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Abstract
An optimization problem was developed by using a genetic algorithm to select 
wavelengths for establishing multivariate calibration models based on partial least 
squares (PLS) regression. Two near infrared (NIR) data sets represented by untreated 
and second derivative spectra were used to predict Eucalyptus globulus pulp yield. 
The optimization process was run with the number of variables (i.e., wavelengths) 
varied from 10 to 100 to determine the optimum wavelengths and number of latent 
variables for PLS regression model. A linear function of R-squares for calibration 
and prediction sets was utilized as the objective function of the optimization prob-
lem. The optimum wavelengths selected by genetic algorithm helped to consider-
ably improve the performance of the PLS regression model, not only for the calibra-
tion sets but also for the prediction sets. The optimum number of latent variables 
varied over a wide range, from the maximum allowed (20) to a lower limit of six. 
Representative wavelengths for each data set were also statistically determined and 
assigned to corresponding wood components through a band assignment process, 
which showed strong agreement.

Introduction

Efficient utilization of forest resources requires information on wood property var-
iation at multiple scales. Information is often limited owing to the cost and time 
associated with measuring many wood properties and various methodologies have 
been developed for estimating these properties rapidly (Schimleck et al. 2019). Near 
infrared (NIR) spectroscopy is one such technique that has been widely applied to 
wood (Tsuchikawa and Kobori 2015; Schimleck and Tsuchikawa 2020), and it is the 
only nondestructive technique that can provide an estimate of pulp yield (the yield 
of chemically derived pulp from a given volume of wood). Pulp yield is critical to 
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the economics of the pulp and paper industry (Greaves and Borralho 1996) and is 
very expensive to measure (Meder et al. 2011). Hence, there is increased interest in 
utilizing a rapid, inexpensive approach for its determination (Michell 1995).

Owing to its importance and direct relationship with wood chemistry, the estima-
tion of pulp yield by NIR spectroscopy began with the earliest wood—NIR papers 
(Birkett and Gambino 1988; Wright et al. 1990) and pulp yield has remained a con-
sistent focus of NIR-wood related research (Downes et al. 2009, 2010, 2011; Meder 
et al. 2011; White et al. 2009). However, efforts to improve calibration performance 
through the utilization of advanced selection techniques are rare. For example, Mora 
and Schimleck (2008) utilized three different sample selection techniques (CADEX, 
DUPLEX and SELECT algorithms) to identify samples most representative of their 
data set for the development of pulp yield calibrations. They showed calibration per-
formance was improved by utilizing only selected samples and recommended that 
these methods be employed to identify unique samples prior to doing any wood 
property determination utilizing models based on NIR spectra. More recently, Li 
et al. (2019) utilized a particle swarm optimization (PSO)—support vector machine 
(SVM) approach and observed improved density prediction for four commercially 
important Chinese species.

The selection of the most representative wavelengths in the spectra data of all 
samples might improve both calibration and prediction performances of partial least 
squares (PLS) regression and reduce computational workload. This selection prob-
lem can be defined as an optimization problem (Bangalore et al. 1996).

Many complex real-world problems involve optimizing goals, which means 
searching for the maximum and / or minimum values of these goals (objective val-
ues). For example, in manufacturing, maximizing profit and minimizing cost are 
common aims; whereas, in logistics, goods or services management, distribution 
and transportation are of interest, such that goods or services can be delivered in 
the shortest time and in a cost effective manner. In these examples, profit, cost and 
time are objective values. Objective values are affected by many factors, and these 
are called design variables (or decision variables). If there are restrictions, which 
are typically expressed mathematically as inequalities or equations, they are called 
constraints. A function, which expresses relationships between objective values and 
design variables, is called the objective function.

The common optimization problems in the field of NIR spectroscopy/chemo-
metrics include wavelength selection (i.e., variable selection) and selection of the 
appropriate number of components (i.e., latent variables) in partial least-square 
(PLS) regression. Others include preprocessing techniques, such as feature selec-
tion and optimization of the parameters in calibration models with Support Vec-
tor Machines (Ramirez-Morales et  al. 2016); and instrumentation optimization 
(signal precision and wavelength resolution) (Greensill and Walsh 2000). These 
problems have been solved by many optimization methods: the binary dragon-
fly algorithm (Chen and Wang 2019), genetic algorithms (GA) (Bangalore et al. 
1996; Villar et al. 2014; De et al. 2017), artificial bee colony (Sun et al. 2019), 
particle swarm optimization (De et al. 2017; Lou et al. 2014), ant colony optimi-
zation (Xiaowei et al. 2014) and simulated annealing (Swierenga et al. 1998; Bal-
abin and Smirnov 2011) are some examples. These metaheuristic algorithms help 
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to save time and computational resources, especially in the case of wavelength 
selection problems in which the solution space is too large. Among the mentioned 
algorithms, simulated annealing is a single solution approach to improve a local 
search heuristic to find a better solution; while the others are population-based 
approaches which maintain and improve multiple potential solutions by gen-
erating a new population based on principles of natural systems. Evolutionary 
algorithm (e.g. genetic algorithm) and swarm-intelligence-based algorithm (e.g. 
binary dragonfly algorithm, artificial bee colony, particle swarm optimization and 
ant colony optimization) are two common categories of population-based meth-
ods. It is worthy to note that in spite of the popularity of these optimization meth-
ods in the field of NIR spectroscopy/chemometrics, their applications in the field 
of wood-NIR are very limited.

Xiaobo et al. (2010) and Balabin and Smirnov (2011), reviewed variable selec-
tion methods for NIR spectroscopy, including GA. Xiaobo et al. (2010) concluded 
that GA combined with PLS regression showed superiority over other applied multi-
variate methods because wavelengths selected by GA did not lose prediction capac-
ity and provided useful information about the chemical system.

Villar et al. (2014) applied three variable selection methods, including Martens 
Uncertainty Test, interval Partial Least Squares (iPLS) and GA to Visible-NIR 
spectra. The application of iPLS and GA resulted in considerable improvement of 
the calibration model with the number of latent variables being reduced while also 
decreasing the root mean square error of the cross-validation (RMSECV) and the 
standard error of cross-validation (SECV) and increasing the ratio of prediction to 
deviation (RPD) compared to a full spectrum model.

Evolutionary genetic algorithms are a branch of evolutionary computation, which 
are inspired by natural evolutionary and adaption processes. Evolutionary algo-
rithms include three major algorithms, i.e., evolution strategies, evolutionary pro-
gramming and genetic algorithms. Rechenberg (1973) introduced evolutionary strat-
egies as a numerical optimization technique, while the current framework of genetic 
algorithms was first proposed by Holland (1975) and his students (Jong 1975). An 
important addition was the development and introduction of the population concept 
into evolution strategies by Schwefel (1981, 1995). Evolutionary algorithms have 
been adapted to various optimization problems, with examples including numeri-
cal optimization, for example, both constrained (Michalewicz and Schoenauer 1996; 
Kim and Myung 1997) and unconstrained (Yao and Liu 1996, 1997) and multi-
objective optimization (Fonseca and Fleming 1995, 1998).

All evolutionary algorithms have two prominent features, which distinguish 
themselves from other search algorithms. First, they are all population-based and 
second, there is communication and information exchange among individuals in a 
population. They are the result of selection and/or recombination in evolutionary 
algorithms. Most recombination (crossover) operators use two parents and produce 
two offspring which inherit the information (genes) from their parents.

Genetic algorithms have been applied in the area of NIR spectroscopy since 
the 1980s. Koljonen et al. (2008) reviewed applications of GAs, including wave-
length selection, wavelength interval selection, feature selection, co-optimization 
for wavelength selection and the number of PLS components, pre-processing 
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optimization and wavelet transformation. The authors also proposed some poten-
tial research directions and applications of GAs in chemometrics.

In this paper, the GA approach was applied to a variable selection problem, 
which can be considered as an optimization problem, for NIR spectroscopy data 
sets. Two data sets represented by untreated, and second derivative spectra were 
used to predict pulp yield. The goals of the optimization problem were reducing 
the number of variables (i.e., wavelengths) for PLS regression and identifying the 
most frequent optimum wavelengths (i.e., representative wavelengths) for each 
data set. NIR band assignment was utilized to provide useful information about 
the wood components related to the optimum wavelengths.

Materials and methods

Optimization problem

Wavelength selection, number of wavelengths (NWvL) and number of latent vari-
ables (Ncomp) for PLS regression are often optimized in the same procedure using 
GA. Using an approach first implemented by Bangalore et al. (1996), a chromo-
some includes a series of (N + 1) genes, in which N is the total number of wave-
lengths in the wavelength domain. Therefore, each gene in the first N genes cor-
responds to a specific wavelength. The value of a gene is binary, which indicates 
whether the wavelength is included in the model or not (i.e., 1 = yes and 0 = no). 
The number of wavelengths for the regression model (NWvL) is counted as the 
number of genes among the first N genes assigned the value of 1. However, as a 
result, the number of selected wavelengths could not be controlled. The last gene 
represents the number of latent variables, which is an integer. By developing the 
problem in this way, the wavelengths, NWvL and Ncomp are co-optimized.

In the study presented here, the optimum wavelengths and number of latent 
variables for PLS regression are investigated at a specific number of wavelengths, 
which increased from 10 to 100. This approach allows the observation of how 
these variables and PLS model metrics change versus the number of wavelengths. 
Therefore, the implementation of GA to the optimization problem will be differ-
ent from the aforementioned studies (Bangalore et al. 1996; Koljonen et al. 2008) 
and summarized as follows.

Each calibration model for PLS regression includes (NWvL + 1) variables, which 
are a combination of wavelengths selected from the wavelength domain and the 
number of latent variables for PLS regression. They are combined into a vector, 
called a chromosome (or an individual) x∗ =

[
x1x2 … xNWvL+1

]T . Each value in a 
chromosome is called a gene. The first gene x1 represents the number of latent 
variables while the others (from x2 to xNWvL+1 ) are assigned integer values which 
belong to a NWvL-combination without repetition of all wavelength values in their 
domain (N elements). This combination is sorted in ascending order before being 
assigned to genes.
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Data sets

The optimization problem was developed and applied to two NIR data sets selected 
as they represented two extremes in terms of pulp yield variation. The first (pulp 
yield-min) was comprised of 67 clonal blue gum (Eucalyptus globulus) samples 
(Schimleck and French 2002) all the same age and with Kraft pulp yields that 
ranged from 50.8 to 55.8%. The second (pulp yield-max) included 30 blue gum sam-
ples (Michell 1995) from several different native forests in Tasmania, Australia. The 
forests were of various ages and pulped samples had a much wider yield range (soda 
pulp yields = 37.6 to 60.2%). Details regarding sample preparation and collection 
of NIR spectra are described in Michell (1995) and Schimleck and French (2002). 
Briefly, wood chip samples (representative of individual trees or clones) were milled 
in a model 4 Wiley mill (Thomas Scientific, Swedesboro, NJ, USA). For both data 
sets, milled wood was placed in a large NIR systems sample cup (NR-7070) and 
duplicate spectra (the cell was repacked between scans) collected using a NIR Sys-
tems Inc. Model 5000 scanning spectrophotometer (Silver Spring, Maryland, USA). 
Duplicate spectra (wavelength range 1100–2500  nm in 2  nm increments, total 
N = 700) were averaged prior to analysis. For the pulp yield-max samples, a static 
sample holder was used, whereas a spinning sample holder was utilized for the col-
lection of spectra from the pulp yield-min samples. Schimleck and French (2002) 
and Turner et  al. (1983) provide information regarding the determination of pulp 
yield for samples included in the two datasets.

Each data set was separated into two subsets (i.e., calibration set and prediction 
set) based on the DUPLEX selection method (Snee 1977), which use Euclidean dis-
tance to determine the proximity of samples to others in a factor space (Mora and 
Schimleck 2008). The basic information of data sets is shown in Table 1.

The maximum number of latent variables was selected to be 20 for pulp yield-
min data and 15 for pulp yield-max data. The value of 20 for the maximum Ncomp 
was considered more than necessary for a PLS model using this set but we wanted 
to allow for instances where the optimization required more latent variables as sug-
gested by preliminary models using 10 latent variables. Based on an analysis of the 
percentage of variance explained of Y for full data set, Ncomp = 20 explained 99.54% 
variance of Y. Therefore, a number of latent variables greater than 20 does little in 
terms of improving the PLS model and might actually make the model more compli-
cated and therefore increase the computing time. In case of the pulp yield-max data 
set, the maximum number of latent variables was limited by the size of the calibra-
tion set (20 samples). When the cross-validation sets of 4 were used, the number of 
latent variables should not be larger than the size of the training set (i.e., 15). Again, 

Table 1   Data set information

Data set Pulp yield-min Pulp yield-max

Total Calibration set Prediction set Total Calibration set Prediction set

Number of samples 67 51 16 30 20 10
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the analysis of the percentage of variance explained of Y showed that Ncomp = 15 
explained 99.94% variance of Y.

Therefore, the domains of optimum variables were defined as:
For number of latent variables: 
D
[
x1
]
=
[
1 2 3 … 18 19 20

]
 for pulp yield-min data

D
[
x1
]
=
[
1 2 3 … 13 14 15

]
 for pulp yield-max data

For wavelength variables: 
D
[
xi
]
=
[
1100 1102 1104 … 2494 2496 2498

]
 (nm)

(i = 2 … NWvL+1)
The performance of a calibration model for PLS regression (i.e., a chromosome 

or an individual) in this study was evaluated by four inequality constraints (m = 4) 
and two objective values. The constraint conditions are R-squares for the calibration 
and prediction sets ( R2

c
 and R2

p
 , respectively) and the standard errors for the calibra-

tion and prediction sets (SEC and SEP, respectively). These constraint conditions 
can be expressed as follows:

in which R2

c,min
 , R2

p,min
 , SECmax and SEPmax are limited values for R2

c
 , R2

p
 , SEC and 

SEP, respectively. These limited values were selected so that the performance of an 
optimum calibration model is equal to, or better than that, of a calibration model 
using all wavelengths in the data set and Ncomp = 6. The details of the constraint val-
ues are shown in Table 2.

The objective values in this study are the aforementioned R-squares for the cali-
bration and prediction sets. It demonstrates that the overall goal of the optimization 

⎧⎪⎨⎪⎩

R2
c
− R2

c,min
≥ 0

R2
p
− R2

p,min
≥ 0

SECmax − SEC ≥ 0

SEPmax − SEP ≥ 0

Table 2   Constraint values for data sets and the result of optimized values

Note: R2
c,min

 , R2
p,min

 , SECmax and SEPmax are constraint values for the optimization problem. They are 
determined from a calibration model using all wavelengths in the data set and Ncomp = 6
R2
c,opt

 , R2
p,opt

 , SECopt and SEPopt are the results from optimized wavelength sets

Data set Pulp yield-min Pulp yield-max

Treatment Untreated 2nd Derivative Untreated 2nd Derivative

R2
c,min

Full set 0.75 0.86 0.97 0.98

R2
c,opt

Optimized set 0.840–0.995 0.917–0.999 0.978–0.998 0.992–1.000

R2
p,min

Full set 0.87 0.63 0.94 0.95

R2
p,opt

Optimized set 0.902–0.999 0.971–0.999 0.962–0.990 0.990–1.000
SECmax Full set 0.64 0.48 1.28 0.93
SECopt Optimized set 0.105–0.513 0.045–0.395 0.504–1.226 0.016–0.859
SEPmax Full set 0.42 0.68 1.39 1.48
SEPopt Optimized set 0.034–0.367 0.031–0.190 0.575–1.106 0.156–0.727
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problem presented here is to obtain a set of wavelengths which can produce good 
R-square values for both sets. If the objective value is only the R-square for the 
calibration set, it might result in an overfitting problem for PLS regression and as 
a result, the fitness of PLS regression in terms of prediction would be reduced. 
The objective function is defined as: fobj = � × R2

c
+ � × R2

p
 , in which α and β are 

weighted factors for R2
c
 and R2

p
 , respectively ( � + � = 1 ). In this study, α and β were 

selected to be 0.5.

Optimization process

In the optimization problem for PLS regression, the first generation is created ran-
domly. The first generation of parents, P, is represented by the following matrix, in 
which k is the number of parents (or the population size), and each row represents an 
individual’s chromosome. In this study, the number of parents (k) is 100.

In the initial step, a hundred individuals were created by randomly selecting gene 
values from pre-defined variable domains by the uniform distribution. The strength 
(or fitness) of each individual is evaluated by the objective function fobj . Good indi-
viduals are selected to be parents based on their fitness to create the next generation 
(offspring) during the search process. After that, the objective function of each indi-
vidual offspring is evaluated and compared to their parents using a penalty function 
(Van de Lindt and Dao 2007) in a process named tournament selection. The best 
individuals are identified and become new parents of the next generation. The pro-
cess is repeated until pre-determined convergence criteria are satisfied.

The searching process is performed through the crossover (recombination) and 
mutation operators. In the crossover operator, two or more offspring are often pro-
duced by randomly exchanging genes from two or more parents. In most cases, 
two parents will be selected randomly, thus, only two offspring will be created and 
inherit genes from parents. The number of individuals selected to perform the cross-
over operator depends on a crossover rate. A crossover point, where genes exchange 
occurs, is chosen randomly between 1 and (n-1). There are possibly more than one 
crossover points. However, only one crossover point will be used in this study. For 
example, individuals Xi and Xj are selected to take the crossover operator at the 
crossover point k, the two offspring are expressed as:

The mutation operator changes some genes in some individuals in every generation. 
Similar to the crossover operator, the number of chromosomes selected to be mutated 

P =

⎡
⎢⎢⎢⎣

x1,1 x1,2 … x1,n−1 x1,NWvL+1

x2,1 x2,2 … x2,n−1 x2,NWvL+1

… … … … …

xk,1 xk,2 … xk,n−1 xk,NWvL+1

⎤
⎥⎥⎥⎦

X
�

i
=
[
xi,1 … xi,k−1 xj,k … xj,NWvL+1

]

and X
�

j
=
[
xj,1 … xj,k−1 xj,k … xi,NWvL+1

]
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depends on the pre-defined mutation rate while the mutation points are chosen ran-
domly between 1 and n. At a mutation point q on a selected chromosome p, a gene’s 
value is changed to a random value which is within the gene’s domain. A new offspring 
is expressed as:

Since the genes from x2 to xNWvL+1 are required to create a set of unique wave-
lengths, the new offspring produced by crossover and mutation operators are checked. 
If the values of wavelength genes are not unique, the operator is repeated until a set of 
unique wavelength values is obtained. In addition, the large domains defined for varia-
bles result in numerous possible individuals. Therefore, in this study, the crossover and 
mutation rates were chosen to be 0.5 to introduce various new genes to the population.

The offspring matrix, O, obtained from crossover and mutation operators, is 
expressed as:

The selection process is conducted for parents and offspring using the tournament 
selection method. Each individual is a PLS regression model for the respective data set. 
The regression produces constraint values, and the fitness of each individual is eval-
uated based on the objective function. The fitness vector Y and the constraint value 
matrix C for (k + r) individuals can be expressed as:

where m is the number of constraint values being considered (as described earlier, 
m = 4).

As proposed by Van de Lindt and Dao (2007), one should concentrate on searching 
for individuals around those individuals having the best fitness, so that the approach to 
global optimization is as stable as possible. In that scenario, some individuals, which 
do not satisfy the constraint conditions but have very good fitness, might be considered 
for retention. A penalty function was proposed by Van de Lindt and Dao (2007) so the 
individuals having fitness values around the best fitness value will have a higher prob-
ability of survival. The mathematical form of this penalty function for a minimum opti-
mization problem can be expressed as:

X
�

p
=

[
xp,1 … xp,q−1 x

�

p,q
xp,q+1 … xp,NWvL+1

]

O =

⎡
⎢⎢⎢⎣

x1,1 x1,2 … x1,n−1 x1,n
x2,1 x2,2 … x2,n−1 x2,n
… … … … …

xr,1 xr,2 … xr,n−1 xr,n

⎤
⎥⎥⎥⎦

Y =

⎡
⎢⎢⎢⎣

y1
y2
…

y(k+r)

⎤
⎥⎥⎥⎦
andC =

⎡
⎢⎢⎢⎣

c1,1 c1,2 … c1,m
c2,1 c2,2 … c2,m
… … … …

c(k+r),1 c(k+r),2 … c(k+r),m

⎤⎥⎥⎥⎦

fp(x) =

{
f (x) if

[
gk(x) ≥ 0 and hm(x) = 0

]
or
[
fb(x) < f (x)

]
fb(x) +

[
fb(x) − f (x)

]
if
[
gk(x) < 0 or hm(x) ≠ 0

]
and

[
fb(x) ≥ f (x)

]
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where fp(x) is fitness after penalizing; f (x) is fitness before penalizing, and fb(x) 
is fitness of the best individual in the constraint domain 

[
gk(x) ≥ 0 and hm(x) = 0

]
 , 

in which gk(x) and hm(x) are constraint functions for N inequality constraints and M 
equality constraints, respectively.

Results and discussion

Optimization results

As mentioned, optimization was implemented for a specific number of wave-
lengths. There were 91 optimization cases corresponding to the change in number 
of wavelengths from 10 to 100. Figure 1 shows objective values ( R2

c
 andR2

p
 ) from 

for k = 1,2,… ,N; h = 1,2, ..,M

Fig. 1   Optimum objective values result for different spectra data sets
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each optimum set of wavelengths resulting from the optimization process for the 
four data sets. Overall, the objective values were greatly improved compared to 
the corresponding values obtained from using all wavelengths (see Table 2). The 
best number of wavelengths for optimizing the prediction result ( R2

p
 ) differed 

among data sets. For pulp yield-min untreated spectra, R2
p
 increases from 0.96 to 

0.98 when NWvL increases from 10 to 22. R2
p
 stays above 0.98 before it fluctuates 

drastically in the range of 0.9-1when NWvL is larger than 56. R2
p
 of pulp yield-max 

untreated spectra reaches a peak value of 0.99 at NWvL = 14 which is then followed 
by a downward trend to around 0.965 as NWvL increased. Excellent values of R2

p
 

were observed for both the second derivative sets. R2
p
 of pulp yield-min second 

derivative spectra increases from 0.97 and remains above 0.99 with NWvL ≥ 27, 
while R2

p
 of pulp yield-max second derivative spectra is higher than 0.99 for all 

investigated cases of NWvL.The optimization also reduces SEC and SEP values 
indicating an improvement in model fitting and predictive performance (Fig. 2).

Fig. 2   SEC and SEP from optimum results for different spectra data sets
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Figure 3 shows the optimization results for the number of latent variables (Ncomp). 
These are values, which combined with the corresponding optimum wavelength sets, 
resulted in  the highest objective values. Only pulp yield-max untreated spectral data 
shows a convergence of Ncomp = 6 versus number of wavelength (NWvL). For the other 
data sets, the optimum Ncomp fluctuates over a wide range. However, Ncomp = 6 tends to 
be the lower limit while the upper limit reaches the preselected maximum number of 
latent variables in some cases. This suggests that the true upper limit might go higher if 
the maximum number of latent variables were increased.

For optimization based on different numbers of wavelengths, the sets of identified 
wavelengths share few common components. For example, the result from optimiza-
tion for pulp yield-min untreated spectra shows that the optimum wavelength sets for 
NWvL = 10 and NWvL = 11 are as follows:

WvLNWvL=10 = [1470 1636 1706 1790 1852 1854 2286 2364 2474 2476] (nm)

WvLNWvL=11 = [1152 1154 1198 1200 1472 1918 2032 2322 2328 2364 2372](nm)

Fig. 3   Optimization results for the number of latent variables
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These two sets only share common wavelengths in the range 1470–1472 nm and 
2364  nm. It suggests that the optimization result for a specific number of wave-
lengths might be just a local optimized point for that specific case. Therefore, the 
local optimized point contains not only the common wavelengths but its own dis-
tinguishing wavelengths. This means not all the optimized wavelengths in that case 
contribute to global optimization and help to explain, or understand, the relationship 
between wavelengths and wood components or wood properties.

Most frequently identified wavelengths

A statistical approach was applied to analyse the optimization results. Each wave-
length in the domain (i.e., from 1100 to 2498 nm) was counted for its presence in the 
different optimum wavelength sets resulting from 91 optimization cases. The most 
frequent wavelengths of a data set were considered representative for that data set. 
The frequency of wavelengths across all optimization cases for a given data set is 
plotted in Fig. 4. Frequency distribution for the untreated spectral data sets is more 
concentrated than that for second derivative data sets (Fig. 4). Moreover, although 
the distributions are concentrated for untreated spectra, the wavelengths with highest 
frequency of pulp yield-min and -max untreated spectra are not the same indicating 
that representative wavelengths are different for the untreated spectra.

Different sets of the most frequent wavelengths were determined for each data 
set based on different minimum frequency values. For an example of pulp yield-min 
untreated spectra, there are 304 wavelengths presented at least seven (7) times and 
12 wavelengths with a minimum frequency of 26. The objective values result of the 
models using representative wavelengths sets as their input are plotted in Fig. 5. In 
general, the representative wavelength sets also greatly improved the PLS model, 
although the performance was not as high as that provided by the optimized wave-
length sets. Moreover, Fig. 5 shows that R2

c
 increases with the number of representa-

tive wavelengths (NRWvL). Moreover, R2
p
 peaks when NRWvL is in the range of 

100–200 wavelengths and tends to decrease when more wavelengths are added to 
the model input.

Comparison of band assignments

Schwanninger et  al. (2011) reviewed and provided a summary of band assign-
ments for wood and its components. Results from that study were utilized here and 
matched to the most frequent wavelengths of each data set. Table 3 shows the repre-
sentative wavelengths of each data set, their frequency, bands in the NIR spectrum 
identified as arising from wood, the related bond vibration and the corresponding 
wood components.

Strong agreement was observed between the most frequently observed rep-
resentative wavelengths and bands corresponding to wood components. The 
strong agreement is very encouraging as it indicates that wavelengths identified 
as important for optimization originate from bond vibrations in wood compo-
nents that directly influence pulp yield (Poke and Raymond 2006). For the pulp 
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yield-max data, nearly all identified wavelengths that had a wood related analog 
arose from cellulose while for the pulp yield-min data the frequency of bands 
related to lignin, while still relatively small, was greater. The contrasting range 
in yields for the data sets influenced the selection of wavelengths. It is likely that 
the wide range of yields for the pulp yield-max data set has permitted clear iden-
tification of specific wavelengths related to cellulose utilizing untreated spectra 
(Fig. 4c), whereas for the pulp yield-min untreated spectra (Fig. 4a) the narrow 
yield range resulted in more wavelengths being identified as important and also 
allowed lignin-related wavelengths to have a greater influence. This suggests 
variation in lignin content is more important for pulp yield models based on data 
that has a narrow range. For the second derivative data, more wavelengths had 
influence which can be expected as this treatment baselines the data and high-
lights differences amongst wavelengths (Barton 1989).

Fig. 4   Presence frequency of wavelengths in the optimum results
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Conclusion

This study presents an optimization problem for Eucalyptus globulus pulp yield 
models. Two NIR data sets represented by untreated and second derivative spectra 
were used in multivariate calibration models based on partial least squares (PLS) 
regression to predict pulp yield. The genetic algorithm was used to select optimum 
wavelengths, with an objective function including both R-squares for the calibration 
and prediction sets. The optimization process was run for 91 cases corresponding 
to the change in number of wavelengths from 10 to 100. Results show that opti-
mum wavelengths considerably improved PLS regression model performance (rep-
resented by R-square and standard error), not only for the calibration sets but also 
the prediction sets. However, each spectral data set has its own optimum number of 
wavelengths. Despite differences, R-square values for prediction were still greater 
than 0.96. The optimum number of latent variables varied over a wide range from 
the maximum allowed (20) to a lower limit of six. A statistical approach was applied 

Fig. 5   Objective values results for different representative wavelength sets
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Table 3   Band assignments for optimization results

Identified wavelength 
(nm)

Band location (nm) Bond vibration Wood component

 a. Pulp yield-min untreated spectra (frequency > 20, bold text = frequency > 30)
1216 (28), 1218 (33) 1212–1225 2nd OT C–H str Cellulose
1232 (23)
1262(33)
1378 (25)
1694 (26) 1685 1698 1st OT C–Har str

1st OT C–H str
Lignin
Lignin

1778(24), 1788 (25),
1790 (25), 1792 (30),
1796 (20)

1780 1788,
1790
1791
1793

1st OT C–H2 str
1st OT C–H str
1st OT C–H str
1st OT C–H str

Cellulose
Cellulose
Lignin
Cellulpose

1818 (24) 1820 O–H str. + 2nd OT 
C-O str

Cellulose

1846 (32), 1862 (27),
1872 (20)
2356 (26), 2358 (33),
2362 (21), 2364 (30),
2366 (22), 2368 (28),
2370 (26), 2372 (22),

2352
2361

C–H str. + C–H def., 2nd

OT C- H2 bend
O–H def. or C–H def
 + C–H str. or C–H2 str

Cellulose

2376 (20), 2380 (20) 2384 Not assigned Lignin
2396 (20)
2474 (21) 2461 C–H str. + C–C str Starch (cellulose)
b. Pulp yield-min second derivative spectra (frequency > 15, bold text = frequency > 25)
1108 (19), 1110 (16)
1130 (15), 1140 (16) 1143 2nd OT Car–H str.,

2nd OT C–H str. of 
CH3 groups

Lignin

1242 (19)
1338 (17) 1350 1st OT C–H str. + C–H 

def
Hemicellulose (tentative)

1482 (20), 1484 (16) 1477–1484 1st OT O–H str Cellulose
1516 (15) 1510

1515
1st OT O–H str
1st OT O–H str

Cellulose
Cellulose?

1538 (20), 1548 (21),
1550 (16), 1558 (21)

1534, 1550
1540
1545
1548

1st OT O–H str
1st OT O–H str
1st OT O–H str
1st OT O–H str

Cellulose
Cellulose
Cellulose
Cellulose

1612 (24), 1614 (22),
1620 (15), 1622 (16)

1616
1632

1st OT C–H str
1st OT O–H str

Not assigned Cellulose

1742 (25) 1731 1st OT C–H str Cellulose
1954 (16), 1964 (28),
1966 (30), 1968 (22)
1974 (25), 1976 (22),
1978 (17), 1982 (15)

1980 O–H str. + O–H def. 
of H20

Water

2116 (25) 2110 O–H def. + O–H str Cellulose
2156 (20) 2170, 2178 Not assigned Cellulose/hemicellulose
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Table 3   (continued)

Identified wavelength 
(nm)

Band location (nm) Bond vibration Wood component

2190 (37), 2192 (23),
2194 (16)

2200 C–H str. + C = O str Lignin

2214 (15)
2336 (23) 2328–2332 C–H str. + C–H def Hemicellulose
2464 (16) 2461 C–H str. + C–C str Starch (cellulose)
c. Pulp yield-max untreated spectra (frequency > 15, bold text = frequency > 20)
1506 (17) 1510 1st OT O–H str Cellulose
1518 (18), 1524 (16) 1515 1st OT O–H str Cellulose (?)
1584 (16), 1586 (18),
 1588 (19), 1592 (16)

1580
1588

1st OT O–H str
1st OT O–H str

Cellulose
Cellulose

1648 (17), 1650 (16) 1632
1666

1st OT O–H str
1st OT C–H str

Cellulose
Hemicellulose

1730 (20), 1732 (24),
1734 (16), 1736 (15),
1738 (15), 1740 (20),
1742 (21), 1744 (19),
1746 (23), 1748 (17),
1750 (21)

1731 1st OT C–H str Cellulose

1754 (18),
1756 (17),
1760 (21)

1765 1st OT C–H str Not assigned to a wood 
component

2066 (21), 2068 (16),
2070 (24), 2072 (28),
2074 (29), 2076 (31),
2078 (31), 2080 (29),
2082 (24), 2084 (32),
2086 (16)

2080
2086
2092

O–H str. + C–H def
O–H str. + 0-H and 

C–H def
O–H str. + 0-H and 

C–H def

Cellulose
Cellulose/hemicellulose 

Cellulose

2274 (17),2276 (15),
2278 (16)

2270
2271
2272
2277

O–H str. + C–O str. 
C-H2 str. + C-H2 def

C-H str. + C-H def
O–H str. + C–C str. and/
or C-H str. + C-H def

Cellulose
Cellulose/hemicellulose
Hemicellulose
Cellulose

2288 (15),2290 (16),
2292 (19),2294 (18),
2296 (18)

2291 C–O str. + O–H str. 
or C–

H2 bend + C-H2 str

Cellulose

2342 (15) 2343 C–H str. + C–H def. 
and/

or 2nd OT C-H def

Cellulose

d. Pulp yield-max Second Derivative Spectra (frequency > 15, bold text = frequency > 25)
1144 (15) 1143 2nd OT Car–H str.,2nd 

OT
C–H str. of CH3 groups

Lignin

1414 (18) 1414
1410
1417

1st OT O–H str
1st OT O–H str
1st OT C–H str. + C-H
bend

Water Lignin/extractives 
Lignin

1482, 1484 (19) 1480 1st OT O–H str Cellulose
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to determine representative wavelengths for each spectral data set. Representative 
wavelengths were assigned to corresponding wood components through a band 
assignment process, which showed strong agreement. The result also suggests vari-
ation in lignin content is more important for pulp yield models based on data having 
a narrow range.

Table 3   (continued)

Identified wavelength 
(nm)

Band location (nm) Bond vibration Wood component

1782 (16) 1780 1st OT C–H2 str Cellulose
1888 (23)
1922 (23) 1916–1942 O–H asym. str. + O–H 

def. of H20
Water

1974 (18), 1978 (33), 
1980 (16), 1982 (15)

1980 O–H str. + O–H def. 
of H20

Water

1996 (16), 2000 (19),
2002 (23), 2004 (19),
2006 (20)
2022 (16)
2088 (16) 2080

2086
2092

O–H str. + C–H def
O–H str. + O–H andC–

H def
O–H str. + O–H and 

C–H def

Cellulose
Cellulose/hemicellulose
Cellulose

2166 (26) 2170, 2178 Not assigned Cellulose/hemicellulose
2220 (19)
2234 (31), 2238 (16),
2246 (22), 2250 (17)

2343 C–H str. + C–H def. 
and/or

2nd OT C-H def

Cellulose

2284 (15), 2290 (18) 2291 C–O str. + O–H str. 
or C–

H2 bend + C-H2 str

Cellulose

2306 (22)
2328 (19) 2328–2332 C–H str. + C–H def Hemicellulose
2364 (15) 2361 O–H def. or C–H def

 + C–H str. or C–H2 str
Cellulose

2390 (15), 2394 (16),
2396 (26), 2404 (18)

2384 Not assigned Lignin

2422 (17), 2424 (25)
2436 (16), 2444 (22),
2446 (20), 2448 (18)
2466 (33), 2461 C–H str. + C–C str Starch (cellulose)
2478 (18), 2490 (19) 2488

2491
C–H str. + C–C str. ?
C–H str. + C–C str

Lignin
Cellulose (not confirmed)
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