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Abstract Feasibility of near-infrared (NIR) spectroscopy for developing multi-

species model for plantation timber was explored for estimation of holocellulose in

un-extracted milled wood samples. Six commonly planted species of Eucalyptus

tereticornis, E. camaldulensis, E. grandis, Leucaena leucocephala, Dalbergia sis-

soo and Populus deltoides from a wide range of locations and varying age groups

were taken for the present study. Few samples of E. hybrid between E. tereticornis

and E. camaldulensis were also included in the study to make the model useful for

practical application. NIR models were evaluated using partial least squares re-

gression (PLSR-1—full cross-validation, PLSR-2—cross-validation which leaves

more than one out) and by dividing the samples into calibration and prediction (test)

sets and interchanging them from calibration to prediction sets. The predictive

ability of the model was assessed by calculating four ratios of multivariate statistics

for individual species model and combined species models. A final combined model

for all the species having component range of 76.14–63.03 % and standard de-

viation of 2.586 % was developed in the spectral range of 7502–4246 cm-1 wave

number using 1st derivative plus multiplicative scatter correction using factor of

nine by removing samples with outliers found in all the PLSR-2 evaluation steps

and in most of the models. The model remained stable even when 30 % of the

samples were left out with no outlier detected.
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Introduction

Assessment of the quality of the wood produced is extremely important to optimize

utilization of raw material resource for economic gains and improve wood

properties of plantation crop. Cost, time and simplicity of method adopted, and

accuracy of results are important in addition to multiplicity of simultaneous analysis

that can be done by noninvasive means. Near-infrared (NIR) spectroscopy has given

such option fitting to all the above criteria for estimating many wood properties.

Reviews by various researchers have highlighted the emergence of NIR spec-

troscopy along with its utility in the field of wood science, paper and forestry and

development phases in which it is at present (Workman 1999; Pasikatan et al. 2001;

Pasquini 2003; Barton 2004; So et al. 2004; Gong and Zhang 2008; Schimleck

2008; Tsuchikawa 2007; He et al. 2010; Yao and Pu 2009; Aenugu et al. 2011;

Tsuchikawa and Schwanninger 2013). Sample preparation, recording of NIR

spectrum and its resolution (Schimleck et al. 2004), pretreatment of NIR data

(Rinnan et al. 2009) for removal of noise and unwanted signals, optimization of

suitable wavelength range and the latent variables (factors or rank) and evaluation

of NIR models are all important steps in the NIR calibration development. Being an

indirect method, NIR spectroscopy needs calibration to be established between

spectral dataset and its known data (property of interest) which is normally referred

to as calibration dataset. The accuracy of such NIR measurements is influenced by

the precision of the reference method used for calibration. The influences of spectral

noise and reference data noise have been studied by various workers (DiFoggio

1995; Lu and McClure 1998; Geladi 2002; Rodrigues et al. 2006; Yao et al. 2010b,

2011). Some researchers have reviewed the band assignments in NIR spectra of

wood and wood components (Schwanninger et al. 2011a). Bokobza (1998) in his

review attempted to explain the basic concepts of near-infrared spectroscopy, and

Tsuchikawa (1998) modeled the concept of applying NIR spectroscopy to biological

samples having cellular structure. Researchers are also attempting to overcome the

problem of anisotropy of woody material (Kothiyal et al. 2014) and changes in NIR

spectra due to moisture content (Kothiyal and Raturi 2011; Fujimoto et al. 2012).

Others have investigated the feasibility of multi-site and multi-species calibrations

(Downes et al. 2010; Schimleck et al. 2010; Yao et al. 2010a) along with reducing

efforts in sample preparation (Kothiyal et al. 2012). Improving the robustness and

predictive ability of the model is a continuous effort, and some good results have

been obtained by Inagaki et al. (2012) and Alves et al. (2012).

Lignocellulosic biomasses are physically and chemically heterogeneous. Optimal

processing requires understanding of the material quality and properties. Charac-

teristics of biomass differ as a function of many factors, including plant genetics,

growth environment, downstream harvesting and processing methods adopted.

Improving the wood industry productivity by supplying quality wood material in

terms of wood density, lignin, cellulose content and other chemical, physical and

mechanical properties is important for pulp and solid wood industry. Indian

plantations are dominated by eucalyptus, poplar, sissoo, casuarina, acacia and melia

to meet the demand of pulp and other wood-based industries. Tree improvement
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programs have attempted to increase the yield through selections and by developing

superior planting material. Stable quality in terms of chemical, physical,

mechanical, anatomical and pulp properties is important for any wood-based

industry to produce products of the desired uniform quality. Wood quality

assessment by faster and cost-effective methods is being attempted in the recent past

(Kothiyal and Raturi 2011; Kothiyal et al. 2012, 2014; Raturi et al. 2012). NIR

spectroscopy is increasingly being used to replace traditional methods of wood

property assessment and, as a result, multi-site, multi-species calibrations are of

interest to research organizations that assess wood properties on a large scale. Such

calibrations are common in agricultural applications (Berzaghi et al. 2002;

Dardenne 2004), and some attempts have been made on wood-related aspects

(Garbutt et al. 1992; Schimleck et al. 2001, 2003, 2010; Hodge and Woodbridge

2004, 2010; Yao and Pu 2009; Downes et al. 2010). Multi-site and multi-species

calibrations are beneficial in the sense that they reduce the multiplicity of NIR

models for individual species and sites to a single model and overall reduction in

cost and time. Efforts in upgrading NIR calibration in future will also be reduced to

a single model for a component (property of interest) and will make handling of

such NIR calibration much easier.

This study focuses on developing multi-species NIR model (combined model) for

estimation of holocellulose. Six plantation species, namely Eucalyptus tereticornis,

Eucalyptus grandis, Eucalyptus camaldulensis, Leucaena leucocephala (subabul),

Dalbergia sissoo (shisham) and Populus deltoides (poplar), were taken for the

study. In India, E. tereticornis is often referred to as E. hybrid or Mysore Gum and

gets mixed up with the hybrid of E. tereticornis and E. camaldulensis. Natural

hybrids between E. tereticornis and E. camaldulensis are also quite common. Most

of the plantations in India are dominated by Mysore Gum. Few known samples of

hybrid of E. tereticornis and E. camaldulensis have therefore been included in the

study to make the combined model more robust for practical applications.

Estimation of holocellulose by NIR attempted by few researchers (Huang et al.

2007; Ding et al. 2009; Hou and Li 2010; Ishizuka et al. 2012) in the past is mostly

for single species. The present study will be applicable to six species in addition to

E. hybrid.

Materials and methods

Wood samples for NIR calibration development

For the development of NIR method for holocellulose estimation, wood samples of

six species, namely Eucalyptus tereticornis (Mysore Gum), E. grandis, E.

camaldulensis and Leucaena leucocephala (subabul), Dalbergia sissoo (shisham)

and Populus deltoides (poplar) were taken for the present study. The samples varied

largely in age and location. Most of the plantation of E. tereticornis in India is

dominated by Mysore Gum and is often referred to as E. hybrid and thus gets mixed

up with the hybrid of E. tereticornis and E. camaldulensis. Few known samples of

E. hybrid (E. tereticornis 9 E. camaldulensis) were therefore also included in the
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study to make the model suitable for use with E. hybrid samples. While developing

the NIR models, the E. hybrid samples were grouped with E. camaldulensis. Details

of the samples are given in Table 1. For samples of L. leucocephala, details are

given in Kothiyal et al. (2012).

Discs of about 5–7 cm at breast height were cut from bottom log, chipped and

then milled into dust in a Wiley mill fitted with mesh (mesh 18; 1000 lm). Milled

sample fraction of 40–60 mesh screen (250–400 lm) was retained and collected for

NIR study. Particle size of samples does have an effect on NIR absorption, and

therefore, uniformity was maintained in the sample preparation. The chemical

analysis was performed by three different operators independently in the same

laboratory at different point of time.

Operator 1: E. tereticornis, E. grandis, E. camaldulensis and E. hybrid and D.

sissoo

Operator 2: Leucaena leucocephala

Operator 3: Populus deltoides

Chemical analysis

Holocellulose estimation

Holocellulose of extractive-free milled wood samples (40–60 mesh; 250–400 lm)

was determined in duplicate according to the method of Wise et al. (1946). Ash

content and alcohol benzene extractives were determined for each milled sample as

per procedure T 211M-58 and T 16m-OS-59, respectively. Test specimen (5.0 g

O.D) was put in an Erlenmeyer flask containing distilled water (160 ml). Sodium

chlorite (1.50 g) and glacial acetic acid (0.5 ml) were added and refluxed at 70–

80 �C for 1 h. After 1 h, sodium chlorite (1.50 g) and glacial acetic acid (0.5 ml)

were again added. The process was repeated four times till the material became

white. White dust was then filtered in a G2 crucible washed with distilled water

Table 1 Details of sampled trees for NIR model development for holocellulose estimation

Name of species Number of trees/

sample

Diameter range (over bark)

at breast height (cm)

Age range

(years)

No. of

locations

Leucaena leucocephala 78 11–107 4–20 7

E. tereticornis 66 39–100 5–15 3

E. grandis 20 39–57 8 1

E. camaldulensis 36 37–60 8 1

E. hybrid 03 40–60 8 1

Dalbergia sissoo 26 35–120 4–25 2

Populus deltoides 35 35–70 4–8 2

Total 264 4–25 –
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(4 9 25 ml) followed by acetone (2 9 25 ml), dried to constant weight in an oven

at 105 ± 2 �C. Holocellulose was calculated as follows:

Holocellulose, % ¼ ðA� BÞ � 100

W
ð1Þ

A: weight of crucible after extraction. B: weight of crucible before extraction. W:

O.D. weight of test specimen.

The estimate obtained by Eq. (1) was converted to un-extracted wood meal, and

the same is reported in Table 2. The samples are also divided into test sets (TS) and

calibration sets (CV) and referred to as CS1/TS1 and CS2/TS2 in Table 2. Detailed

discussion of the two sets follows in the subsequent sections and in ‘‘Result and

discussion’’.

NIR spectra measurement

FT-NIR spectrophotometer Bruker Optics, MPA with wavenumber between 4000

and 12,820 cm-1 (780–2500 nm), working in the diffuse reflectance mode,

resolution: 8 cm-1 using zero filling of factor 2 fitted with integrating sphere with

RT-Pbs (external, NEP 5 9 10-10 WHZ
-1/2) detector setting and sample area of

15-mm spot size was used for collecting the spectra of the present study.

Un-extracted wood milled samples were transferred into quartz vials. Vials were

placed above the window of the integrating sphere. Spectra of un-extracted wood

milled samples were recorded three times with thirty-two scans each and averaged

into one spectrum. The average spectrum therefore consisted of a total of ninety-six

scans.

Calibration development

Research in science often involves easy to measure variables (factors) to predict the

behavior of other variables (responses or properties of interest). When factors are

few in number, not significantly collinear, and have a well-understood relationship

to the responses, then multiple linear regressions (MLR) are a good way to turn data

into information. In case of NIR spectroscopy, the researcher is faced with many

variables (say 2000 frequencies—more than the number of observation samples)

with ill-understood relationships. Partial least squares is a method for constructing

predictive models when the factors are many and highly collinear to extract only a

few underlying factors or latent factors that account for most of the variation in the

responses (Yeniav and Goktas 2002; Haenlein and Kaplan 2004). Partial least

square regression (PLSR) is applied to describe the relationship (Geladi and

Kowalski 1986; Hauksson et al. 2001) between dependent variables (wood

holocellulose values in the present study) and near-infrared spectra (independent

variable). The analysis was performed with the OPUS 6.5 software (Bruker ‘‘Quant

2’’). Using full cross-validation techniques with the random subset method provided

by this software package, the optimum rank or factors were found and validation

model for holocellulose was developed. The model selection criteria were based on
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maximizing the r2
p (coefficient of determination of the validation set) and

minimizing the root-mean-square error of the prediction (RMSEP) set as well as

the minimum of latent variables (factors) used for developing the model. In order to

improve signal quality, different spectral pretreatment methods were applied.

Table 2 Summary of the holocellulose content (on un-extracted milled wood basis) for calibration and

prediction sets

Species name Validation

procedure

Total samples

collected

No. of samples

used for NIR

Min.

(%)

Max.

(%)

Avg.

(%)

SD

(%)

Eucalyptus

tereticornis

Cross 66 63 66.03 72.92 68.52 2.195

Calibration/test set CV1/TS1 – 33 63.03 71.57 68.50 2.189

Calibration/test set CV2/TS2 – 30 63.44 72.92 68.55 2.238

Eucalyptus hybrid 3 3 70.26 73.96 72.10 0.933

Eucalyptus grandis Cross 20 20 72.84 76.14 74.54 0.933

Eucalyptus

camaldulensis

Cross 39 32 67.48 75.63 71.11 1.733

Leucaena

leucocephala

Cross 78 67 65.23 74.76 70.59 2.067

Calibration/test set CV1/TS1 – 34 65.23 74.76 70.91 2.144

Calibration/test set CV2/TS2 – 33 66.62 73.12 70.27 1.963

Dalbergia sissoo Cross 26 22 67.29 74.97 70.99 2.102

Populus deltoides Cross 35 32 71.03 74.96 73.08 1.070

All species Total 264 236 63.03 76.14 70.82 2.608

Calibration/test set CV1/TS1 – 118 63.03 76.14 70.93 2.624

Calibration/test set CV2/TS2 – 118 63.44 76.02 70.70 2.598

All species—

(poplar)

Cross – 204 63.03 76.14 70.46 2.601

Calibration/test set CV1/TS1 – 101 63.03 76.14 70.62 2.685

Calibration/test set CV2/TS2 – 103 63.44 76.02 70.31 2.519

All species—

(poplar, shisham)

Cross – 182 63.03 76.14 70.40 2.653

Calibration/test set CV1/TS1 – 91 63.03 76.14 70.64 2.773

Calibration/test set CS2/TS2 – 91 63.44 76.02 70.16 2.520

All Eucalyptus

species

Cross – 115 63.03 76.14 70.29 2.944

Calibration/test set CV1/TS1 – 57 63.03 76.14 70.48 3.095

Calibration/test set CV2/TS2 – 58 63.44 76.02 70.10 2.802

All—(poplar,

subabul)

Cross – 137 63.03 76.14 70.40 2.831

All—(poplar,

subabul, E.

grandis)

Cross – 117 63.03 75.63 69.69 2.406

Min.: minimum; Max.: maximum; SD: standard deviation; Avg.: Average; CV1/CV2: samples divided

into two halves, CV2 used as TS2 for test validation with CV1, and CV1 used as TS1 for test validation

with CV2
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Wavelength selection and spectral pretreatment (preprocessing)

Opus Quant 2 software was used for data preprocessing and for the calculation and

validation of the PLSR models. The wavenumber ranges, and the preprocessing of

NIR spectra were determined from several combinations to give high coefficients of

determination. Several preprocessing methods such as no preprocessing, offset

correction, multiplicative scatter correction (MSC), vector normalization, deriva-

tives, straight-line correction and combinations of them were applied along with

smoothing. The spectral pretreatments giving the best models are discussed here.

Spectral range 7502–4246 cm-1 was found to be most appropriate as almost all

treatments and wavenumber ranges fell within this range. Two spectral ranges

(7502–6098 ? 5450–4246 and 7502–4246 cm-1) with 1st derivative (9-point

smoothing) plus MSC were found to be the most suitable for the present study,

although few good results were also obtained with 1st derivative plus vector

normalization (SNV) and reduced spectral range within 7502–4246 cm-1. Results

of the models developed with both the spectral ranges are reported in Table 3

(spectral range 7502–6098 ? 5450–4246 cm-1) and Table 4 (7502–4246 cm-1).

Some good results of SNV and reduced spectral range are also discussed in the

appropriate section of ‘‘Result and discussion’’.

Optimization of rank (latent variables)

The optimum number of PLS components (rank or latent variables or factors) are

determined by full inner cross-validation method (leave one out). The Quant 2

software package calculates optimum factors (rank) separately during cross-

validation and test set validation (prediction) process, and differences were observed

between the two. Tables 3 and 4 therefore reports the latent variables (factors)

obtained through Quant 2 software optimization during both the processes. This

feature is unique to Quant 2 software, and therefore, the models developed with

software automatic optimization selection process of factors are described in detail

for integrating sphere in ‘‘Results and discussion’’ section. Researchers have

discussed differences in the latent variable in detail and have concluded that a

difference of two or less is acceptable.

Identification of outliers

The method of identification of outliers by Quant 2 is based on Mahalanobis

distance considered as a measure of the similarity between the spectra. Schwan-

ninger et al. (2011b, c) have discussed it in detail, and any spectra lying outside the

set limit (limit = X 9 R/M, where X = factor normally taken as 2, R = rank-latent

variables, and M = number of samples) will be identified as outlier. A factor of two

is normally used for calculation of the Mahalanobis distance, and the same was

applied in the present study. Schwanninger et al. (2011b, c), however, described that

the factor of two is too restrictive during the prediction of unknown samples. Some

other workers have also discussed the detection of outliers in detail (Jouan-Rimbaud

et al. 1999).
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Evaluation of models

Cross-validation with one sample omitted (leave out one) also referred to as PLSR-1

was performed for the validation of models. It is stated (Alves et al. 2012) that when

the number of samples used for calibration is high or very high, the results obtained

by full cross-validation are too ‘‘optimistic’’. A large number of cancelation groups

correspond to validation with a small perturbation of the statistical sample, whereas

a small number of cancelation groups correspond to a heavy perturbation. Using a

large number of samples combined with the leave out one method for cross-

validation, the perturbation of the model at each step will be small. This procedure

tends to ‘‘over fit’’ the model and often leads to too optimistic modeling results. The

higher the number of samples, the more optimistic is the result obtained by full

cross-validation, especially when the number of samples is very high, the results are

too optimistic. To confirm the results, normally two procedures are applied: (a) to

use a test set and (b) to increase the number of samples left out (referred to as PLSR-

2) during cross-validation. The latter additionally proves the stability of a model.

The progression of r2
cv, r2

p, RMSECV (root-mean-square error of cross-validation)

and RPD (ratio of performance to deviation) is evaluated. The present study reports

the models for the two spectral ranges (7502–6098 ? 5450–4246 and

7502–4246 cm-1 with 1st derivative and 9-point smoothing using MSC prepro-

cessing) in Tables 3 and 4 as discussed in the section ‘‘Wavelength selection and

spectral pretreatment’’. The models are developed for individual species and for

combination of species (as given in Tables 2, 3 and 4). The procedures suggested

for evaluation of models in the present section have been used selectively depending

on the number of samples used in each model and its overall importance in the

present study.

The predictive ability of the model

The predictive ability of the model is also assessed and compared by calculating the

ratio of the standard deviation of the reference data to standard error of performance

(SEP) and is referred to as RPD which was introduced by Williams and Norris

(2004). From the analytical point of view, in accordance with AACC method 39-00

(AACC 1999), the RPD should be in the following range: C2.5 screening in the

breeding program; C5 acceptable for quality control; C8 good for process control,

development and applied research (AACC 1999). Schimleck et al. (2005) reported

in their study that RPD of[1.5 is good enough for preliminary screening. However,

RPD is only correct and comparable when the data are normally distributed and the

range in the validation set is not artificially increased. This method and the defined

limits were developed for the analysis of grains; they are being used as rough rule of

thumb until limits of wood are available. While analyzing the RPD results, one

needs to specifically mention the nature of SEP calculated (with or without bias and

skew correction). The RPDs in the present study have not been corrected for bias

(Tables 3 and 4).
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Range error ratio (RER = the ratio of the range in validation reference data to

the SEP—standard error of performance) was introduced by Starr et al. (1981). The

RER should be C4 for screening calibration, C10 to be acceptable for calibration for

quality control and C15 for calibration for quantification. However, RER is also not

immune to artificially extending the range (Fearn 2002) of the validation and thus

manipulating RER. Tables 3 and 4 also report RER obtained for different models in

the present study.

The ratio of SEP/SEC or RMSEP/RMSECV is also used for evaluation of the

models. The ratio should be smaller than 1.2. Other criteria generally used to assess

the quality of a model (Derkyi et al. 2011) include the root mean square of

calibration (RMSEC), root-mean-square error of cross-validation (RMSECV) and

the correlation coefficient (r2). A good model should have a low RMSEC, a low

RMSECV and a high correlation coefficient (r2) between the predicted and

measured values, but a small difference between RMSEC and RMSECV. The

correlation coefficient r2, the most commonly used, should be higher than 0.8 for

quantitative predictions. For excellent models, the RMSEC-to-SD ratio should be

B0.2, where SD is the standard deviation of the reference values. If 0.2\RMSEC-

to-SD ratio B0.5, quantitative prediction is possible. The SD-to-RMSECV ratio

should be C2, RMSECV-to-RMSEC B1.2 and the SD-to-RMSECV ratio should be

C2.5. Tables 3 and 4 also report on the results of these parameters.

Results and discussions

Samples information

Samples from three species of Eucalyptus (E. tereticornis, E. grandis and E.

camaldulensis), few samples of E. hybrid (E. tereticornis 9 E. camaldulensis),

along with that of L. leucocephala (subabul), D. sissoo (shisham) and P. deltoides

(poplar) were taken for the present study. One sample per tree was taken for model

development. All 264 samples, as detailed in Table 1, were collected from different

locations. Particle size of all the samples was kept constant at 250–400 lm as it is

reported that NIR diffuse reflectance measurement is sensitive to light scattering and

powder absorption by particle size (Pasikatan et al. 2001; Yeh et al. 2004; Hein et al.

2010). NIR spectra were recorded from un-extracted wood meal. After careful

observation of the data from chemical analysis (holocellulose content), twenty-eight

samples having inconsistent results in duplicate analysis were rejected. The results

of the remaining 236 samples are given in Table 2 per species along with minimum,

maximum, standard deviation and total sample number. The overall range of

holocellulose for all the species is 63.03–76.14 % (lowest belongs to E. tereticornis

and highest to E. grandis). Samples selected are from a wide range of sites and have

wide variation in age as detailed in Table 1. Two-pronged approach was applied to

evaluate the models. In the first approach, models were developed for individual

species and combination of species using full cross-validation (PLSR-1: leave one

out). Leave more out (PLSR-2) was also used for selected species and combinations

for evaluating the models.
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For selected models where number of samples was sufficient, the models were

also evaluated by dividing the samples randomly (in the ratio of 50:50) into

calibration and prediction sets. Care was taken that the same samples are selected in

calibration and prediction sets for all the models. The statistics of samples randomly

divided for calibrations (CV) and test validations (TS) is also reported in Table 2.

The sets (groups) were interchanged from cross-validation to test validation and

vice versa and are referred to as CV1/TS2 (calibration set/test set) and CV2/TS1

(groups interchanged).

Spectral information

NIR region of the vibration spectroscopy measures the interaction between light and

the relevant material. It is based on selective absorption of light by chemical

compounds and determined by vibration of chemical bond specific to sample

constituents. NIR region 4000 cm-1–128,020 cm-1 is characterized by highly

overlapping absorbance (4000–5000 cm-1) with low noise (combination band that

is difficult to chemically analyze), and first and second harmonic region

(5000–9000 cm-1) is informative region with low noise that can be chemically

analyzed and the third harmonic region of 9000–125,000 cm-1 has high noise/low

absorption and results in poor information quality. Most of the studies use first and

second harmonic regions for qualitative and quantitative information (Schwan-

ninger et al. 2011a), although some studies have effectively used third harmonic

region for quantitative information (Kothiyal et al. 2014). NIR spectroscopy is

useful because all properties are somehow influenced by chemical constitution of

wood which is reflected in NIR absorption. The spectral range selection is the better

fit of data to the calibration model. The present study therefore used the region of

7502–4246 cm-1 for the development of the models.

PLS calibrations (full cross-validation)

In the first step, near-infrared spectral dataset of samples of all species (236 samples)

selected for the present study was regressed against holocellulose content using inner

full cross-validation (leaving one sample out) using 1st derivative plus MSC

preprocessing. Two combinations of spectral ranges, namely 7502–6098 ?

5450–4246 cm-1 (Table 3) and 7502–4246 cm-1 (Table 4) gave the best regression

results with maximum regression coefficient with minimum RMSECV. The procedure

was repeated for all species taken independently and in combinations (all eucalyptus

species; all species barring poplar; all species barring sissoo and poplar; all species

barring poplar and subabul; all species barring poplar, subabul and E. grandis).

Tables 3 and 4 report the model statistics of all the models. Models of individual

species were constructed with four to six factors. Except for E. grandis and P.

deltoides, all models have RPD of more than 2.25 with D. sissoo (component range

67.29–74.97 %) giving the best results of 3.2/3.27. E. tereticornis (component range

63.03–72.92 %) gave RPD of 2.73/2.73 with six factors and one outlier which when

removed gave the RPD of 2.84/3.01 with 1/0 outliers, respectively. Models of subabul

(component range 65.23–74.76 %) with the two spectral ranges gave an RPD of 2.2
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and 2.25. Individual models of E. grandis and P. deltoides were not found suitable

even for preliminary screening. Component range for both of these species is very

narrow (E. grandis: 72.84–76.14 %;P. deltoides: 71.03–74.96 %) which could be one

of the reasons. Sample size for E. grandis was also very small (20). However,

RMSECV for all the models with full cross-validation was\1 %. Slight improvement

in the models of E. grandis, P. deltoides and subabul was observed with reduced

spectral range within 7502–4246 cm-1 but was of not much significance. From the

above results, it is also concluded that different operators used in the study did not

affect the overall results. The models constructed with 7502–4246 cm-1 spectral

range in general had better overall statistics for all the models.

Following the trend of models for individual species, a model was constructed with

all eucalyptus species (component range 63.03–76.14 %) taken together for both the

spectral ranges (Tables 3 and 4). Remarkable improvement was obtained for both the

spectral ranges as evident from Tables 3 and 4 with r2
cv of determination for cross-

validation of 0.92/0.93, RMSECV of 0.841/0.774 %, RPD of 3.49/3.79, respectively,

was achieved using eight factors with one outlier common in both the models

belonging to E. tereticornis. This is interesting as no suitable model could be

developed with E. grandis alone. Removal of the outlier although improved the

models statistics, resulting in more outliers. The models were extended by adding the

samples ofD. sissoo (component range 63.03–76.14 %), and model statistics was with

r2
cv—0.91/0.92, RMSECV—0.838/0.773 %, RPD 3.36/3.65 using 8/9 factors ob-

tained with two outliers fromE. tereticornis (one is common in both models). Removal

of the outliers from both the models improved the models statistics (r2
cv—0.92/0.93,

RMSCEV—0.783/0.738 %, RPD—3.6/3.81, factors—9/9, outlier—0/2). The re-

moval of E. grandis from this combination did not improve the model (not reported in

Tables 3, 4). The model was therefore further extended by adding samples from

subabul, and the model statistics slightly decreased (r2
cv—0.89/0.90, RMSECV—

0.864/0.826 %, factors—8/9, RPD—3/3.14, outliers—0/1 belonging to E. tereticor-

nis and same as before). Removal of outlier marginally improved RPD from 3.14 to

3.18. Another model was constructed using all the eucalyptus species and subabul with

almost similar model statistics (r2
cv—0.89/0.90, RMSECV—0.851/0.826 %, fac-

tors—9/9, RPD—3.11/3.2, outlier—1/1 same in both the models). Removing the

outliers detected during the process improved the model statistics (r2
cv—0.90/0.91,

RMSECV—0.838/0.808 %, factors—9/9, RPD—3.15/3.27, outlier—nil). P. del-

toides samples were added to this combination giving model statistics of r2
cv—0.89/

0.89, RMSECV—0.848/0.846 %, factors—9/9, RPD—3.07/3.07 with no outliers.

The six samples detected as outliers while constructing individual species and

combination of species models were no outliers in this model. However, removing the

three common (E. tereticornis—2; E. grandis—1) outliers detected in the earlier

process only marginally improved the model (r2
cv—0.90/0.90, RMSECV—0.806/

0.783 %, factors—9/10, RPD—3.18/3.27). Individual models of E. grandis (RPD—

1.43/1.56), P. deltoides (RPD—1.27/1.28) and subabul (RPD—2.25/2.2) gave the

lowest RPD. When a combined model was developed with these three species using

spectral range of 7502–4246 cm-1 with 1st derivative plus MSC, the model statistics

have improved (r2
cv—0.84, RMSECV—0.933 %, RPD—2.47, factors—4). The best
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model with these three species was achieved with spectral range 7502–5446 cm-1

using 1st derivative plus MSC (r2
cv—0.86, RMSECV—0.848 %, RPD—2.72,

factors—6, outlier—1). Removal of outlier, however, did not improve model statistics

except for decreasing the rank by a factor of one. A combined model of E. grandis and

P. deltoides in spectral range 7502–4597 cm-1 with straight-line subtraction gave

better model statistics (r2
cv—0.67, RMSECV—0.702 %, RPD—1.75, factors—6,

outlier—nil) compared to their individual models.

Outliers

In all the models discussed above, six samples each were found to be outliers in both

the spectral range of 7502–6098 cm-1 ? 5450–4246 cm-1 and 7502–4246 cm-1.

Five samples (E. tereticornis—2; E. grandis—2, subabul—1) were common in both

the spectral ranges. One additional sample belonging to subabul was found to be

outlier in spectral range 7502–6098 ? 5450–4246 cm-1, and one sample of poplar

was found to be outlier in spectral range 7502–4246 cm-1. Outlier samples

belonging to E. tereticornis were of low holocellulose content (between 63 and

67 %), that of E. grandis was of high cellulose content (between 72 and 74 %),

subabul (between 72 and 75 %) and poplar (between 70 and 71 %).

Analysis of r2
cv, RMSECV and rank (factors)

Coefficient of determination and RMSECV are plotted against rank (factors)

obtained for E. tereticornis, subabul, shisham and E. camaldulensis by the process

of full cross-validation for the two spectral ranges and are given in Figs. 1a–d and

2a–d. It is observed that first four factors (rank) explain 80 % of the variation and

have \1 % of RMSECV. It can be concluded that first four PLS factors are

important for construction of good NIR models. Similar trends are observed for

E. grandis and P. deltoides (graphs not plotted here) although coefficient of

determination achieved was much lower as evident from Tables 3 and 4.

Progression of r2
cv, RMSECV and rank are also plotted for combination models

and given in Figs. 3a–d and 4a–d. Similar trends are observed for r2
cv, whereas

RMSECV\1 % is achieved only with six factors.

PLS calibrations (cross and test validation)

The robustness of the selected models developed in the previous section using full

cross-validation was evaluated by randomly dividing the samples into two sets (in

the ratio of 50:50) for cross-validation (CV) and test validation (TS) and designated

as CV1 and TS2. The groups were then interchanged from cross-validation to test

validation and vice versa and designated as CV2 (earlier TS2) and TS1 (earlier

CV1) by following methodology adopted by Schwanninger et al. (2011b). The

procedure was followed in reverse order by starting with the model developed with

all species taken together during cross-validation step. This was done to maintain

the same samples in the cross and test validation in subsequent step of other
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combination models and that for individual species. The component range and data

statistics for the two sets were almost identical for all the models as evident from

Table 2. The procedure was not attempted for P. deltoides, D. sissoo, E. grandis and

E. camaldulensis as the number of samples was not sufficient. The statistics of the

models is given in Tables 3 and 4 for the two spectral ranges.

The model statistics decreased marginally in case of all the models selected for

cross and test validation in comparison with when all samples were taken together.

The difference in ranks was two or\2 for all the models except for two models in

Table 3 (all eucalypts plus subabul and all eucalypt species) for the test set. RMSEP

was almost equal to 1 % for the subabul models (Tables 3 and 4) with sets CV1 and

TS2. Here, outliers also were the same samples as observed during full cross-

validation. The models statistics is on the expected lines.
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Fig. 1 Progression of the coefficient of determination (r2
cv) and the root-mean-square error of cross-

validation (RMSECV) with rank (number of PLS vectors) for spectral range 7502–6098 ? 5450–
4246 cm-1 in E. tereticornis (a), L. leucocephala (b), D. sissoo (c) and E. camaldulensis (d). Dark circles

represent r2
cv, and open squares represent RMSECV
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Over fitting of models

When the number of samples used is high, the full cross-validation process may

result in over fitting and the results may be too optimistic. For this reason, the leave

more out (PLSR-2) method was also used in the present study for selected models.

The number of samples left out during cross-validation was increased up to 40 %,

and the results are discussed here. The process was applied to both the spectral

ranges used in the present study (Tables 3 and 4). The progression of r2
cv, RMSECV

and RPD was observed. When this method was applied to models of individual

species, it was observed that values of RMSECV and r2
cv remained almost similar

when samples left out were increased up to 30–40 % with maximum up to 1 sample
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Fig. 2 Progression of the coefficient of determination (r2
cv) and the root-mean-square error of cross-

validation (RMSECV) with rank (number of PLS vectors) for spectral range 7502–4246 cm-1 in E.

tereticornis (a), L. leucocephala (b), D. sissoo (c) and E. camaldulensis (d). Dark circles represent r2
cv,

and open squares represent RMSECV
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detected as outlier. RPD also remained above 2.5. For combined models of all

species and combination of species, the model statistics (RMSECV and r2
cv)

remained stable when samples left out were increased up to 20 % (i.e., RMSECV

almost equal to 1 % and r2
cv more than 80 %) and RPD above 2.5. Outliers above

20 % also increased to 3–5. The results of individual species models and

combination models are not shown.

Construction of final model

For the construction of final model for all the species, samples which were

consistently detected outliers during evaluation of all the above models were
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Fig. 3 Progression of the coefficient of determination (r2
cv) and the root-mean-square error of cross-

validation (RMSECV) with rank (number of PLS vectors) for spectral range 7502–6098 ? 5450–
4246 cm-1 for all species, all eucalypts, all eucalypts ? subabul, all eucalypts ? subabul ? shisham.

Dark circles represent r2
cv, and open squares represent RMSECV
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eliminated from the final model. Three samples of E. grandis and one sample each

of E. tereticornis and L. leucocephala were removed as outliers, and the final model

was constructed with 231 samples. Component range was 76.14–63.03 % with

standard deviation of 2.586 %. First derivative plus multiplicative scatter correction

in wave number range 7502–4246 cm-1 with a factor of nine was found to be most

appropriate. The model remained stable even when 30 % of the samples were left

out with no outlier detected and RMSECV\1 % and r2
cv more than 80 % with RPD

above 2.57. The final model has RMSEE (root-mean-square error of estimation) of

0.688 %, RMSECV—0.792 %, r2
cv—0.90, rank—9, RPD—3.26, SD/RMSECV—

3.265, RMSECV/RMSEE—1.15, RMSEE/SD—0.266). The results of the final

model are plotted in Figs. 5 and 6. When dividing the 231 samples into calibration

and prediction set (116:115) and then interchanging the sets, the model statistics
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Fig. 4 Progression of the coefficient of determination (r2
cv) and the root-mean-square error of cross-

validation (RMSECV) with rank (number of PLS vectors) for spectral range 7502–4246 cm-1 for all
species, all eucalypts, all eucalypts ? subabul, all eucalypts ? subabul ? shisham. Dark circles

represent r2
cv, and open squares represent RMSECV
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was comparable (r2
cv = 0.88/0.89, RMSECV = 0.919/0.831 %, r2

p = 0.90/0.90,

RMSEP = 0.797/0.800 %, RPD = 3.21/3.26, RER = 16.44/15.72).

Conclusion

NIR spectroscopy combined with multivariate analysis was used to develop

combined PLSR-based NIR models for estimation of holocellulose of six common

plantation species, namely Eucalyptus tereticornis (including few samples of E.

hybrid of E. tereticornis 9 E. Camaldulensis), E. grandis, E. camaldulensis, L.

leucocephala (subabul), D. sissoo (shisham) and P. deltoides (poplar). Un-extracted

milled wood samples having particle size of 250–400 lm (40–60 mesh size) were

used for the study. Two combinations of spectral ranges, namely

7502–6098 ? 5450–4246 and 7502–4246 cm-1 with 1st derivative (9-point
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smoothing) plus multiplicative scatter correction pretreatment were employed.

Models were developed for individual species, combination of species (all

eucalyptus species; all species barring poplar; all species barring shisham and

poplar; all species barring poplar and subabul; all species barring poplar, subabul

and E. grandis) and combined model for all species.

A model of individual species was constructed with four to six factors and

explains 80 % of the variations and has\1 % of RMSECV. Except for E. grandis

and P. deltoides, all models have RPD of more than 2.25. For all eucalyptus species

(component range 63.03–76.14 %) in both the spectral ranges, r2
cv of determination

for cross-validation was 0.92/0.93, RMSECV—0.841/0.774 %, and RPD of 3.49/

3.79, respectively, using eight factors with one outlier common in both the models

belonging to E. tereticornis.

Methods of NIR models evaluation involved PLSR-1 (full cross-validation),

PLSR-2 (leaving more than one sample out) and dividing the samples into

calibration and prediction (test) sets and interchanging them from calibration to

prediction sets. RPD, RER, RMSEP/RMSECV and SD/RMSECV were estimated

for individual species models and combination species models.

Final combined model in the component range 76.14–63.03 % (standard

deviation 2.586 %) for all the species was developed using nine factors in the

spectral range 7502–4246 cm-1 using 1st derivative plus MSC by removing five

samples found as outliers in all the evaluation steps and in most of the models. The

model remained stable even when 30 % of the samples were left out. When dividing

the samples into calibration and prediction set (116:115) and then interchanging

the sets, the model statistics was almost identical (r2
cv = 0.88/0.89, RMSECV =

0.919/0.831 %, r2
p = 0.90/0.90, RMSEP = 0.797/0.800 %, RPD = 3.21/3.26,

RER = 16.44/15.72).
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