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Abstract
The moisture content (MC) of wood influences its material properties. Determina-
tion of MC is essential in both the research and manufacturing fields. This study 
examined a nondestructive method for estimating MC rapidly and effectively. A 
capacitance sensor and a near-infrared (NIR) spectrometer were used to measure 
the MC of Japanese cedar and Japanese cypress timber. High-frequency capacitance 
(20 MHz) and NIR spectral absorption (908–1676 nm) data were collected for cross 
section and tangential section, as well as for the whole-sample average, in two MC 
ranges: from the green to the fiber saturation point (FSP) and from FSP to air-dried 
state. The results indicated that when standard error of prediction (SEP) is com-
pared, the performance in [FSP to air-dried state] was better; when coefficient of 
determination in cross-validation ( R2

val
 ) and residual predictive deviation in cross-

validation  (RPDval) were compared, the performance in [Green to FSP] was better. 
Statistical analysis was performed using multiple linear regression and partial least 
squares. Combining capacitance and NIR absorbance at two wavelengths (Capaci-
tance + NIR-MLR calibration) from the green to FSP was the best calibration yield-
ing the most promising results: R2

val
 = 0.96, SEP = 5.20% and  RPDval = 4.97 on the 

cross section of samples. The results were higher than those of other calibrations in 
R2 and SEP and RPD values. The NIR-PLS calibration performed better than others 
with quite good R2, lower SEP and higher RPD in the MC range from FSP to air-
dried state. The first calibration using only capacitance of wood was good in the first 
range of MC, but it is not good in the second range (R2 under 0.5). Depending on the 
MC range, the performance of each calibration was different. In both MC ranges, 
the results on the cross section were higher than on the tangential section due to the 
anisotropic characteristics of wood material. From Capacitance + NIR-MLR cali-
bration, the predicted models were developed using multiple linear regression and 
logarithmic regression. Results suggest the possibility of developing a new portable 
device combining a capacitance sensor and NIR spectroscopy to accurately predict 
the MC of wood.

Extended author information available on the last page of the article
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Introduction

Wood is a valuable, renewable resource possessing a variety of end-use applica-
tions. Rapid and reliable methods are needed to assess wood quality at all process-
ing stages. In particular, it is important to correctly measure and predict moisture 
content (MC) of timber at the sawmill in order to control and treat the material 
effectively. Monitoring of the drying process from the green wood to the air-dried 
state helps us to understand the phenomena that cause cracking, shrinkage and 
deformation. The MC also influences fungal wood decay (Thybring 2013; Stienen 
et al. 2014; Meyer and Brischke 2015). Research by Thybring et al. (2018) pro-
vided insights into the chemical wood–water interactions and information on 
water distribution in the macro-void wood structure in wood material in the entire 
moisture range from dry to fully saturated state. Various protocols for assessment 
of MC are in use. There are two types of portable electric meter in widespread 
use today by researchers: resistance sensors and dielectric (capacitance) sensors 
(Wengert 1997). Capacitance sensors (one of the most common type of contact 
sensor for moisture measurement) are often used with biomaterials, because 
they are of low cost and easy to use and provide reasonably accurate measure-
ments. Their functionality is based on the large difference in the dielectric con-
stant between wood and water. Samples of seven western softwood species and 
white oak, conditioned to various levels of MC equilibrium, were inspected by 
Milota (1994) for MC using a capacitance moisture meter. Tiitta et  al. (1999) 
studied an electrical impedance frequency spectrum (20 Hz to 1 MHz) to meas-
ure the absorption and desorption transverse MC gradient by employing parallel-
plate single-sided capacitive and conductive electrodes with similar results. Wil-
son (1999) found that in industrial conditions with timber stored under shelter, a 
capacitance-type meter performed better than three resistance-type meters.

Recently, near-infrared (NIR) spectroscopy has become the state-of-the-art 
technique for qualitative and quantitative analysis of agricultural materials. The 
absorption of light in the NIR region gives a spectrum that corresponds to spe-
cific vibrational modes and that is unique to each molecular structure examined. 
These vibrations in wood concern hydrogen groups with heteroatoms (C–H, 
O–H, etc.) and provide a wealth of information without a priori knowledge of 
either the spectral data or the chemical composition of the test material. NIR 
spectroscopy has been shown to be effective, especially in measuring MC, due 
to the strong absorbance of water in the spectrum (Windham and Barton 1988). 
It has been used to detect multiple traits of chemical, physical, mechanical and 
anatomical properties of wood materials (Watanabe et al. 2012; Tsuchikawa and 
Kobori 2015; Karttunen et  al. 2008; Xu et  al. 2011; Cooper et  al. 2011). Defo 
et al. (2007) evaluated the effect of grain orientation on predicting MC and basic 
density in red oak (Quercus spp.); the spectra collected from the cross-sectional 
and radial surfaces provided better predictions than those collected from tangen-
tial surfaces. Recently, Kobori et al. (2015) developed an online NIR instrument 
to scan the length of lumber samples providing readings of sufficient accuracy to 
predict MC and MOE. Many calibration methods have been developed to analyze 
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spectrum data to achieve a high predictive accuracy (Dahlen et al. 2017; Savitzky 
and Golay 1964; Rantanen et al. 2001).

As described above, various researchers have mentioned the potential of capaci-
tance sensors in combination with the NIR technique to estimate the MC of wood; 
however, their practical application in the wood industry is still somewhat restricted 
because of the limitation of the measured area and the measured depth from the 
material’s surface. NIR spectroscopy is an efficient technique to predict MC, but 
spectral data are very large and the analytical process is quite complex. Most capaci-
tance sensors will perform well under ideal conditions, but the accuracy changes as 
MC is below fiber saturation point. In this study, the results from the full range of 
MC from the green to air-dried state and the range from fiber saturation point to air-
dried state were evaluated. Generally, variations in species and wood samples will 
affect meter readings and the interpretation of NIR spectra, including MC, thick-
ness, density, grain direction and chemical constituents. In a previous study (Tham 
et al. 2018), the MC of many wood species was evaluated using a combination of 
capacitance sensor and NIR spectrophotometer on thin samples (02, 06 and 12 mm 
thickness) with good results. However, since problems remain for predictability for 
thicker samples, the first goal in this research was to investigate these techniques for 
thicker timber samples (100 mm thickness), in Japanese cedar (Cryptomeria japon-
ica) and Japanese cypress (Chamaecyparis obtusa). The second goal was to develop 
novel predictive models by combining capacitance data and the NIR absorbance 
data at two informative wavelengths.

Materials and methods

Materials

Four logs (dimensions of 100 × 100 mm2 in cross section and 2000 mm in length) 
of Japanese cedar and Japanese cypress were cut from the Toyota forest, southeast 
Japan. All logs were covered by plastic nylon to prevent water loss by evaporation; 
then, the experimental samples with the cubical dimensions of 100  mm were cut 
from these logs. The sample surfaces were prepared by cleaning and smoothing by 
using an automated single-sided planing machine. The experimental process was 
implemented in the controlled environmental room (20  °C and 65% ± 5% relative 
humidity). The capacitance and NIR spectra were measured on the cross section 
and tangential section of the samples. Sample weight, capacitance and NIR absorb-
ance were measured every 4  h from the green state to the air-dried state; outside 
the experimental time, each sample was put in a nylon bag to limit the change of 
moisture in the samples. The capacitance and spectra were collected at three posi-
tions on each section of each sample. The data were collected from 20 samples of 
each species with 46 measurements until the moisture of the samples reached the 
air-dried state; it took approximately 2.5 months. To determine the reference MC, 
the small specimens were cut from the experiment samples with the dimensions of 
100 × 50 × 10 mm3. Then, the weights were measured and small samples were dried 
at 103 ± 20 °C for 48 h in the oven.
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MC and density of experiment samples are provided in Table 1.

Capacitance and NIR spectroscopy measurement

A high-frequency capacitance device (electrical moisture meter HM-530, Kett Elec-
tric Laboratory, Tokyo, Japan, Fig. 1a) set at a frequency of 20 MHz was used for 
capacitance measurement. Capacitance was measured at three positions on each 
section and then averaged for the whole sample. The equation below represents the 
capacitance of wood:

where ε is the dielectric constant of wood containing moisture, K is the constant 
determined by measurement of the section shape, and Cp is the capacitance of the 
sample (pF).

A portable NIR spectrophotometer (MicroNIR™ OnSite, © 2015, VIAVI Solu-
tions Inc., USA, Fig.  1b) in reflectance mode was used for the acquisition of the 
wood sample spectra using two integrated vacuum tungsten lamps; sample working 
plane 0–15 mm from window, 3 mm optimal distance; pixel-to-pixel interval 6 nm; 
input aperture dimensions 2.5 × 3.0 mm over a 908–1676-nm wavelength range with 
256 scans; and an integration time of 7200 µs. NIR spectra were measured at three 
positions on each section, and the mean was calculated for each section and the 
whole sample. NIR absorbance was calculated using the following equation:

where A is the NIR absorbance, I0 is the reflected light intensity from 99% diffuse 
reflectance panel, and I is the intensity of the light reflected from the wood samples.

Because the molar absorbance coefficient of the bands observed in the NIR region 
is small, it is necessary to accumulate and average the spectra for one measurement. 
The signal-to-noise (S/N) ratio is a critical parameter for a high-quality spectrum, so 
increasing the signal level will also improve the signal-to-noise ratio and the meas-
urement quality. The best number of scans, n = 256, was tested and chosen. Another 
way to improve the predictive capability is to use preprocessing methods. Smoothing 
(Savitzky–Golay smoothing and derivatives), scattering correction (standard normal 
variate) and multiplicative scatter correction have been widely used to remove noise 
and unwanted signal. However, some preprocessing methods yielded little improve-
ment in the performance of the results compared to using the original spectra data. 
Therefore, this study used the original spectra for the analysis. To reduce the noise 
effects of the capacitance device prior to carrying out the experiment, some input 
parameters were set up for the device, such as the specific gravity of the wood spe-
cies and sample thickness and device temperature. In this study, the calibrations for 
capacitance sensor were carried out for Japanese cedar and Japanese cypress: thick-
ness correction value with the dial of 40 mm because of the sample thickness being 
greater 40 mm and temperature correction value of 20 °C.

(1)Cp = � ∗ K

(2)A = − log

[

I

I0

]
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Data analysis

The data were collected according to the flowchart shown in Fig. 2.
MATLAB software (Matlab R2016b; Math Works, Inc., USA) was used for the 

data analysis. The choice of an appropriate calibration method is very important as 
it affects the predictive performance. In this study, three calibration methods were 
studied: Capacitance-MLR, NIR-PLS and Capacitance + NIR-MLR, to select the 
best method on the basis of the performance of the output parameters. In all three 
calibrations, the leave-one-out was used in cross-validation to build and test the pre-
dictive models. A model is usually given a dataset of known data on which training 

Fig. 1  High-frequency capacitance device and portable NIR spectrophotometer

Fig. 2  Experimental process and analysis methods for estimation of moisture content of timber. MLR 
multiple linear regression, PLS partial least square, NIR near-infrared spectroscopy, Func1 and Func2: 
function 1 and function 2
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is run (called training dataset or calibration dataset) and a dataset of unknown data 
against which the model is tested (called the validation dataset or testing set). The 
goal of cross-validation is to test the model’s ability to predict new data. One round 
of cross-validation involves dividing the original samples into a calibration and a 
validation set. In this study, ‘leave-one-out cross-validation (LOOCV)’ was used 
with (n − 1) samples for the dataset in calibration (n: observed samples) and the one 
remaining sample used for the validation test.

Using MATLAB software, n rounds of cross-validation were repeated, and the 
best models were chosen corresponding to the lowest residual in cross-validation.

Fiber saturation point (FSP) is one of the important points which affect signifi-
cantly the wood processing. FSP is the moisture point of wood when cell walls are 
completely saturated, and the moisture is started to transfer from cell wall into the 
cavities of the cells. FSP is not usually defined with any mathematical exactness 
(Babiak 1995), since it depends on the measurement technique, species, tempera-
ture, etc. The fiber saturation point varies depending on the wood species (e.g., oak, 
ash: 22–24%; pine, larch, Douglas-fir: 26–28%; fir, spruce: 30–34%) (Dietsch et al. 
2015). The results were analyzed in two ranges of MC: 1—[Green to FSP] and 2—
[FSP to air-dried state]. In this study, the FSP was determined with cedar species 
being 24.04% and cypress species being 22.17%.

Capacitance-MLR The models employed only the capacitance of wood under 
multiple linear regression. The relationship between the MC and the capacitance is a 
linear regression represented by the function below:

where MC is the predicted moisture content (%), A is the regression coefficient, B is 
the intercept, and Cp is the capacitance of wood.

NIR-PLS The models used only NIR data under partial linear regression. The 
optimum number of PLS components (latent variable, LV) was determined by mini-
mizing the residual between predicted values and observed values. Calibration and 
cross-validation were evaluated by various criteria, such as coefficient of determina-
tion for calibration ( R2

cal
 ) and for cross-validation ( R2

val
 ) between the predicted and 

the measured values; standard error of calibration (SEC) and prediction (SEP); root-
mean-square error of calibration (RMSEC) and cross-validation (RMSECV). The 
ratio of performance to deviation (RPD) is the ratio between the standard deviation 
of the measured MC data and RMSECV for calibration  (RPDcal) and cross-valida-
tion  (RPDval). The models of PLS were calculated using the functions below:

where X is the spectra matrix, Y is the independent variate, C is the coefficient con-
stant, E is the intercept, XT is the inverted matrix of X, and T denotes transpose.

Capacitance + NIR-MLR The models operated the capacitance and NIR 
absorbance at two informative wavelengths under multiple linear regression. In 
the NIR-PLS calibration, the full wavelength spectrum was employed. However, 
this is time-consuming and computationally complex, and there is a high overlap 

(3)MC = A ∗ Cp + B

(4)Y = C ∗ X + E

(5)C = (XT
X)−1 ∗ X

T ∗ Y
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in the spectra. To overcome these problems, a new method, Capacitance + NIR-
MLR, was developed employing only selected wavelengths for the models. Some 
of the advantages include the decreased noise, faster operation and tighter focus 
on regions of maximum information. This procedure called “stepwise regression” 
was used to determine the optimal spectral “region” (or wavelength). The pri-
mary wavelength (or region) may require argumentation from other wavelengths 
(regions) to correct for nonlinearities or interference, and to achieve good results, 
two or more wavelengths are required. In this study, the minimum requirement of 
two wavelengths was met for building the functions. As an ideal design, it is sug-
gested that the new device is composed of a capacitance sensor, two LEDs mak-
ing NIR light at two wavelengths, photodetectors and sensors.

To determine the two optimum wavelengths for NIR absorbance, a stepwise 
selection is applied over all wavelengths, and the two wavelengths which yield 
the lowest residual were chosen. After selecting the two optimum wavelengths, 
the predicted models were built using linear and nonlinear regressions and 
compared to choose the most suitable one. These two regressions were chosen 
because of the simplicity of the linear function (MLR) and of the ability to cope 
with a nonlinear function. Nonlinear algorithms can produce better results than 
traditional linear methods, especially when used together with large NIR spectral 
libraries (Pérez-Marín et  al. 2012). The derivation of the mathematical expres-
sions is shown in the two following functions:

where Cp is the capacitance of wood; Abs(λ1) and Abs(λ2) are NIR absorbance at 
two wavelengths; A1, A2 and A3 represent regression coefficients; D is the intercept; 
MC is the predicted moisture content; and Func1 and Func2 represent function 1 
using multiple linear regression and function 2 using the logarithmic regression for 
the models in Capacitance + NIR-MLR calibration. Statistical analysis was used to 
compare the accuracy and performance of the two functions.

1. Confidence interval for accuracy: For large test sets (N > 30), the accuracy (acc) 
has a normal distribution with mean p and variance p(1 − p)/N. Confidence level 
95%, Zα/2 = 1.96.

  Confidence interval for p is: 

2. Analysis of variance was conducted using the alpha = 0.05 level to determine 
whether the model performance was different between models.

If the interval contains 0, the different performance of the two models may not be 
statistically analytically significant.

(6)Func1: MC = A1 ∗ Abs(�1) + A2 ∗ Abs(�2) + A3 ∗ Cp + D

(7)Func2: MC = A1 ∗ (Abs(�1) − Abs(�2))
A2 ∗ Cp + D

(8)p

�

Z 𝛼

2

<
acc − p

√

p(1 − p)∕N
< Z 𝛼

2

�

= 1 − 𝛼.
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The performance of the most robust methods was evaluated in terms of the LV, 
SEC, SEP, RPD and R2 for the calibration and validation as well as the stability of 
the models. Then, the predictive models are shown under Func1 and Func2.

Results and discussion

Results for Capacitance‑MLR calibration

The results of R2
val

 and  RPDval of three calibrations in [Green to FSP] were quite 
good and much higher than the results obtained in [FSP to air-dried state]. In detail, 
in Table 2, the first calibration, Capacitance-MLR, in [Green to FSP] demonstrated 
good predictive ability on cross section and on the whole sample, except for the 
case of tangential section. The second and third calibrations, NIR-PLS and Capaci-
tance + NIR-MLR, were better than the first one on three sections with R2

val
 > 0.81. 

In particular, Capacitance + NIR-MLR showed the best calibration with the high-
est accuracy R2

val
 and RPD, and the lowest SEP. In Table  3, although the coeffi-

cient of determination in [FSP to air-dried state] was lower than in [Green to FSP], 
the standard error of prediction (SEP) was lower (< 2.26). It means the difference 
between the actual or real values and the predicted values is smaller than in the first 
MC range. This criterion is also very significant in the real manufacturing.

Comparing the two MC ranges in Table  2 with Table  3, the performance in 
[Green to FSP] was better than the results in [FSP to air-dried state]. The reason 
may be due to the range of MC; as MC of samples decreases, both capacitance of 
wood and NIR absorbance decrease. However, the gradient of MC from the score 
to the surface of the samples in [Green to FSP] is smaller than in [FSP to air-dried 
state]; therefore, the reading value of the devices is similar to the real MC of the 
whole sample. In this study, the samples are thick (100 mm thickness); as MC of 
samples reaches near the air-dried state, the difference of MC between the score and 
surface of samples is higher. The reading MC value on the surface might not present 
the MC of the whole samples, making the accuracy of prediction to decrease.

However, the predictive ability varied not only depending on the measured sec-
tion of the samples but also on wood species. Figure 3 illustrates the relationship 
between capacitance and actual MC of two Japanese species for each section type. 
The capacitance on the cross section was higher than on the tangential section in 
both species (Fig. 3a, b). This anisotropy can be explained by the difference in die-
lectric properties along and across the grain of the wood due to the differences in 
the arrangement of the cell wall and lumen. Since the structures on the cross section 
(ray parenchyma and tracheid) are mainly aligned with the longitudinal direction of 
the trunk, the cross section loses much more water by evaporation from the green 
state to the air-dried state. Hence, the capacitance readings for the cross section 
were higher than for the tangential section. Kabir et al. (1998) reported that MC of 
rubber wood affected dielectric properties considerably at both low and microwave 
frequencies. Both the dielectric constant and dielectric loss factor increase as MC 
increases from 0 to around 30% and increase slightly for both parallel and perpen-
dicular to grain directions at low frequency. Nursultanov et al. (2017) reported that 
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the electrical conductivity in green Pinus radiata in the longitudinal direction was 
around 20 times higher than in the tangential direction, and 10 times higher than 
in the radial direction. In this study, the R2 value on the cross section was higher 
than on the tangential section for both species (cross section of 0.95 and tangential 
section of 0.78 for Japanese cedar (Fig. 3a), with a similar tendency for Japanese 
cypress (Fig. 3b).

Figure  3c, d illustrates the influence of density on the prediction of MC. The 
slopes of the linear regression were calculated from the relationship between capaci-
tance and MC. The linear regression slopes in the models for Japanese cedar were 
higher than for Japanese cypress in both section types, especially on the tangential 
section, with the values of 0.22 and 0.11, respectively (Fig.  3d). The oven-dried 
densities of the two species were similar, but the ranges of MC from the green 
state to air-dried state varied greatly (Table 1), the range for Japanese cedar being 
126.61–13.79% and that for Japanese cypress being 29.22–9.79%. Japanese cedar 
samples had both heartwood and sapwood in a quite equal proportion, while the 
Japanese cypress samples consisted mainly of heartwood on both the cross and tan-
gential sections. The MC in sapwood is usually higher than in heartwood in cypress 
species (Haslett et al. 1985). The density was one factor accounting for the differ-
ence between the linear regression slopes of the two species.

In a previous experiment (Tham et al. 2018), the capacitance of 14 wood species 
was investigated for the thin samples with three kinds of thicknesses (2, 6 and 12 mm 
thickness) for 14 wood species (Kalopanax septemlobus, Cercidiphyllum japonicum, 

Fig. 3  Relationship between actual moisture content and capacitance from two species and two sections. 
Vertical axis: actual MC; horizontal axis: capacitance of wood; R2: coefficient of determination; a, b: 
results for Japanese cedar and cypress on the cross and tangential sections; c, d: results for cross and 
tangential sections for each species (J. cedar and J. cypress: Japanese cedar and cypress with oven-dried 
densities of 0.35 and 0.43 g/cm3)
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Cryptomeria japonica, Chamaecyparis obtuse, Hevea brasiliensis, Eusideroxylon zwa-
geri, Agathis alba Foxw, Paulownia tomentosa, Fraxinus mandshurica, Fagus sylvat-
ica, Triplochiton scleroxylon, Araucaria angustifolia, Liriodendron tulipifera and Thuja 
plicata). This current research studied two wood species: Japanese cedar (Cryptomeria 
japonica) and Japanese cypress (Chamaecyparis obtuse). In the analytical section of 
the relationship between the capacitance, MC and density of wood, the results of the 
current study and the previous study (Tham et al. 2018) are used. We will have the data 
of four thicknesses for analysis as shown in Fig. 4.

For the data of one species of each kind of thickness, the relationship between 
capacitance of wood and MC was built by using the linear regression in Eq. (4). The 
slopes of capacitance and MC (designated “A”) showed the relationship between the 
capacitance and the predicted variant (MC). The density, thickness and MC of the sam-
ples all affect the A value. Therefore, A was used to describe the relationship between 
capacitance and MC in fourteen wood species; the bigger the slope A, the stronger the 
dependence of capacitance on density of wood species. One species possesses a spe-
cific oven-dried density, meaning one species has one specific slope A at one oven-
dried density. For example, in Fig. 3c for the cross section, there were two A values for 
the two species at two oven-dried densities: Japanese cedar (0.35 g/cm3) at the slope A 
of 0.10 and Japanese cypress (0.43 g/cm3) at the slope A of 0.08.

Figure 4 shows the relationship between the slope A and the oven-dried density at 
four kinds of thicknesses. This relationship was calculated following the equation:

(9)y = a ∗ ln(x) + b

Fig. 4  Relationship between the slope A of capacitance and MC with oven-dried density for four kinds 
of thicknesses (y2, y6, y12 and y100: the equations for 2, 6, 12 and 100 mm thickness; y: the slope A of 
capacitance and MC; x: the measured oven-dried density; 14 species for each kind of 2, 6, 12 mm thick-
nesses and 2 species for 100-mm-thick samples, one species corresponding to one oven-dried density and 
assigned one point in the figure)
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where x is the oven-dried density (g/cm3), y is the slope A of capacitance and MC, a 
is the coefficient, and b is the intercept.

As shown in Fig. 4, the A values changed according to the sample thickness and 
oven-dried density. A decreased as the thickness increased; for example, at an oven-
dried density of 0.21 g/cm3, the values for slope A were 0.76 for the 2-mm sam-
ple, 0.40 for the 6-mm sample and 0.36 for the 12-mm sample. The same trend was 
observed for each sample thickness, with A values declining as the oven-dried den-
sity increased; for example, 2-mm samples showed slope A values of 0.47 at 0.34 g/
cm3 and 0.14 at 1.18  g/cm3. These results indicate a strong relationship between 
slope A and oven-dried density, the thinner samples with low density showing the 
stronger correlation. Finally, the logarithm function expressed the most suitable 
regression for illustrating the relationship between capacitance, MC and density.

The slopes of the linear regression were calculated from the relationship between 
capacitance and MC for cedar and cypress species (Fig.  3); each species with its 
density value corresponds to one slope’s value. Therefore, different densities had 
different predictions of MC and different slopes had different coefficients of deter-
mination (R2) as shown in Fig. 3 (Point 1).

The relationship between slopes and oven-dried density was in four groups of 
thickness as shown in Fig. 4. It can be clearly seen the difference in the four log-
arithm lines in four kinds of thickness (2, 6, 12 and 100  mm thickness). Thinner 
sample had higher slope than thicker sample of the same species, for example, Pau-
lownia tomentosa with oven-dried density of 0.25 g/cm3 at three levels of thickness 
following three slope values in Fig. 4 (Point 2).

Combining Point 1 and Point 2, the relationship between capacitance, MC and 
density of wood can be shown by the slope parameter. The slopes varied in thickness 
and density of wood, and the slopes also affected the predictable accuracy of MC.

Results for NIR‑PLS calibration

NIR-PLS calibration yielded high accuracy results (Tables 2, 3) in both MC ranges 
of [Green to FSP] and [FSP to air-dried state]. For example, as given in Table 2, the 
R2
val

 values were 0.81, 0.91 and 0.92, and the  RPDval values were 2.30, 3.33 and 3.56 
for the tangential section, whole sample and cross section, respectively. As given in 
Table 3, the estimation was lower, with R2

val
 values from 0.73 to 0.77. SEP and RPD 

values also decreased when MC was from FSP to air-dried state. The R2
val

 of cross-
validation for the prediction of MC in [Green to FSP] was higher than in [FSP to 
air-dried state]. This is due to the gradients of water between the score and surface 
of the samples. When samples dry in room condition, this gradient is not so large for 
the wood in [Green to FSP]; it maybe has the better prediction of MC than in [FSP 
to air-dried state]. On the other hand, the results of NIR-PLS calibration in [FSP to 
air-dried state] were better than other calibrations with the highest R2

val
 (0.73 to 0.77) 

and  RPDval (≥ 2.00) and the lowest SEP (≤ 1.52), although the number of latent 
variables (LVs) was quite high (from 10 to 15) compared to the results in [Green 
to FSP]. The NIR spectrophotometer can estimate the MC of timber effectively by 
using the full range of wavelengths from 908 nm to 2676 nm in both MC ranges.
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As given in Table 2, the results achieved with this calibration were higher than 
those obtained in the research by Hein et al. (2009), where Eucalyptus urophylla and 
Eucalyptus grandis were evaluated using original spectral data from cross-validation 
models, yielding an R2

val
 of 0.74 and an  RPDval value of 2.00. The results in the pre-

sent study for the cross section ( R2
val

 = 0.92,  RPDval = 3.56) were higher than for the 
tangential section ( R2

val
 = 0.81;  RPDval = 2.30). The results achieved in the calibrated 

models using combined mean data from cross and tangential sections for the whole 
samples also provided very good estimates ( R2

val
 = 0.91;  RPDval = 3.33). On the other 

hand, the predictions on the cross section in both MC ranges were higher than those 
from tangential section. Because the cross section consists of many longitudinal tra-
cheids and ray parenchyma cells, light might penetrate deeper into the cross section 
than into the tangential section, leading to less reflectance (Tsuchikawa et al. 1996; 
Schimleck et  al. 2003). Both cross and tangential sections absorbed NIR light in 
the same bands, but in differing intensities (Defo et al. 2007). As a result, the cross 
section provided more comprehensive information about the materials. Yang et al. 
(2015) suggested that the NIR models based on spectra from three sections provided 
the highest accuracy compared to models involving cross sections.

Results for Capacitance + NIR‑MLR calibration

Each NIR spectrum arises from a wide range of wavelengths (908–1676 nm) and 
therefore yields a large volume of data. To deal with such information-rich datasets, 
considerable efforts have been directed toward the following problems: regression 
analysis (calibration method), wavelength selection and model improvement. In case 
of Capacitance + NIR-MLR, the calibration method and wavelength selection were 
chosen with the aims of improving accuracy and removing uninformative wave-
lengths. The present method combined capacitance with NIR absorbance at two 
optimal wavelengths, yielding improved results for all sections (Table  2). Similar 
to Capacitance-MLR and NIR-PLS calibrations, the results from the cross sections 
were better than those from the tangential sections due to the anisotropic nature of 
the wood. The capacitance and NIR absorbance were higher in the cross section 
than in the tangential section because of the cross section of cut tracheids versus the 
vertical walls of the tracheids. The tangential plane exhibits the grain of the wood, 
as it is the view parallel to the wall of wood cells in the tree, so it is quite smooth and 
uniform. Another reason is both species have the distinct earlywood and latewood 
(springwood and summerwood) on the cross section, with the much higher ratio of 
earlywood than latewood in annual growth rings. Earlywood consists of the larger 
cells with the thin-walled tracheids. Therefore, water evaporated from the cross sec-
tions was higher than that from the tangential sections when the samples were dried 
gradually, leading to their higher capacitance readings. In addition, the NIR light 
was dispersed and absorbed onto the cross-sectional surface much more than onto 
the tangential surface. Therefore, the cross section provided more information and 
achieved the better estimation of MC, for example, in Table 2, R2

val
 being 0.82, 0.95 

and 0.96, and the  RPDval being 2.33, 4.41 and 4.97 for the tangential section, whole 
sample, and cross section, respectively, in Capacitance + NIR-MLR calibration. In 
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Table 3, the best calibration is NIR-PLS calibration. The NIR spectroscopy has high 
potential prediction for MC range from air-dried state to the green, while Capaci-
tance + NIR-MLR calibration has higher prediction in [Green to FSP]; the perfor-
mance decreases in [FSP to air-dried state].

Capacitance + NIR-MLR calibration shows as a good approach with the high 
prediction in [Green to FSP]; NIR-PLS is the good calibration in [FSP to air-dried 
state]. The capacitance directly relates to the electrical properties of wood, whereas 
NIR spectroscopy provides information about the chemical bonds and molecular 
structure; therefore, combining the two measurement methods limits some of the 
drawbacks of each device, as well as improves the data necessary for the accurate 
prediction of MC. NIR spectroscopy has a good potential for prediction in both 
ranges of MC. The results for the two species in [Green to FSP] had higher R2

val
 and 

RPD and SEP than the results in [FSP to air-dried state].
It was continued to build the predicted models in Capacitance + NIR-MLR cali-

bration. Models were built from two kinds of regressions: multiple linear regres-
sion and logarithmic regression in Eqs. (7) and (8). Firstly, it was attempted to use 
the simplest regression, multiple linear regression, for three variates (capacitance of 
wood and NIR absorbance at two wavelengths). Besides, from the results of Capaci-
tance-MLR calibration, the relationship between the slopes A and densities was dis-
cussed and indicated that the logarithm transformation was the best fit (Fig. 4). For 
these reasons, in this study, two kinds of regression (multiple linear and logarithmic 
regression) were used for building the models. The details of the models for esti-
mating the MC of wood using two equations on the different sections are shown 
in Tables 4 and 5 according to the ranges in [Green to FSP] and [FSP to air-dried 
state].

As given in Table 4, in [Green to FSP], both function 1 and function 2 produced 
quite similar results and very high predictive ability, with R2

val
 ranging from 0.87 to 

0.96. The logarithmic regression Func2 used three regression coefficients, while the 
multiple linear regression Func1 used four. The coefficients of determination R2 in 
Func2 were a little higher than in Func1, but the standard error of prediction SEP 
was also higher. From the results of Tables  4 and 5, the R2 values of Func1 and 

Table 4  Regression models and determination coefficients for predicting MC in [Green to FSP] under 
two regressions in Capacitance + NIR-MLR calibration

Function Section Algorithm for prediction of MC of timbers R
2

val
SEP

Func1 All MC = − 14433.60 ∗ Abs(1224) + 14466.74 ∗ Abs(1236)

+0.10 ∗ C
p
+ 91.49

0.95 5.86

Func1 Cross MC = − 8.75 ∗ Abs(1230) + 53.12 ∗ Abs(1236) + 0.20

∗ C
p
− 12.21

0.92 5.20

Func1 Tangential MC = 6304.02 ∗ Abs(1162) + 6303.02 ∗ Abs(1230) + 0.13

∗ C
p
+ 38.61

0.82 11.09

Func2 All MC = 0.14 ∗ (Abs(1162) − Abs(1186))−0.02 ∗ Cp − 7.50 0.95 7.81
Func2 Cross MC = 0.09 ∗ (Abs(994) − Abs(1236))−0.02 ∗ Cp − 4.05 0.96 7.77
Func2 Tangential MC = 0.22 ∗ (Abs(1242) − Abs(1286))−0.01 ∗ Cp − 0.99 0.87 14.32
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Table 5  Regression models and determination coefficients for predicting MC in [FSP to air-dried state] 
under two regressions in Capacitance + NIR-MLR calibration

Abs(λ) NIR absorbance at wavelength λ, Cp: capacitance of wood, MC moisture content, R2

val
 coefficient 

of determination in cross-validation, Func1 and Func2 the predicted models using multiple linear and 
logarithmic regressions in Capacitance + NIR-MLR calibration

Function Section Algorithm for prediction of MC of timbers R
2

val
SEP

Func1 All MC = 510.58 ∗ Abs(1168) − 492.12 ∗ Abs(976) + 0.07

∗ C
p
+ 10.58

0.70 1.62

Func1 Cross MC = 3133 ∗ Abs(1012) − 3107.04 ∗ Abs(1038) + 0.04

∗ C
p
+ 4.24

0.72 1.56

Func1 Tangential MC = 555.65 ∗ Abs(1460) − 542.37 ∗ Abs(1472) + 0.08

∗ C
p
− 2.88

0.63 1.78

Func2 All MC = 0.06 ∗ (Abs(1174) − Abs(1242))−0.02 ∗ Cp + 6.09 0.70 2.29
Func2 Cross MC = 0.04 ∗ (Abs(964) − Abs(988))−0.02 ∗ Cp + 7.09 0.70 2.38
Func2 Tangential MC = 0.06 ∗ (Abs(1460) − Abs(1484))−0.02 ∗ Cp + 6.42 0.63 2.36

Table 6  Comparison between Func1 and Func2 regarding accuracy and performance in [Green to FSP]

Capaci-
tance + NIR-
MLR

Section Confidence interval 
for accuracy

Comparing performance of models

Plower (%) Pupper (%)

Func1 All 0.934 0.963 dt = ± 0.203, the difference may not be statistically 
significantFunc2 All 0.934 0.963

Func1 Tangential 0.793 0.844 dt = 0.05 ± 0.034, the difference may be statistically 
significantFunc2 Tangential 0.846 0.891

Func1 Cross 0.900 0.936 dt = 0.04 ± 0.022, the difference may be statistically 
significantFunc2 Cross 0.945 0.971

Table 7  Comparison between Func1 and Func2 regarding accuracy and performance in [FSP to air-dried 
state]

Capaci-
tance + NIR-
MLR

Section Confidence interval for 
accuracy

Comparing performance of models

Plower (%) Pupper (%)

Func1 All 0.668 0.731 dt = ± 0.046, the difference may not be statistically 
significantFunc2 All 0.668 0.731

Func1 Tangential 0.595 0.664 dt = ± 0.048, the difference may not be statistically 
significantFunc2 Tangential 0.595 0.664

Func1 Cross 0.687 0.751 dt = 0.02 ± 0.045, the difference may not be statisti-
cally significantFunc2 Cross 0.668 0.731
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Func2 were close, but Func1 had lower SEP than Func2. In this case, the function 1 
should be used for the predicted models.

On the other hand, the confidence interval for accuracy and the different perfor-
mance between two functions are evaluated in Tables 6 and 7. As given in Table 6 
with MC in [Green to FSP], the Func1 and Func2 had the similar confidence inter-
val of accuracy. The confidence interval for accuracy of Func2 was a little higher on 
the cross and tangential sections, being equal on the tangential section with Func1. 
The performance of the two functions may be statistically significant on the cross 
and tangential sections, but it may not be statistically significant on all sections. As 
given in Table  7 with MC in [FSP to air-dried state], the confidence interval for 
accuracy of the two functions was similar, and their performance difference may not 
be statistically significant on all sections of samples.

The predictive models in Tables  4 and 5 employed NIR absorbance at only 
two wavelengths. Figure  5a illustrates the original spectrum of the wood samples 
on cross section, tangential section and mean values for the whole sample, while 
Fig. 5b describes the NIR absorbance for the whole sample at three levels of MC 
and some selected wavelengths used in the predicted models. The peaks in Fig. 5a 
indicate high absorption of NIR electromagnetic energy. The height and shape of the 
spectra are dependent on scattering of light. This scatter is affected by difference in 
reflectance nature of the sample surface, moisture concentration and the structures 
of sections. According to the principle of NIR reflectance spectroscopy, a beam of 
radiation is illuminated on the sample, penetrates a few millimeters, is diffused, and 
is then reflected back to the detector. Since the radiation penetrated and interacted 
with the sample, it carries absorption information and the representative spectra are 
returned as NIR absorption curves. Figure 5a shows that different sections had dif-
ferent light absorbances, the highest being for the cross section. One of the reasons 
is its special anatomical structure; therefore, the amount of water and OH bonding 
groups on the cross section are normally higher than on the tangential section when 
MC was drying from the green state. Figure 5b illustrates the NIR spectral curves at 
three levels of moisture, with some of the informative wavelengths used in the pre-
dicted models. The higher MC had the higher NIR absorbance because of the high 
amount of OH bonding groups. An NIR spectrum comprises many bands owing to 

Fig. 5  Original NIR spectra (a) on three different sections: cross, tangential and average for the whole 
sample (all), and NIR absorbance on all sections (b) at three levels of MC showing some of the selected 
wavelengths for the predictive models for Func1 and Func2 in Capacitance + NIR-MLR calibration
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overtone and combination modes that are usually highly overlapping, and which 
often designate overly low absorption and more noise. Therefore, the two informa-
tive wavelengths are chosen with the goal of reducing the noise and improve the 
prediction in Capacitance + NIR-MLR calibration. Multivariate analysis has fre-
quently been used to overcome this sensitivity problem (Jouan-Rimbaud et al. 1995; 
Jiang et al. 2002; Mehmood et al. 2012). Wavelengths corresponding to the lowest 
residual were selected for the models. In this study, the chosen wavelengths (Fig. 5b) 
used for the predicted models were mainly assigned to the OH group bonding in 
water, hemicellulose, cellulose in wood. Other studies have also proposed that the 
NIR spectra of wood vary with the sample MC; absorbance bands near 7320 cm−1 
(1366 nm), 7160 cm−1 (1400 nm) and 7000 cm−1 (1428 nm) were related to cel-
lulose and water (Fujimoto et al. 2012). These specific bands can fluctuate because 
of slight baseline shifts with changes in MC, molecular structure between measured 
sections, and wood species. This baseline shift in bands related to the water and cel-
lulose functional groups was observed in the present samples as they gradually dried 
from the green state to the air-dried state, and the OH group bonding also decreased. 
Capacitance + NIR-MLR calibration used NIR spectra in two wavelengths so that 
the scattering and overlapping phenomena would be reduced and the spectral inter-
pretation would be more efficient. The wavelengths chosen in the models were dif-
ferent in the measured sections due to the differences in structure between the cross 
and tangential sections, which have differing MC gradients and light penetration 
depths from the surface.

Conclusion

This study demonstrates a new nondestructive approach for predicting the MC of 
timbers from the green to the air-dried state by coordinating wood capacitance and 
NIR absorbance at two informative wavelengths. Such an approach is highly accu-
rate and quicker and involves simpler analyses based on a much reduced dataset. 
This study employed MLR and PLS to build predictive models. Three calibrations 
were implemented from the data obtained by a capacitance sensor and NIR spectro-
photometer, the data being processed individually or in combination. All calibrations 
achieved good results in [Green to FSP], yielding a high accuracy for coefficient of 
determinations in cross-validation, but the results in [FSP to air-dried state] had the 
smaller standard error of prediction. In both MC ranges and in all calibrations, the 
predictions on cross section were higher than on the tangential section because of 
the anatomical characteristics of wood material. A new method was studied as com-
bining the data of capacitance and NIR absorbance at two informative wavelengths, 
and the predictive models were developed under two kinds of functions: multiple 
linear regression and logarithmic regression. This new calibration improved the 
accuracy in [Green to FSP], and NIR-PLS calibration was better in [FSP to air-dried 
state]. Depending on the MC ranges, the two functions (linear and nonlinear regres-
sions) had a different performance in [Green to FSP], and the performance of these 
models may not be statistically significantly different in [FSP to air-dried state].
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This research provides the basis for a new analytical method for estimating MC of 
timber, as well as for assessing other properties of wood and wood-based materials. 
It may be feasible to construct a new device, which is mainly composed of capaci-
tance sensor, two LEDs (to make two wavelengths), photodetectors and sensors. It 
can be used for predicting MC of wood with on-site or online applications in the 
future.
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