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Abstract
Extractives of tree barks have long been considered as a rich source of novel bio-
active secondary metabolites, which are by far not well-explored. In the current 
work, bark extracts of Catalpa bungei were investigated for the first time and five 
extractives were isolated and purified, including a new triterpene saponin derivative, 
namely 3-O-β-D-glucuronopyranosyl-6′-methyl-21-O-cis-caffeoyl machaerinic acid 
(4), two known flavonoids [(+)-gallocatechin (1) and isoquercitrin-6″-gallate (2)], 
a known oleanane-type triterpene [machaerinic acid (3)] and a known phytosterol 
[stigmasterol (5)]. Chemical structural elucidation of extractives 1–5 was carried out 
mainly on the basis of their physicochemical and spectroscopic (IR, NMR, MS) evi-
dences and analysis, as well as by detailed comparison of the analytical evidence 
with those in the literature. To the best of the authors’ knowledge, this is the first 
time to find the occurrence of extractives 1–5 in the tree of C. bungei. It is notewor-
thy that the five constituents have never previously been reported in any species of 
Catalpa genus. Compound 4, a previously undescribed triterpene saponin deriva-
tive, was isolated and elucidated in this work for the first time.
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Introduction

Plant extractives still present unrevealed novelties, which are relevant in terms 
of biosynthesis routes (Hu et al. 2017; Mangindaan et al. 2017; Si et al. 2001), 
markers for chemotaxonomical differentiation of wood species (Wang et al. 2016; 
Si et al. 2011), and various biological activities (Hu et al. 2016). Tree barks, long 
treated as wastes or residues in pulping and forestry industries, contain valuable 
bioactive substances, which could be commercialized as high value-added prod-
ucts, for example, in medicines and cosmetics.

Catalpa bungei C.A. Mey, a deciduous woody plant in Bignoniaceae fam-
ily, is native to China. As an important ornamental arbor species, C. bungei is 
extensively used in urban forests in northern and central cities of China due to 
its straight stems, beautiful flowers and moderate efficiency in particulate matter 
removal (Xu et al. 2014; Lu et al. 2019). In addition to its value in landscaping, 
C. bungei wood exhibits superior mechanical properties and high durability that 
can resist the corrosion caused by insects and microorganisms (Lu et al. 2019). 
Plant materials of the tree have also been used in folk medicines to treat, alleviate 
or prevent various diseases, including nephritis, edema, cystitis, leprosy, eczema 
and gastric cancer. Previous biological and pharmaceutical studies showed that 
C. bungei extracts possess significant antioxidant and anti-cervical cancer effects 
(Xu et al. 2014, 2018), as well as inhibitions of soluble epoxide hydrolase, cho-
linesterase and nuclear factor kappa B activities (Tang et al. 2016).

Earlier phytochemical investigations of C. bungei leaves and seeds resulted in 
the isolation of several types of constituents such as lignans, triterpenoids, fla-
vonoids, iridoids and phenylethanoid glycosides (Machida et  al. 2004; Kanai 
et al. 1996; Xu et al. 2014, 2018; Tang et al. 2016). However, to the best of the 
authors` knowledge, no study has ever been performed to screen the extractives of 
C. bungei barks. In the present systematic search for chemical extractives, which 
may be responsible for the biological and pharmacological activities of this tree, 
the isolation, separation and structural characterization of one new and four 
known natural extractives from the stem barks of C. bungei were described in the 
current work.

Materials and methods

General experimental procedure

1D and 2D nuclear magnetic resonance (NMR) spectra were recorded on a 
Bruker Avance DPX 400 instrument (Rheinstetten, Germany) using deuterated 
solvent MeOH-d4 with tetramethylsilane as an internal standard. Positive fast 
atom bombardment mass (FAB MS) experiments were done on a Micromass 
Autospec M363 spectrometer (Manchester, UK). IR spectra were acquired by 
KBr disk method on a FTIR-8400S spectrometer (Shimadzu, Kyoto, Japan). A 
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SGW-2 automatic polarimeter (Shanghai INESA Physico Optical Instrument Co., 
Ltd., Shanghai, China) was employed to determine the optical rotations. Melting 
points (M.P., uncorrected) were measured with the Electro Thermal 9100 appara-
tus (Electrothermal Engineering Ltd., Essex, UK).

Silica gel (100–200 and 200–300 mesh, Qingdao Marine Chemical plant, Qing-
dao, China) and Sephadex LH-20 (Sigma) were used as packing materials for 
open column chromatography (OCC). Vacuum liquid chromatography (VLC) was 
performed using ODS (50  µm, YMC) and D-101. SBS-160 fraction collectors 
(Shanghai Huxi Analysis Instrument Factory Co., Ltd., Shanghai, P.R. China) were 
employed to collect the eluents. Thin layer chromatography (TLC) experiments were 
conducted with DC-Plastikfolien Cellulose F (Merck, Darmstadt, Germany) plates, 
with H2O-HOAc (47:3, v/v, solvent A) and t-BuOH-H2O-HOAc (3:1:1, v/v/v, sol-
vent B) used as developing solvents. TLC spots visualizations were carried out by 
UV light exposure (365 and 254  nm) and by spraying with 1% FeCl3 (in EtOH) 
solution, followed by heating. Analytical grade solvents were used for isolation and 
separation procedures.

Plant material

In the current work, tree stems of C. bungei (9 years old) were obtained in Janu-
ary of 2018 from a forest in Luoyang of Henan Province, P.R. China, which was 
constructed by Research Institute of Forestry, Chinese Academy of Forestry. Fresh 
barks were debarked from C. bungei stems and then shade-dried at room tempera-
ture. A voucher herbarium specimen with ID number Cb-20180305 was deposited 
in the herbarium of Tianjin Key Laboratory of Pulp and Paper, Tianjin University of 
Science and Technology.

Extraction, fractionation and purification

Stem barks of C. bungei (labeled as CbB, 4935 g) were dried in the shade at room 
temperature, and then finely ground with a Wiley mill (40-mesh sieve), followed 
by extraction at room temperature for more than 72 h with H2O-EtOH (5:95, v/v, 
each 15 L) for four times. The extracts were combined together, filtered and concen-
trated to give a crude residue (496.46 g, yield 9.97%) and then suspended in distilled 
water. Petroleum ether (54.20  g, yield 1.10%), CHCl3 (52.32  g, yield 1.06%) and 
EtOAc (70.38 g, yield 1.43%) soluble fractions, as well as EtOAc insoluble fraction 
(319.56 g, yield 6.48%) were obtained after successive solvent partitions, concentra-
tion and lyophilization.

As shown in Fig. 1, a portion of the above obtained CHCl3 soluble fraction of 
extract from C. bungei barks (CbBC, 49.10 g) was chromatographed on a column 
packed with silica gel (200 ~ 300 mesh), eluted with a solvent gradient system of 
EtOAc–MeOH-CHCl3 (1:4:95 → 2:19:79 → 2:49:49 → 5:90:5) to yield seven main 
fractions (CbBC1–CbBC7), which were monitored and grouped by TLC detection. 
The third main fraction (CbBC3, 12.32 g) and the sixth one (CbBC6, 18.05 g) were 
further subjected to silica gel (100–200 mesh) OCC elution with MeOH-CHCl3-H2O 
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(1:7:2 → 3:6:1, v/v) to produce five (CbBC31–CbBC35) and three subfractions 
(CbBC61–CbBC63), respectively. Subfraction CbBC32 (8.06 g) was then applied to 
VLC on ODS, eluted successively with 5%, 15%, 25% and 35% EtOH in H2O, to 
yield five fractions CbBC321–CbBC325, respectively. Fraction CbBC321 (952.24 mg) 
was further purified by Sephadex LH-20 OCC and eluted with MeOH-H2O (4:1, 
v/v) to give compound 1 (123.15  mg) as white amorphous powder. Subfraction 
CbBC324 (3.42 g) was further loaded over Sephadex LH-20 OCC eluted with EtOH-
n-hexane (3:1 and 1:2, v/v) to yield four fractions CbBC3241–CbBC3244. In the same 
way, subfraction CbBC3242 (1.26  g) was purified through Sephadex LH-20 OCC, 
with MeOH-H2O (2:1, 1:2, 1:5, v/v) used as washing solvent system to get 88.38 mg 
of white amorphous compound 2. Subfraction CbBC62 (12.17 g) was also subjected 
to Sephadex LH-20 OCC eluted with EtOH-n-hexane (2:1, v/v) to give five frac-
tions CbBC621–CbBC625. Compound 3 (46.73 mg) was obtained from CbBC622 as 
an amorphous powder by recrystallization. CbBC624 (5.73 g) was further separated 
by D101 VLC with EtOH-H2O (1:4 → 4:1) used as eluting solvents to give 41.62 mg 

Fig. 1   Extraction, fractionation and purification procedures of extractives from barks of C. bungei 
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of amorphous compound 4, together with fractions CbBC6241 and CbBC6243. Com-
pound 5 (72.27 mg) was purified from fraction CbBC6243 (2.18 g) through OCC as 
Sephadex LH-20 used as packing material, while MeOH-H2O (2:1 and 1:3, v/v) and 
EtOH-n-hexane (1:3, v/v) used as flowing phase successively.

Compound 4

Obtained as a whitish amorphous powder in this work with M.P. 289–291 °C and 
[�]20

D
−15.6° (MeOH, c 0.5), compound 4 presented its IR (KBr) νmax at 1510, 1605, 

1700 and 3415 cm−1, respectively. While its Rf values appeared at 0.19 and 0.80 in 
solvents A and B, respectively. In positive FAB MS spectrum, compound 4 gave 
[M + K]+ at m/z 863, [M + Na]+ at m/z 847, and [M + H]+ at m/z 825, correspond-
ing to molecular weight 824 and calculated for C46H64O13. The 1H (400  MHz, δ, 
MeOH-d4), 13C (100 MHz, δ, MeOH-d4) and partial 2D NMR information are pre-
sented in Table 1.

Results and discussion

In the current study, the 95% ethanolic extract of C. bungei stem barks was frac-
tionated with a serious of polar solvents to get several soluble parts. By means of a 
sequence of chromatographic techniques, purification and separation of the obtained 
chloroform soluble fraction led to the isolation of a new oleanane-type triterpene 
glycoside called 3-O-β-D-glucuronopyranosyl-6′-methyl-21-O-cis-caffeoyl macha-
erinic acid (4), together with four known extractives: a flavan-3-ol [(+)-gallocate-
chin, 1] (Agrawal 1989), a flavonol glycoside (isoquercitrin-6″-gallate, 2) (Collins 
et al. 1975), an oleanane-type triterpene (machaerinic acid, 3) (Delgado et al. 1984) 
and a phytosterol compound (stigmasterol, 5) (Forgo and Kövér 2004). The chemi-
cal structures of the five extractives are shown in Fig.  2. The known compounds 
(1–3, 5) were identified by comparison of their spectroscopic evidences and physi-
ochemical data with those in the literature.

Compound 4 was isolated as a whitish amorphous powder showing [�]20
D

−15.6° 
in MeOH at c 0.5 and M.P. 289–291 °C. Its molecular formula was calculated to be 
C46H64O13 by Positive FAB MS spectrum, for its [M + K]+, [M + Na]+ and [M + H]+ 
ion peaks at m/z 863, 847, and 825, respectively, corresponding to its molecular 
weight 824. In compound 4, the presence of phenolic hydroxyl groups was con-
firmed from gray-green color through TLC experiment when spraying 1% etha-
nolic FeCl3 (Rf values 0.19 and 0.80 in developing solvents A and B, respectively) 
(Imakura et  al. 1985; Si et  al. 2011, 2018). For IR (KBr) spectrum, compound 4 
exhibited absorptions for aromatic ring at 1510 and 1605  cm−1 (Si et  al. 2008). 
While the bands of α,β-unsaturated carbonyl and hydroxyl groups were observed at 
1700 and 3415 cm−1, respectively (Peng et al. 2019).

For the aglycone part of compound 4, its 1H NMR spectrum revealed signals 
for seven methyl groups including five singlets [δH 1.06, 0.86, 0.97, 0.83 and 1.20] 
ascribable to the methyl protons H-23, H-24, H-25, H-26 and H-27 (each 3H), 
respectively, as well as two doublets with coupling constant of J = 6.1 Hz due to the 
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Table 1   NMR spectroscopic data (δ, ppm) for compounds 3 and 4 

Position Compound 3 Compound 4

δH (M, J in Hz) δC DEPT δH (M, J in Hz) δC DEPT

Aglycone
1 0.97 and 1.62 (2H, m) 39.02 CH2 0.98 and 1.63 (2H, m) 39.05 CH2

2 1.69 and 1.71 (2H, m) 27.26 CH2 1.79 and 1.70 (2H, m) 26.47 CH2

3 3.14 (1H, dd, 11.0 & 4.3) 78.96 CH 3.13 (1H, dd, 11.3 and 4.4) 89.72 CH
4 – 37.88 C – 39.55 C
5 0.75 (1H, m) 56.39 CH 0.78 (1H, m) 56.80 CH
6 1.43 and 1.54 (2H, m) 18.45 CH2 1.42 and 1.55 (2H, m) 18.28 CH2

7 1.35 and 1.49 (2H, m) 32.61 CH2 1.34 and 1.48 (2H, m) 33.12 CH2

8 – 39.65 C – 39.36 C
9 1.58(1H, m) 48.31 CH 1.60 (1H, m) 48.39 CH
10 – 37.68 C – 37.51 C
11 1.84 and 2.07 (2H, m) 24.43 CH2 1.80 and 2.10 (2H, m) 24.78 CH2

12 5.28 (1H, t, 3.5) 123.10 CH 5.32 (1H, t, 3.7) 123.08 CH
13 – 143.99 C – 143.81 C
14 – 42.15 C – 42.20 C
15 1.10 and 1.76 (2H, m) 27.98 CH2 1.14 and 1.77 (2H, m) 28.04 CH2

16 1.83 and 2.02 (2H, m) 23.26 CH2 1.85 and 2.10 (2H, m) 23.42 CH2

17 – 48.47 C – 48.73 C
18 2.90 (1H, dd, 4.3, 11.2) 41.77 CH 2.98 (1H, dd, 4.0, 11.5) 41.59 CH
19 1.29 and 1.76 (2H, m) 47.33 CH2 1.32 and 1.96 (2H, m) 47.56 CH2

20 – 36.96 C – 35.64 C
21 4.84 (1H, dd, 4.8, 11.3) 72.02 CH 4.94 (1H, dd, 5.0, 11.6) 76.16 CH
22 1.55 1.68 (2H, m) 40.41 CH2 1.82 and 1.77 (2H, m) 37.01 CH2

23 1.12 (3H, s) 27.46 CH3 1.06 (3H, s) 27.18 CH3

24 0.89 (3H, s) 16.29 CH3 0.86 (3H, s) 15.75 CH3

25 1.02 (3H, s) 15.98 CH3 0.97 (3H, s) 15.10 CH3

26 0.82 (3H, s) 16.54 CH3 0.83 (3H, s) 16.68 CH3

27 1.19 (3H, s) 25.57 CH3 1.20 (3H, s) 25.59 CH3

28 – 178.61 C – 179.33 C
29 0.98 (3H, d, 6.1) 28.63 CH3 0.96 (3H, d, 6.1) 28.52 CH3

30 0.94 (3H, d, 6.1) 17.57 CH3 1.10 (3H, d, 6.1) 18.01 CH3

Glucuronosyl acid moiety
1’ – – – 4.65 (1H, d, 7.1) 105.77 CH
2’ – – – 3.86 (1H,m) 75.27 CH
3’ – – – 3.70 (1H, m) 77.18 CH
4’ – – – 3.96 (1H, m) 72.88 CH
5’ – – – 4.09 (1H,d, 9.3) 76.94 CH
6’ – – – – 170.52 C
6′-Me – – – 3.70 (3H, s) 51.91 CH3

Cis-caffeoyl
1″ – – – – 127.52 C
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two methyl protons at δH 0.96 (3H, H-29) and 1.10 (3H, H-30) (Wang et al. 2018). 
The aglycone also presented a double doublet centering at δH 2.98 (1H, dd, J = 4.0 
and 11.5  Hz, H-18) assignable to a methine proton, together with olefinic proton 
signal resonating at δH 5.32 (1H, t-like, J = 3.7, H-12), which typically indicated that 
the aglycone moiety is a 3β,21β-dihydroxy oleanolic-type triterpene (Lehbili et al. 
2018). The 13C NMR spectrum of compound 4 additionally supported the above 
conclusion, for its carbons of C-12, 13, 18, 19, 20 and 21 on the aglycone unit gave 
characteristic peaks at δC 123.08, 143.81, 41.59, 47.56, 35.64 and 76.16, respec-
tively (Bitchi et al. 2019). By a more detailed inspection, the 1D and 2D NMR spec-
trum data of the aglycone part of triterpene skeleton in compound 4 (in Table 1) 
were very similar to those in compound 3, an oleanolic acid named machaerinic acid 
(Mair et al. 2018), which are also summarized in Table 1. Thus, the identification 
led to the confirmation of the aglycone part of compound 4 to be machaerinic acid.

Besides the aglycone part signals, in 1H NMR spectrum of compound 4, a pair 
of ABX style proton signals [δH 7.35 (1H, d, J = 2.1  Hz, H-2″), δH 6.66 (1H, d, 
J = 7.9 Hz, H-5″) and δH 7.04 (1H, d, J = 2.1 & 7.9 Hz, H-6″)] corresponding to a 
catechol ring (Hu et al. 2017), and a set of AB type signals for cis olefinic protons 
exhibiting distinctive doublets at δH 6.73 (1H, H-α″) and δH 5.74 (1H, H-β″) with 
coupling constant of J = 12.2 Hz were ascribable to a cis-caffeoyl group (Si et  al. 
2016; Yahagi et al. 2012).

Furthermore, in 1H NMR spectrum of compound 4, the proton signals including 
an anomeric proton irritating at δH 4.65 (1H, d, J = 7.1 Hz, H-1′) and others ranging 
from δH 3.70 to δH 4.09 (4H, m, H-2′, 3′, 4′, 5′), were assignable to a β-D-glucuronic 
acid residue (Si et al. 2009). In 13C NMR spectrum, the carboxyl carbon C-6′ of the 
β-D-glucuronic acid moiety characteristically resonated at δC 170.52 (Fig. 3). The 
proton signals at δH 3.70 (3H) as a singlet in 1H NMR and a carbon signal at δC 
51.91 in 13C NMR spectra indicated the existence of a methoxy in compound 4 (Li 
et al. 2020).

As for the HMBC spectrum of compound 4, long-range correlations were 
observed between the anomeric proton at δH 4.65 (1H, d, J = 7.1  Hz, H-1′) and 
the carbon at δC 89.72 (C-3), between proton peak at δH 4.94 (1H, dd, J = 5.0 and 

Table 1   (continued)

Position Compound 3 Compound 4

δH (M, J in Hz) δC DEPT δH (M, J in Hz) δC DEPT

2″ – – – 7.35 (1H, d, 2.1) 115.90 CH
3″ – – – – 147.76 C
4″ – – – – 145.27 C
5″ – – – 6.66 (1H, d, 7.9) 118.24 CH
6″ – – – 7.04 (1H, dd, 7.9, 2.1) 124.73 CH
α″ – – – 6.73 (1H, d, 12.2) 145.38 CH
β″ – – – 5.74 (1H, d, 12.2) 115.27 CH
γ″ – – – – 167.96 C
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11.6 Hz, H-21) and carbon signal at δC 167.96 (C-γ’’), between proton signals at δH 
3.70 (3H, s, H-6′-Me) and carbon at δC 170.52 (C-6′), which confirmed that the glu-
curonic acid and cis-caffeoyl residues were combined to sites C-3 and C-21 of the 

Fig. 2   Chemical structures of the identified extractives from the barks of C. bungei 
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triterpene aglycone, respectively (Yoshikawa et al. 2001; Bitchi et al. 2019; Si et al. 
2017), while the methoxy group attached to position C-6′ of glucuronic acid moiety 
(Li et al. 2020).

In compound 4, the 13C NMR spectrum gave resonances for 46 carbons, which 
were assigned to the presence of 8 methyl, 9 methene, 16 methine and 13 tertiary 
carbons, as shown in Table 1, by analysis of DEPT spectrum. More detailed analysis 
of the 1D and 2D spectroscopic data combined with careful comparison to other 
known literature data, led to the structural elucidation of extractive 4 as 3-O-β-D-
glucuronopyranosyl-6′-methyl-21-O-cis-caffeoyl machaerinic acid, which is a new 
triterpene saponin derivative and has not previously been isolated from any other 
plant species.

Conclusion

To date, this is the first chemical investigation of extractives in the stem barks C. 
bungei. Successive silica gel OCC, VLC and Sephadex LH-20 separation and puri-
fication of CHCl3 fraction of H2O-EtOH (5:95, v/v) extracts from C. bungei stem 
barks resulted in the isolation of five low-molecular-weight extractives. Structures 
of the isolated extractives were identified and elucidated extensively on the basis of 
their spectroscopic evidences, chemical data and a careful comparison with those 
in the literature. Among them, 3-O-β-D-glucuronopyranosyl-6′-methyl-21-O-cis-
caffeoyl machaerinic acid (4) is a new triterpene saponin derivative isolated and 
established for the first time here. The two flavonoids, (+)-gallocatechin (1) and 
isoquercitrin-6″-gallate (2), together with machaerinic acid (3), an oleanane-type 
triterpene, as well as stigmasterol (5), a phytosterol, have never been reported from 
Catalpa genus previously.

Acknowledgements  This work was kindly supported by National Key Research and Development Pro-
gram of China (2017YFD0600604), Key Technology Research and Development Program of Tianjin 
(19YFZCSN00950), and Tianjin Enterprise Technology Commissioner Project (19JCTPJC52800). The 
plant samples were authenticated by Professor J.H. Wang from Research Institute of Forestry, Chinese 
Academy of Forestry, Beijing, P.R. China.
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