ 10−2 ⋅min
(
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+ �



139

1 3

Wood Science and Technology (2022) 56:123–146 

Applying the calibrated model to the (unseen) test data set reveals an even bet-
ter coefficient of determination of R2 = 0.84 (Fig. 9b). Furthermore, the root mean 
square error (RMSE = 10.2) and the mean absolute percentage error (MAPE = 9.56) 
are lower compared to the training data set. A maximum relative difference between 
the experimentally determined and the modelled tensile strength for an individual 
board of 20% was observed. Although, the number of boards in the test data set was 
small (n = 11), these results indicate that even with unseen data the model is able to 
generate good estimates for the tensile strength parallel to the grain.

Comparison with models based on machine‑learning techniques

The input parameters for the ML models were the two independent variables Edyn 
and min(ft,ij) of each board. The density was not considered as an input parameter, 
since a preliminary check and the literature review indicated that the influence of 
this parameter on the strength of European beech wood was negligible (Table 3).

The deviation of the maximum and minimum values in the results obtained by 
different performance measures for each of the sixfolds for training and validating 
was very limited, indicating that all machine-learning models showed no tendency 
towards under- or overfitting (Table  5). Overfitting would mean that the analysis 
would correspond too closely to this particular set of data, without being able to pre-
dict subsequent (unseen) observations reliably. Theoretically, the prediction model 

Table 4  Regression coefficients Ci, the exponents for the dynamic modulus of  elasticitya and the tensile 
 strengthb used in the model

The reference tensile strengths parallel (ft,0,ref) and perpendicular to the grain (ft,90,ref) and the ratio 
Et,0,ref/Et,90,ref were assumed according to Wagenführ (2006)
a Predefined value, based onWagenführ (2006)
b For a 95% confidence, based on 36 bootstrapping-resamples

Characteristic Symbol Calibration 
interval

Value 
(calibrated 
or pre-
defineda)

Confidence 
 intervalb

Parameters related 
to dynamic MOE 
(Eq. 3)

Ratio MOE parallel/per-
pendicular to the grain

Et,0,ref/
Et,90,ref

n.a 30a n.a

MOE exponent a [1; 3] 1.6  ± 0.27
Parameters related 

to tensile strength 
(Eq. 4)

Tensile strength parallel to 
the grain

ft,0,ref n.a 180  MPaa n.a

Tensile strength perpen-
dicular to the grain

ft,90,ref n.a 7  MPaa n.a

Tensile strength exponent b [1; 3] 2.5  ± 0.40
Regression parameters 

(Eq. 5)
Intercept C0 [− 3; 3] 1.91  ± 0.29
MOE parameter C1 [0;  10–3] 5.06 ∙  10–5  ± 2.23 ∙  10–5

Tensile strength param-
eters

C2 [0; 1] 0.0121  ± 0.0039
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works best when R2 equals one and both RMSE and MAPE equal zero. Table 5 sum-
marises the performance values R2, RMSE and MAPE of the five models for the test 
data set, which was not considered in all prior analyses and therefore called ‘unseen’ 
in order to determine the generalisation ability of the models.

The results clearly show that the predictions of all machine-learning algo-
rithms, according to the relevant indices (R2, RMSE, MAPE), are highly correlated 
with the experimental observations of the mechanical tensile strength property 
(Table 5). When applied to the test data set, the predictive models support-vector 
machine (R2 = 0.87/RMSE = 8.40/MAPE = 7.72%) and random forest (R2 = 0.88/
RMSE = 8.16/MAPE = 8.48%) perform best, i.e. the predicted values were closest 
to the experimentally determined tensile strengths. The artificial neural network 
model (R2 = 0.86/RMSE = 8.46/MAPE = 7.59%) showed a similar prediction qual-
ity and performed best with regard to the MAPE. Even the worst performance of 
the machine-learning algorithms (Decision Tree algorithm) had acceptable accuracy 
indices of R2 = 0.81, RMSE = 9.73 and MAPE = 9.91 for the test data set.

Due to the small dataset, the investigations were limited to the evaluation of 
the applicability of specific machine-learning techniques. The use of deep learn-
ing approaches, which require very large data sets and are computationally inten-
sive, was not possible. This study shows that the reference model as well as shal-
low machine-learning algorithms can be used to analyse the limited dataset and 
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Fig. 8  Overview of all steps of the reference model using the example of board no. 1035: photos of the 
board segments between the clamping jaws (a); post-processed black-and-white image of the medul-
lary ray spindles (b); matrix of local fibre directions (c). Based on the measured Edyn and min(ft,ij) along 
the board’s longitudinal axis (d), the tensile strength ft,0,estimated is predicted (e). The fracture pattern (f) 
agrees well with the estimated fibre direction. The modelled (ft,0,estimated = 64 MPa) and experimentally 
determined tensile strength (ft,0, experimental = 64.4 MPa) are on a similar level and failure occurred in the 
area of maximum fibre inclination



141

1 3

Wood Science and Technology (2022) 56:123–146 

to predict the tensile strength parallel to the grain of European beech boards with 
high accuracy. However, the use of shallow machine-learning algorithms on a small 
dataset required the use of cross-validation methods and hold-out tests (Varma and 
Simon 2006). As discussed above, efficient strength grading of timber is important 
when attempting at controlling the inherent heterogeneous material structure on 
different scales and the high variability of wood properties. Machine learning is a 
powerful tool in this respect and can help to overcome the recurring challenge in 
wood technology to transform the very heterogeneous raw material wood into prod-
ucts with high value and well-defined properties (Schubert et al. 2020; Schubert and 
Kläusler 2020).

Conclusion

The present study explores the potential of using information on the local fibre 
direction in addition to the dynamic modulus of elasticity in the strength grading 
process of European beech (Fagus sylvatica L.) boards. Based on investigations on 
36 knot-free boards assigned to a training or calibration data set, which were used 
to train different machine-learning techniques (Support-Vector machines, Decision 
Tree, Random Forest, and Artificial Neural Network using a 6-k cross-validation 
approach), and another 11 boards assigned to the ‘unseen’ test data set, the follow-
ing conclusions can be drawn:

• Data on the local fibre direction are very important for understanding and pre-
dicting the tensile strength parallel to the grain of European beech timber. Espe-
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Fig. 9  Correlation analysis between the modelled tensile strength ft,0,estimated and the experimentally 
determined tensile strength ft,0,experimental for the training data set (a) (n = 36; R2 = 0.74) and the test data 
set (b) (n = 11; R2 = 0.84)
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cially for knot-free boards, this is considered the key parameter to achieve pre-
dictions of high accuracy.

• A model that takes into account the dynamic modulus of elasticity and a sec-
ond parameter representing the critical local fibre direction was developed using 
a training data set (77% of the data). For this training data set, a coefficient of 
determination of R2 = 0.74 between the predicted tensile strength and the experi-
mentally determined tensile strength parallel to the grain and a mean absolute 
percentage error (MAPE) of 9.99% was found. Applying the model to the unseen 
test data set (23% of the data) showed an even better coefficient of determination 
of R2 = 0.84 and a lower MAPE of 9.56%.

• Shallow machine-learning algorithms in combination with cross-validation 
methods were successfully used to further improve the prediction accuracy. The 
machine-learning techniques support-vector machine (R2 = 0.87/RMSE = 8.40/
MAPE = 7.7%) and random forest (R2 = 0.88/RMSE = 8.16/MAPE = 8.5%) 
showed the best performance when applied to the unseen test data set.

The outcomes of this study indicate that the application of combined approaches, 
including experimental methods and machine-learning, has a great potential for 
increasing the precision of the strength grading of European beech timber. However, 
due to the limited size of the dataset available for this study, applying the presented 
methods to a larger dataset would be important and is envisaged in the course of 
follow-up projects. In the future, such combined approaches have the potential to 

Table 5  Descriptive statistics for the training/validation data set (6-k cross-validation) and the test data set

a Selected model
b Standard deviation of the 6-k cross-validation
c MATLAB parameters: ‘KernelFunction’: linear; ‘KernelScale’: 2.18; ‘IterationLimit’: 1e6; ‘Solver’: 
SMO; ‘BoxConstraint’: 12,635
d MATLAB parameters: ‘MinParent’: 10; ‘MinLeaf: 1; ‘MaxSplits’: 29; ‘PruneCriterion: mse; ‘Predic-
torSelection’: allsplit
e MATLAB parameters: ‘Trees’: 1000; ‘mtry’: 2/3; ‘Sample size’: size (Xtrain, 1); ‘Splitting rule’: Ran-
domly selected mtry; ‘MinLeafSize’: 2; ‘NumPredictorsToSample:’: 2
f MATLAB parameters: ‘Architecture’: 36-[5]-1; ‘Training algorithm’: Bayesian regularisation backprop-
agation; ‘Transfer function’: tansig (hidden layer), purelin (output layer); ‘Epochs’:5; ‘Learning rate’: 
0.01.
g Interpretation of the mean absolute percentage error (MAPE) according to Lewis (1982): MAPE ≤ 10% 
↔high accuracy prediction, 10% < MAPE ≤ 20% ↔good prediction, 20% < MAPE ≤ 50% ↔ reson-
able prediction, > 50% ↔inaccurate prediction.

Model Training/validation data set Test data set

R2 RMSE MAPEg R2 RMSE MAPE

Reference model 0.74 11.0 9.99 0.84 10.2 9.56
Support-vector  machinec 0.71a ± 0.07b 11.5 ± 1.68 10.2 ± 2.15 0.87 8.40 7.72
Decision  treed 0.83 ± 0.22 8.99 ± 2.86 7.79 ± 3.71 0.81 9.73 9.91
Random  foreste 0.87 ± 0.13 8.19 ± 2.30 7.13 ± 2.39 0.88 8.16 8.48
Artificial neural  networkf 0.72 ± 0.07 11.4 ± 1.89 10.2 ± 2.75 0.86 8.46 7.59
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contribute to a more resource-efficient use of this timber species widely available in 
Central Europe and may open new and more demanding fields for high-level timber 
applications.
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