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Abstract Species recognition and identification are very important in the wood

industry. The identification of some tree species is complex when only the wood is

available, often requiring multiple characterization techniques. In some instances,

near-infrared spectroscopy can provide a method for the identification of wood

species. However, as the amount of data acquired by near-infrared spectrometers are

large, there is a need to use mathematical and computational tools to treat and

analyze the data. This paper reports the results of testing an artificial neural network

in comparison with SIMCA classification to identify some Brazilian wood species

based on near-infrared spectra. The neural network developed did not result in any

identification error for a margin of ±2% with the use of a spectral range from 4000

to 10,000 cm-1, while SIMCA produced more than 60% identification error with

raw spectral data. The artificial neural network was more efficient than the SIMCA

classification and has good potential to be applied for species discrimination.

Introduction

Correct identification of wood species is important since it is related to various

properties and cost of materials. Examination of cross sections and surfaces of the

material of interest is usually employed to identify wood species (Labati et al.

2009).
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Because of excess exploitation, many forest tree species are on the official list of

endangered plants in Brazil, including species such as Imbuia/Brazilian walnut

(Ocotea porosa), Brazilian sassafras (Ocotea odorifera (Vellozo) Rohwer) and

black cinnamon (Ocotea catharinensis Mez), along with other species of the same

family (MMA 2008). Species with similar morphological and anatomical features

are very difficult to classify (Banerjee et al. 2008), making it necessary to develop

and apply fast techniques to obtain more information on the intrinsic characteristics

of wood to enable reliable species identification, particularly when little information

is available about anatomical or chemical composition. An alternative could be to

use an artificial neural network (ANN) combined with near-infrared spectroscopy.

Artificial neural networks were inspired by biological neural networks and consist

of many neurons that process information based on nonlinear and multivariable

relationships between process parameters (Ozsahin 2012). Their application utilizes

their ability to learn from prior examples and to perform generalized identification or

recognition of previously unseen patterns. Their limitations depend on the quantity,

validity and accuracy of training data (Clark 2003).

In species identification, taxa that are only doubtfully distinct from each other are

difficult for any identification system to distinguish. Although a formal botanical

key can be better, it often takes a long time to create. Furthermore, a higher level of

expertise is required for construction of an effective identification system such as

that demonstrated here using the neural network approach (Clark 2003).

For species identification, artificial neural networks have been shown to have

good potential to identify species of fish (Simmonds et al. 1996), butterfly (Kang

et al. 2012), mosquitoes (Banerjee et al. 2008; Lorenz et al. 2015), jujube tree

pathogens (Zhang et al. 2013), wood (Esteban et al. 2009; Ma et al. 2012) and plants

from leaf characteristics (Kattmah and Azim 2013). In wood technology, some

examples of neural networks application are for classifying images of wood veneer

(Packianather and Drake 2000), for identification of wood defects (Pham et al. 2006;

Mu et al. 2015), for monitoring MDF milling (Zbiéc 2011), for predicting tensile

index and brightness in pulp (Okan et al. 2015) and also for wood classification

based on images characteristics (Sundaram et al. 2015).

In this context, some studies have applied infrared spectroscopy for species

discrimination based on solid or powdered samples (Adedipe et al. 2008; Russ et al.

2009; Casale et al. 2010; Braga et al. 2011; Pastore et al. 2011; Sandak et al. 2011;

Nisgoski et al. 2015). Studies of wood identification applying artificial neural

networks combined with near-infrared spectroscopy are scarce. Ma et al. (2012)

demonstrated the potential of combining these two techniques. The objective of this

paper is to test an artificial neural network (ANN) in comparison with SIMCA

classification to identify some Brazilian wood species based on near-infrared spectra.

Materials and methods

Wood samples of Ocotea porosa, Ocotea odorifera, Nectandra sp. (Lauraceae) and

Eucalyptus sp. (Myrtaceae), with dimensions of 2 9 2 9 5 cm3, obtained from the

collection of the Wood Anatomy and Quality Laboratory of Parana Federal
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University (UFPR) were used. Material was selected based on its availability in

number of samples, species listed in endangered list (Ocotea porosa, O. odorifera),

wood from Lauraceae family much similar with difficult discrimination (Nectandra

sp.) and wood with no problem of commerce and visually and anatomically distant

to other samples (Eucalyptus sp.) to test the potential of ANN and SIMCA in wood

discrimination in different situations. Sixty (60) physical samples of each species,

collected from different boards, were used without identification of age or position

within the tree being known.

Near-infrared spectra were acquired using a Bruker Tensor 37 spectrometer

(Bruker Optics, Ettlingen, Germany, www.bruker.com) equipped with an integrat-

ing sphere operating in reflectance mode. A total of 64 scans were acquired for each

spectrum with a resolution of 4 cm-1 and a spectral range of 10,000–4000 cm-1, in

other words, a set of 1500 wavenumbers. The samples were placed on top of

integrating sphere, and four spectra were obtained from different points from each

face; transversal, radial and tangential, resulting in a total of 12 separate spectra for

each physical sample. All spectra were identified by sample name and used for

further analysis without averaging.

The ANN used was developed with MATLAB (version 7.10 with Neural

Network Toolbox 6, from MathWorks, Natick, MA, www.mathworks.com). The

architecture employed consisted of an artificial neural network with one hidden

layer, using back propagation learning with the Levenberg–Marquardt algorithm for

training and the gradient descent method with moment to update the weights and

biases. The performance index used was the mean square error (MSE) with the

target criteria being less than or equal 10-10, and for the network output an error

tolerance of ±2%.

The input layer was composed of an array of size Pij(1500 9 1) belonging to the

set of samples, where its elements represent the absorbance for each of the 1500

wavenumbers acquired in each spectra. The input layer, the absorbance by

wavenumber, belongs to interval [0, 1], due to the treatment given by the Fourier

transform, a FTIR feature. All data were randomly presented to neural network

(Fig. 1), and the goal is to distribute any possible noises and optimize the results.

The network output was adjusted by a linear activation function to discrete intervals

[1, 2, 3, 4], chosen for convenience. Each of four numbers refers to a type of wood,

as shown in Table 1. Reference values indicate the desired output of the network for

a given species, for example by analyzing the spectra of the samples relative to a

wood, if the network provides a value close to 1, considering a tolerance of ±2%,

then the species analyzed is probably Nectandra sp.

As shown in Table 1, the initial model developed using ANN used approximately

60% of the available samples, and so for further analysis a subset of 70% of these

samples was selected to create an ANN training set, leaving 20% for validation via

cross validation and 10% for the test set. The 40% remaining samples were used

exclusively for testing the fully trained ANN.

In search of the best model, the number of neurons in the hidden layer was

alternated empirically from one to fifteen. For each choice of neuron number in the

hidden layer, the network was trained repeatedly ten times in order to find the best

result, based on randomly obtained weights and biases.

Wood Sci Technol (2017) 51:929–942 931

123

http://www.bruker.com
http://www.mathworks.com


The Unscrambler X (version 10.1, from CAMO Software AS, Oslo, Norway,

www.camo.com) multivariate analysis program was used to develop the SIMCA

model. Exploratory modeling was done by analyzing the score and loading graphs

obtained by principal component analysis (PCA), and SIMCA classification was

performed with the sample numbers listed in Table 1.

For ANN and SIMCA, data were analyzed in raw form and also two pretreatment

were tested: second derivative of Savitzky–Golay (polynomial order = 2, smooth-

ing point = 3) and multiplicative scatter correction (MSC).

Results and discussion

The mean spectra of the four woods studied (Fig. 2) and the principal component

analysis performed on the individual spectra (Fig. 3) show their similarity.

Informative wavenumbers are correlated with the presence of polysaccharides,

lipids and protein, which are related to cell structure and are resumed in Table 2.

In all species, along PC1 (Fig. 3), there is a distinction of two groups, due to

spectral data being acquired from the transverse and radial–tangential faces. In

Ocotea porosa it is much more evident and may be the result of wood anatomical

characteristics, with more distinction of growth rings, frequency of vessels and cell

oil. Spectra collected on the transverse section were more often correctly classified

Fig. 1 Representation of architecture applied to network

Table 1 Samples used for neural network analysis and SIMCA classification

Reference Species Test samples Training samples Total samples

1 Nectandra sp. 288 431 719

2 Ocotea porosa 288 432 720

3 Ocotea odorifera 218 218 436

4 Eucalyptus sp. 211 316 527

Total 1005 1397 2402
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in SIMCA analysis than when spectra were collected from the radial–tangential

face, and this result is similar to anatomical identification, where the transverse

section provides the most important information in species identification. In the

Lauraceae family, the distinction between Ocotea and Nectandra based on wood

anatomy is difficult, and the characteristic odor from Ocotea porosa and Ocotea

odorifera is important for correct information, but in some Nectandra species it is

only the crystal type (raphides, prismatic or acicular crystals) and occurrence that is

able to provide correct identification.

The original spectra and pretreatments using second derivative or multiplicative

scatter correction (MSC) were analyzed by both ANN and SIMCA techniques. In

the instance of the SIMCA models, the first two PCs and the number of training

samples for each species in Table 1 were used. Individual models were based on the

NIPALS algorithm and validated with leverage correction. In the ANN analysis, the

number of neurons in the hidden layer and the training error are given in Table 3.

One important detail is the number of neuron in hidden layer; small numbers

indicate gain in speed of learning of ANN.

A table was constructed after classification using either ANN or SIMCA with

either the complete spectral range (Table 4) or divided into regions (Tables 5, 6, 7,

8, 9). In SIMCA classification, there was an overlapping classification, resulting in

some samples not being uniquely classified, and in fact some individual samples

Band 1
9995-8498 cm-1

Band 2
8494-6997 cm-1

Band 3
6993-5497 cm-1

Band 4
5493-3996  cm-1

Fig. 2 Mean spectra of raw data from studied material
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may have been classified to two or more species. Each species therefore has both its

right and wrong classified number of samples presented in the tables.

When the analysis was performed with the complete spectral range (Table 4),

ANN was able to correctly classify all the samples across all wavenumbers within

an error tolerance of ±2% when using raw spectral data and MSC pretreatment. In

Nectandra sp. Eucalyptus sp.

Ocotea porosa Ocotea odorifera

PC-1 (96%)
-6 -4 -2 0 2 4 6 8 10 12 14

P
C

-2
 (3

%
)

-2

-1

0

1

2

3

4

5

Scores

Fig. 3 Principal component analysis of raw data

Table 2 Informative wavenumbers from wood spectra (Tsuchikawa and Siesler 2003; Yonenobu and

Tsuchikawa 2003; Schwanninger et al. 2011)

Band (cm-1) Component

*8370 CH second overtone and CH3–groups

*7000 Amorphous region of cellulose

6900–6850 C–H combination of aromatics, phenolic OH group of lignin and extractives

6622 O–H first overtone and interchain H-bond of cellulose

6287 Crystalline regions of cellulose

5974 Aromatic ring of lignin

5800 Furanose/pyranose functional group present in hemicellulose

5587 Crystalline and semi-crystalline cellulose

4739 Cellulose

4700 CH deformations attributed to water

4686 Acetyl groups, lignin and extractives

4198 Holocellulose

4014 C–H and C–C stretching and cellulose
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the case of the second derivative, a total of 24% of samples was not classified.

SIMCA classification, using raw spectral data, performed best for Ocotea porosa

and Ocotea odorifera, but many samples were incorrectly identified. In samples of

Nectandra sp., the best result was observed after applying a MSC pretreatment, with

a correct identification of 95.5% of samples. For Eucalyptus sp., the best result was

with second derivative pretreatment resulting in a correct identification of 46% of

samples. It is interesting that ANN has obtained very satisfactory results using the

raw spectrum, while SIMCA requires prior treatment for best results.

When the analysis was performed using only wavelengths from 9995 to

8498 cm-1 (Table 5), ANN produced the best classification with MSC pretreat-

ment, but this region in the near-infrared spectra does not provide relevant

information about the species’ chemical composition, producing mostly noise,

which can explain the high rate of unidentified samples in Ocotea porosa and O.

odorifera. In the SIMCA classification, the best result is for Nectandra sp. with

MSC pretreatment, with 95.1% of samples correctly classified. In this spectral

region, in ANN 21% (MSC) to 65% (raw) of samples were not classified, and in

SIMCA many samples were non-unique classified. The best results were obtained

by applying the filter MSC, to both ANN and SIMCA. Although this spectrum band

presents no great relevance, the MSC filter accentuated the most significant

absorbance variations. The identification methods are sensitive to these variations,

and it was noticed that the ANN showed to be more sensitive to the identification of

these variations.

When the analysis was performed with wavelengths from 8494 to 6997 cm-1

(Table 6), some wavelengths associated with cellulose, lignin and extractives were

selected and the ANN performed better. In this case, the best network performance

occurred with data with a MSC pretreatment, and only 1.5% of samples were

unclassified. For SIMCA, with raw data, there was a great deal of confusion

between species, including Eucalyptus, a species from the Myrtaceae family, which

is anatomically different to species of the Lauraceae family. In SIMCA classifi-

cation, samples of Ocotea odorifera classified as Nectandra sp. was an interesting

result, as spectra acquired from the transverse plane were not classified in this case.

The best result was achieved using MSC for Nectandra sp., second derivate for

Eucalyptus sp. and raw data for Ocotea porosa and Ocotea odorifera. In this

spectrum band, the ANN was more sensitive to the absorbance variations compared

Table 3 Training error and number of neurons in the hidden layer in ANN analysis

Spectra Raw 2nd derivative MSC

Error Neuron Error Neuron Error Neuron

Full 3.38 9 10-15 8 3.68 9 10-02 6 6.23 9 10-08 4

Band 1 2.91 9 10-02 1 1.19 9 10-01 12 1.52 9 10-02 10

Band 2 7.29 9 10-03 3 9.33 9 10-02 1 1.10 9 10-03 6

Band 3 3.79 9 10-3 3 1.07 9 10-02 4 1.40 9 10-03 7

Band 4 2.56 9 10-07 2 4.00 9 10-03 8 6.26 9 10-06 13

Band 2–4 1.11 9 10-02 12 2.79 9 10-02 9 8.91 9 10-10 5
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to the band 1. It can be concluded that in this band there is more meaningful

information for the distinction of the woods. It is difficult to identify which

wavenumber is more significant for the distinction, because this information is

processed within the black box of the ANN (Sussillo and Barak 2013).

Table 4 Classification table for ANN and SIMCA for the complete spectral region (4000–10,000 cm-1)

Species Pretreatment Classification

ANN SIMCA

Right Wrong Not classified Right Wrong Not classified

Nectandra sp. Raw 288 0 0 5 273 10

2nd derivative 280 0 8 169 97 22

MSC 288 0 8 275 0 13

Eucalyptus sp. Raw 211 0 0 1 210 0

2nd derivative 206 0 5 97 114 0

MSC 211 0 0 0 0 211

Ocotea porosa Raw 288 0 0 70 203 15

2nd derivative 198 0 90 13 271 4

MSC 288 0 0 0 113 175

Ocotea odorifera Raw 218 0 0 131 76 11

2nd derivative 79 0 137 1 216 1

MSC 218 0 0 0 11 207

Wrong classification represents one sample misclassified and samples with multiple classifications

Table 5 Classification table for ANN and SIMCA with band 1 (9995–8498 cm-1)

Species Pretreatment Classification

ANN SIMCA

Right Wrong Not classified Right Wrong Not classified

Nectandra sp. Raw 53 0 235 0 279 9

2nd derivative 58 3 227 0 288 0

MSC 288 0 0 274 0 14

Eucalyptus sp. Raw 180 0 31 2 209 0

2nd derivative 166 0 45 14 197 0

MSC 211 0 0 0 0 211

Ocotea porosa Raw 63 2 223 53 215 20

2nd derivative 89 3 196 7 281 0

MSC 182 0 106 0 0 10

Ocotea odorifera Raw 24 28 166 107 104 7

2nd derivative 42 12 164 0 218 0

MSC 116 0 102 0 170 48

Wrong classification represents one sample misclassified and samples with multiple classifications
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When the analysis was performed with wavelengths from 6993 to 5497 cm-1

(Table 7), some wavelengths associated with water, cellulose, lignin and extractives

were selected by the model and the ANN produced a better classification with MSC

pretreatment for all species, with only 1.5% of samples not identified. The best

Table 6 Classification table for ANN and SIMCA with band 2 (8494–6997 cm-1)

Species Pretreatment Classification

ANN SIMCA

Right Wrong Not classified Right Wrong Not classified

Nectandra sp. Raw 65 0 223 0 286 2

2nd derivative 170 0 118 111 94 83

MSC 288 0 0 260 0 28

Eucalyptus sp. Raw 129 0 82 0 209 2

2nd derivative 197 0 14 171 40 0

MSC 211 0 0 0 164 47

Ocotea porosa Raw 134 0 154 93 191 4

2nd derivative 64 0 224 0 287 1

MSC 287 0 1 0 79 209

Ocotea odorifera Raw 5 60 153 131 76 11

2nd derivative 35 16 167 0 217 1

MSC 204 0 14 0 35 183

Wrong classification represents one sample misclassified and samples with multiple classifications

Table 7 Classification table for ANN and SIMCA with band 3 (6993–5497 cm-1)

Species Pretreatment Classification

ANN SIMCA

Right Wrong Not classified Right Wrong Not classified

Nectandra sp. Raw 233 0 55 93 191 4

2nd derivative 280 1 7 111 108 69

MSC 288 0 0 209 0 79

Eucalyptus sp. Raw 210 0 1 2 188 21

2nd derivative 211 0 0 171 40 0

MSC 211 0 0 0 0 211

Ocotea porosa Raw 177 0 111 51 234 3

2nd derivative 283 0 5 98 187 3

MSC 288 0 0 0 0 288

Ocotea odorifera Raw 218 0 0 105 103 10

2nd derivative 202 2 14 72 146 0

MSC 202 0 16 0 0 218

Wrong classification represents one sample misclassified and samples with multiple classifications
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result was due to the existence, in this spectrum range, of a greater amount of

significant information for the distinction. However, it was still necessary to use a

filter to highlight the variations of absorbance. For SIMCA, a significant confusion

between species occurred, including a classification of some species from the

Lauraceae family as Eucalyptus. Samples of Ocotea porosa classified as either

Table 8 Classification table for ANN and SIMCA with band 4 (5493–3996 cm-1)

Species Pretreatment Classification

ANN SIMCA

Right Wrong Not classified Right Wrong Not classified

Nectandra sp. Raw 288 0 0 23 259 6

2nd derivative 288 0 0 175 28 85

MSC 288 0 0 261 0 27

Eucalyptus sp. Raw 211 0 0 0 210 1

2nd derivative 211 0 0 197 0 14

MSC 211 0 0 0 0 211

Ocotea porosa Raw 288 0 0 92 193 3

2nd derivative 288 0 0 233 38 17

MSC 288 0 0 0 0 288

Ocotea odorifera Raw 213 1 4 184 22 12

2nd derivative 217 0 1 194 17 7

MSC 218 0 0 0 0 218

Wrong classification represents one sample misclassified and samples with multiple classifications

Table 9 Classification table for ANN and SIMCA with band 2–4 (8494–3996 cm-1)

Species Pretreatment Classification

ANN SIMCA

Right Wrong Not classified Right Wrong Not classified

Nectandra sp. Raw 253 0 35 0 286 2

2nd derivative 231 0 57 115 91 82

MSC 288 0 0 259 0 29

Eucalyptus sp. Raw 203 0 8 0 210 1

2nd derivative 170 0 41 205 4 2

MSC 211 0 0 0 1 210

Ocotea porosa Raw 204 0 84 127 160 1

2nd derivative 196 0 92 171 102 15

MSC 288 0 0 0 0 288

Ocotea odorifera Raw 159 0 59 44 163 11

2nd derivative 74 0 144 99 112 7

MSC 218 0 0 0 0 218

Wrong classification represents one sample misclassified and samples with multiple classifications
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Nectandra sp. and/or Eucalyptus sp. were from radial and tangential sections,

indicating that some characteristics of the surface have influence on the spectra. The

best result used MSC pretreatment for Nectandra sp., second derivative for

Eucalyptus sp. and Ocotea porosa and raw data for Ocotea odorifera.Many samples

were non-unique and not classified by SIMCA in this band.

When the analysis was performed with wavelengths from 5493 to 3996 cm-1

(Table 8), some wavelengths associated with water, cellulose, lignin and extractives

were selected and the classification by ANN was similar for all spectra. Note that

there is no significant difference between the results obtained with the data

processed by applying a filter and those that were used in raw form. The results with

raw data and pretreatment were similar apart from O. odorifera that performed

better with MSC. There was little confusion in four samples of Ocotea odorifera

using raw spectra, which is natural and can be explained by some irregularity on the

surface. SIMCA classification produced substantial confusion for raw data. The

spectra of samples of Ocotea porosa classified as Nectandra sp. were not from the

transverse face. In this band, the best result for SIMCA was achieved with

preprocessing data, with MSC for Nectandra sp. and second derivative for the other

species.

When the analysis was performed with wavelengths from 8494 to 3996 cm-1

(Table 9), most of the information about wood composition was present and the

classification by ANN was similar for all spectra and MSC pretreatment resulted in

all samples being correctly classified. In the case of the SIMCA classification,

substantial confusion was still observed and the best classification with raw data was

for Ocotea porosa. The spectra of samples of Ocotea odorifera classified as

Nectandra sp. were not from the transverse face. Pretreatment increased the

classification performance, with the best pretreatment for Nectandra sp. being MSC

and second derivative for other species.

In near-infrared analysis of solid material, a higher number of samples are

indicated because surface, shape and particle size can influence the results in

discrimination of species (Brunner et al. 1996; Hein et al. 2010; Nisgoski et al.

2015). Literature reports on the efficient use of pretreatment with second derivative

in wood discrimination (Sandak et al. 2011; Zhang et al. 2014; Horikawa et al.

2015; Hwang et al. 2016; Muñiz et al. 2016) and also the division of spectral range

region from 4249 to 6100 cm-1 showed the distinction of wood species similar to

mahogany (Pastore et al. 2011), from 4000 to 6200 cm-1 presented adequate results

in discriminating six provenances of Sugi in south Brazil (Nisgoski et al. 2016) and

4000–5000 cm-1 plus 5500–6200 cm resulted in separation of wood and charcoal

from ‘‘Angelim’’ Brazilian group (Muñiz et al. 2016).

Ma et al. (2012) present correct identification rates of 97–99% of wood samples

with ANN and near-infrared spectra. Other studies on biological material

discrimination with infrared showed the potential of ANN, but in mid-region

(400–4000 cm-1) and powder samples. In Fusarium species identification, Nie et al.

(2007) trained ANN with first ten principal component scores from second

derivative of FTIR spectra in each input layer and obtained a R2 of 0.99. Further, in

this study only PCA analysis failed because the main variations in the spectra were

not related to variation between species. For Ephedra species discrimination, based
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on near-infrared spectra of powder samples, ANN presented 95% of prediction

accuracy. When the analysis evaluated different habitats of E. sinica and samples

collected at different times of day, ANN reached 100 and 93.3% of prediction

accuracy, respectively (Fan et al. 2010).

Division of mid-spectra in different regions with more influence in species

discrimination is also present. For Campylobacter species identification, Mouwen

et al. (2006) obtained adequate results with a four-layer ANN for discrimination of

genotypes. Also spectral windows between different wavenumbers in mid-infrared

were applied to input layer for Listeria species discrimination (Rebuffo et al. 2006),

and results showed 96% of accuracy in differentiation.

ANN also presented potential for application to species distinction based on

anatomical features of wood (Esteban et al. 2009) and leaf images (Pandolfi et al.

2009).

Cell dimensions in input layer of a network resulted in 92% of probability of

differentiation of two Juniperus species (Esteban et al. 2009). Based on leaf images

of 17 accessions of Camellia sinensis, with different origin and varieties, Pandolfi

et al. (2009) showed the potential of ANN and commented that the limitations are

the same as of a human expert, which involves number and accuracy of training

data: better train and learn when data present rich variation.

On the other hand, in SIMCA, misclassifications occurred with a greater

frequency. It can be the result of the point (cell type) where spectra were acquired or

irregularities on wood surface, since the samples were only sawn. Some examples of

adequate results from SIMCA classification are in studies with red and white oak

(Adedipe et al. 2008) and thermally modified wood of spruce, beech and ash

(Bächle et al. 2012).

Even though a few numbers of species were studied, the objective of the study

was achieved, ANN presented potential for species discrimination based on NIR

spectra of solid wood specimens and can be a rapid and effective tool in forest

commerce.

Conclusion

SIMCA classification is sensitive to surface orientation of the samples, resulting in

considerable non-unique and non-classification, and is not recommended for

discrimination of Ocotea porosa, Ocotea odorifera, Nectandra sp. and Eucalyptus

sp. species. MSC and second derivative pretreatment had a good influence on

SIMCA classification. The disadvantage of the use of filters is due to the fact that

their choice is generally empirical, making the classification process of species

slower. In this aspect, ANN becomes more advantageous due to its large sensibility

perception of changes in absorbance between species without the need for prior

treatment data. Considering the large amount of data and low linearity between

them, the ANN demonstrated good potential for species discrimination based on

near-infrared spectral analysis. In this study, the best performance came from an

artificial neural network using the tan–sigmoid transfer function and eight neurons

in the hidden layer. For ANN analysis, the use of the spectral range from 4000 to
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10,000 cm-1 is recommended. In this case, the neural network developed did not

result in any identification error for a margin of ±2%.
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Bressan OA, Davrieux F (2011) Near infrared spectroscopy (NIRS) as a potential tool for

monitoring trade of similar woods: discrimination of true mahogany, cedar, andiroba and curupixá.
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