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Abstract The aim of this study was to characterize the chemical composition of

different granulometric fractions obtained by milling of the bark of two softwood

[Norway spruce, Picea abies (L.) Karst., and Scots pine, Pinus sylvestris L.] and

two hardwood species (birch, Betula pendula Roth, and eucalypt, Eucalyptus

globulus Labill.), and to discriminate between them on the basis of their chemical

composition content via pattern recognition techniques [principal component ana-

lysis (PCA), cluster analysis (CA), and discriminant analysis (DA)]. Bark chemical

composition differed between species, and chemical variables could be used to

differentiate between them. Size reduction yields granulometric fractions that are

not chemically homogeneous and that can also be discriminated. Therefore,

potential applications of bark in valorization programs have to carefully consider the

species-specific composition and their size reduction patterns. PCA and CA were

adequate tools to characterize the different bark fractions within each species. DA

allowed identifying the bark samples according to species and independently from

particle size. Pattern recognition statistical methods were shown to be useful tools to

analyse bark fractions and chemically discriminate species and fractions.
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Introduction

Tree bark is an important residual biomass arising from forestry operations and

industrial processing of wood stems for timber or pulping. The present availability

of bark in the mills where logs are debarked is very large (representing about 12

million m3 in Europe), while its actual use is mostly only as solid biofuel. However,

barks have a high potential as a biomass resource for biorefineries that allow

considering different conversion platforms (Demirbas 2001).

Due to their structural and chemical complexity, barks feature a large diversity

allowing their use as chemical feedstock in various fields, from pharmaceutical and

bioactive compounds to green polymers and bio-based materials industries (Conde

et al. 1996; Pietarinen et al. 2006; Pizzi 2008; Sen et al. 2010; Valentı́n et al. 2010).

The knowledge of bark structural and chemical features is, however, very limited.

The analysis of bark is complex, and sampling, characterization and processing

have specificities that should be taken into account prior to valorization.

Fractionation into small sized particles, a unit operation usually involved in

biomass pre-processing, is one example. In addition to the usual objectives of

increasing accessible surface area, eliminating mass and heat transfer limitations

and facilitating digestibility and hydrolysis, fractioning may also allow separating

fractions with specific compositions (Silva et al. 2011). The bark heterogeneity also

induces different grinding behaviour with separation of granulometric fractions that

may be selectively enriched in certain types of tissues and chemical compounds,

thereby allowing more focused applications. This line of work has been recently

explored for several hardwood and softwood barks, and fractionation was proposed

as a pre-treatment prior to further bark processing (Miranda et al. 2012, 2013;

Baptista et al. 2013).

In this study, a chemometric approach via pattern recognition techniques

(principal component analysis, cluster analysis, and discriminant analysis) was used

to handle multivariate data concerning chemical composition of different granu-

lometric fractions obtained from solid bark of several species by milling and to

discriminate between them. This type of statistical tool is increasingly used to

interpret multivariate data for application in different fields, such as authentication

and classification of agricultural products (e.g. vegetables, fruits, wines, juices,

cereals, bakery products, vegetable oils, tea, coffees, salad dressings) (Tzouros and

Arvanitoyannis 2001; Brodnjak-Voncina et al. 2005; Matos et al. 2007; Ruiz-

Méndez et al. 2008), discrimination between Quercus species based on acorns oil

content and composition (Ferreira-Dias et al. 2003), between lipase-catalysed or

chemically interesterified fat blends to be incorporated into margarines (Pires et al.

2008) or between cardoon plants grown in different stands based on seed oil content

and chemical composition (Pereira et al. 2012).

It is the aim of this work to test whether such a chemometric approach is useful

for chemical differentiation between barks and granulometric fractions and may

therefore be envisaged as a didactical tool for the prospective study of the potential

of bark (or other materials) regarding different conversion routes and targeted

chemicals within a forest biorefinery platform.
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Materials and methods

Sampling

The grinding behaviour and characterization of granulated fractions were studied on

bark samples from two softwood and two hardwood species: Norway spruce (Picea

abies L. Karst.), Scots pine (Pinus sylvestris L.), birch (Betula pendula Roth), and

eucalypt (Eucalyptus globulus Labill.). The barks were obtained as material

removed by stem debarking in pulp mills and were provided by Södra (Sweden) and

Celbi (Portugal).

Fractioning

Fractioning of bark was made by laboratorial-scale grinding after air-drying at

ambient conditions (25 days at 20 �C) using a knife mill (Retsch SM 2000) with an

output sieve of 10 9 10 mm2 and screened using a vibratory sieving apparatus. The

following sieve mesh sizes were used: 80 (0.180 mm), 60 (0.250 mm), 40

(0.45 mm), 20 (0.850 mm), 15 (1.0 mm), and 10 (2.0 mm). The samples were

coded B, E, P, S for birch, eucalypt, pine, and spruce bark, respectively, and 1–7 for

the granulometric fractions of [80 mesh, 60–80 mesh, 40–60 mesh, 20–40 mesh,

20–25 mesh, 10–15 mesh, and \10 mesh.

Chemical characterization

Prior to chemical analysis, the granulometric fractions with a particle size over 40

mesh (20–40, 15–20, 10–15, and \10 mesh) were carefully ground to obtain

particles that passed through the 40-mesh sieve. Determination of chemical

composition included the following: ash content after incineration; extractives

content using successive Soxhlet extractions with different polarity solvents

(dichloromethane, ethanol and water); total lignin content using a standard acid

hydrolysis on the extractive-free material. The cell wall polysaccharides were

determined as holocellulose of the extractive-free samples using the chlorite method

(Rowell 2005). Each chemical determination was made in duplicated samples.

Statistical analysis

Principal components analysis (PCA), cluster analysis (CA), and discriminant

analysis (DA) were used to analyse the chemical composition of the seven

granulometric fractions obtained from the samples of the four barks. PCA, CA, and

DA were performed using the software StatisticaTM, version 6, from Statsoft, Tulsa,

USA.

PCA is an unsupervised pattern recognition technique, aimed at best describing

the shape of a multivariate distribution by considering selected linear combinations

of the original variables, instead of the original variables (Bofinger 1975). The

initial system of m axis (one for each variable) is replaced by another system where

the new axes are the principal components, uncorrelated with each other. The first
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component shows the maximum correlation with all the original variables and

explains the highest proportion of the global variance. This method allows the

geometric representation of the original objects (in this case the bark fractions) in a

space of reduced dimensions defined by a new set of axis (principal components)

and, consequently, the identification of groups of similar samples. It may also

provide a particular interpretation of the components and subsequently of the

original variables (Alvin 2002).

The second stage of multivariate data analysis consisted of a CA on the data

matrices in order to confirm the groups of samples suggested by PCA. The single

linkage method was used as coefficient of comparison while the Euclidean distance

was used as coefficient of similarity between samples in the 7-dimensional

hyperspace. In the single linkage method, the distance (similarity) between two

clusters, A and B, is defined as the minimum distance between the nearest

neighbours. At each step, the distance was found for every pair of clusters, and the

two clusters with the smallest distance (i.e. the largest similarity) were merged.

After merging the two clusters, the procedure was repeated for the next step; the

distances between all pairs of clusters were recalculated, and the pair with the

minimum distance was merged into a single cluster. The results of a hierarchical

clustering procedure can be displayed graphically using a dendrogram, which shows

all the steps in the hierarchical procedure (Alvin 2002; Mirkin 1996).

For PCA and CA analysis, one 7 9 6 matrix for each species was performed:

seven samples, corresponding to the seven granulometric fractions characterized by

6 variables corresponding to the chemical composition variables (ash, dichloro-

methane, ethanol and water extracts, lignin, and holocellulose).

After PCA and CA, a DA was used on a 28 9 6 matrix, containing all the

samples characterized by their chemical composition, to determine which variables

discriminate between the groups of the different species a priori defined (Burgard

and Kuznicki 1990; Morrison 1967). Discriminant analysis is a supervised pattern

recognition technique since the membership is known, and the objective is to find a

rule for allocating a new object of unknown group to the correct group. The basic

underlying idea is to see whether groups differ with regard to the mean of a variable

and then use that variable to predict group membership. The procedure is identical

to the one-way analysis of variance or to the multivariate analysis of variance if

several variables are used (Bofinger 1975; Burgard and Kuznicki 1990).

The discrimination model was built by forward stepwise analysis using the

following options: tolerance of 0.010; F to enter equal to 1.00; and F to remove

equal to 0.00. At each step, it was evaluated which variable would contribute most

to the discrimination between groups. That variable would then be included in the

model, beginning the next step. The maximum number of discriminant functions (or

canonical roots) will be equal to the number of groups minus one or to the number

of variables in the analysis, whichever is smaller. The best combination of variables

for DA includes variables that represent independent measures of product

similarities and differences. In addition, the classification functions can be used

to determine to which group each case most likely belongs. The classification matrix

shows the number of cases that were correctly classified and those that were

misclassified.
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Results

Effect of particle size on chemical composition

The chemical composition of the seven granulometric fractions (from [80 to \10

mesh) obtained by grinding of the four barks is given in Table 1. The data show that

there are differences between species and fractions. The first analysis was made on

the bark of each species using principal component and cluster analyses to

differentiate granulometric fractions upon their chemical composition.

Birch bark

The principal component analysis of the birch matrix showed that 81 % of the

total variance of the chemical data could be explained by the first two principal

components (PC1 and PC2). The plot of the samples onto the plane defined by

these factors suggests a partial separation of samples into two groups: the first

principal component factor allowed separating the fractions with smaller particles

[B1 and B2] from the medium and higher particle sizes [B3, B4, B5, B6, and B7]

(Fig. 1a). The fine fractions are mainly located in the positive region of PC1

because of their higher ash and extractives contents. The other fractions are

plotted mainly in the negative region of PC1 due to their higher holocellulose and

lignin contents (Fig. 1b). This classification showed that for birch bark the fine

particle sized fractions are chemically different from the medium and coarse

fractions.

Agglomerative hierarchical CA resulted in dendrograms, as shown in Fig. 2. This

analysis confirms the possibility of grouping the seven granulometric fractions of

birch bark at a linkage distance of about 5.5 into the two clusters suggested by PCA

(Fig. 2a).

Eucalypt bark

By PCA, the eucalypt data can be represented on a plane defined by the first two

factors with 97 % of variance, which means that only about 3 % of the information

contained in the original data is lost. As also observed for the birch bark samples,

the fine fractions seem to be separated from the medium and coarse fractions

(Fig. 1c). PCA score plot showed a separation in different quadrants similar to that

observed for birch bark, except for the amount of lignin (Fig. 1d). The contents of

extractives and ash were the variables that contributed most to the separation and

chemical differentiation of the fractions. The fine fractions concentrated higher

amounts of ash, extractives, and lignin, while holocellulose content showed an

increased proportion in the coarse fraction (Fig. 1c, d).

The dendrogram resulting from the agglomerative hierarchical CA for the

eucalypt data confirms the presence of the following groups at a linkage distance of

about 10: a group formed by medium and coarse fractions (samples E4–E7), another

with samples E2 and E3, and E1 as an isolated sample (Fig. 2b).
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Pine bark

For the pine bark data, the first and second PC were found to describe 49 and 28 %

of the variation, respectively, i.e. the first plane accounts for about 77 % of the

information in the original data. The scores plot showed that the first PC separated

fractions with smaller particle sizes from higher particle size fractions (Fig. 3a, b).

The fine fractions were mainly located in the positive region and characterized by

higher ethanol extractives and ash contents. The coarse fractions were plotted

mainly in the negative region of the first principal component due to their higher

lignin and holocellulose contents.

Cluster analysis of pine bark fractions showed a tendency to group the

granulometric fractions (P4–P7) according to the respective chemical composition

(Fig. 4a).
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Spruce bark

PCA of spruce data, although not allowing a clear separation of the fractions

associated with the particle sizes, showed a tendency (Fig. 3c, d) to the finer

fractions (S1 and S3) mainly located in the positive region of the second principal

component, related with higher average values of ethanol extractives and ash

contents. S1 fraction is also characterized by a high content of dichloromethane

extractives. The fractions with medium particle sizes (S4 and S5) are located in the

positive region of the second principal component due to their higher lignin content.

The sample with coarse particles (S6) was located in the positive region of the first

principal component due to the higher polysaccharide and water extractives

contents.

The following groups are suggested by CA for the spruce bark samples at a

linkage distance of about 4.5: a group containing some medium and coarse particle
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fractions (S2, S4, S5, S7), a group with S3 and S6, while the finest fraction (S1)

appears isolated from the others (Fig. 4b).

Sample characterization by DA

When a PCA was performed on a matrix containing all the bark fractions from the

four species and the scores of these samples were plotted as a function of PC1

versus PC2 (71 % of variance), the segregation between samples from each species

was not complete (data not shown). Therefore, a DA, which is a more specific tool

for discrimination, was used to discriminate between the four different tree species

(Ruiz-Méndez et al. 2008). A matrix containing the 28 samples, identified by the

group (species) to which they really belong (birch, eucalypt, pine, or spruce), was

used.

Table 2 presents the coefficients of the linear classification functions, derived by

stepwise DA, describing each bark species. In these functions, all the six original

variables showed to have discriminant power among samples from the different
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species. These functions can be used to determine to which group each case most

likely belongs.

When comparing the observed classifications with those predicted by these

classification functions (Table 3), 96.4 % of the samples were correctly classified

into the four groups a priori defined. Only one pine sample (P1) was misclassified as

a spruce sample. Figure 5 shows the projections of the bark samples on the planes

defined by the canonical roots 1 and 2, and 1 and 3 for the four groups a priori

defined. In both plots, the clustering of the samples into the groups previously

defined is well illustrated.
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composition
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Discussion

The bark samples of the four species have distinguishable differences in their

chemical composition (Table 1). For instance, a considerable difference is shown

for eucalypt bark which is characterized by a high holocellulose content (on average

56.3 %) and low extractives content (average total extractives of 6.5 %) in

comparison with pine and spruce barks which have low holocellulose content (36.1

and 47.6 %, respectively) and high extractives content (19.1 and 22.0 %,

respectively).

There were also differences between the barks related to the proportion of the

different soluble compounds in the total extractives. For instance, dichloromethane

soluble compounds represent a large proportion of total extractives in birch bark,

while this type of extractives was smaller in the other barks. These results show the

between-species chemical variability of bark, as also reported by Miranda et al.

(2012, 2013) and Kofujita et al. (1999).

The use of bark as a biomass resource requires a pre-treatment step of size

reduction and eventually of fractionation. It is expectable that the physical and

structural characteristics of bark will influence its behaviour upon mechanical

handling and allow separation of fractions with differing physical properties (such

as particle size). As reported in previous works (Miranda et al. 2012, 2013), this was

observed for these four barks and the grinding yields by particle size differed

Table 2 Coefficients of the linear classification functions, derived by stepwise discriminant analysis,

describing each bark species

Birch Eucalypt Spruce Pine

Water 91.24 99.82 104.08 101.85

Dichloromethane 81.83 89.92 90.55 89.04

Lignin 91.93 101.53 100.58 101.31

Ash 90.31 101.31 99.02 99.39

Polysaccharide 89.53 99.49 98.23 98.35

Ethanol 81.51 86.68 88.26 89.58

Constant -4,080.77 -5,001.04 -4,933.48 -4,942.97

Table 3 Classification matrix

Observed Predicted Classifications

% Correct Birch Eucalypt Spruce Pine

Birch 100 7 0 0 0

Eucalypt 100 0 7 0 0

Spruce 100 0 0 7 0

Pine 85.7 0 0 1 6

Total 96.4 7 7 8 6

The diagonal shows the number of cases correctly classified
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between them: for spruce and pine barks, the yield of fines was low and the major

fractions were larger particles; for birch bark, the yield of fines was low and the

major fraction corresponded to the largest particles; for eucalypt bark, a significant

amount of fines was obtained and the fractions with the larger particles showed

comparatively lower yields.

The question arises whether the different granulometric fractions have similar

chemical composition or possible differences are species related. Bridgeman et al.

(2007) reported that the process of size reduction does not apply in a uniform

manner and that cellulose, hemicelluloses, and lignin tend to remain in the larger-

sized particle fraction. Ottone and Baldwin (1981) reported that extractives

increased with decreasing particle size. A particle size effect was observed for

Fig. 5 Discriminant analysis. Plot of the bark samples from the four species
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content of ash and extractives of these four barks, but overall trends for structural

and non-structural chemical components were difficult to scrutinize, especially

when considering the species variation (Miranda et al. 2012, 2013). The structural

complexity of barks, e.g. with different anatomical tissues and cell characteristics,

may influence the size distribution after grinding and the chemical composition of

the different fractions (Baptista et al. 2013).

The selection of processing routes for barks as a source of chemicals and

materials may therefore be difficult by the diversity of the data related to species,

granulometrics and chemical variables. The use of statistical methods may be a

useful tool to detect significant differences and discriminate between groups. This

was the aim of this paper, and the results showed that this approach may be applied

successfully to bark fractions, principally of hardwoods.

It was shown that the raw material source, i.e. the species, is more important to

identify samples based on their chemical composition than their granulometry.

Figure 5 shows that the representation of all the samples in a two-component plane

allows the grouping of the samples by species. Birch and eucalypt are clearly

separated in the PC1 and PC2 plane, while pine and spruce are less discriminated by

PC1, but they are differentiated by PC2.

The different barks behaved heterogeneously during grinding reduction as

regards their granulometric distribution (Miranda et al. 2012, 2013). They also

showed that the distinct sieve fractions differ chemically. The CA rendered

dendrograms as shown in Figs. 2 and 4 grouping all granulometric samples at least

into two clusters, one formed by medium and coarse fractions and another formed

by fine fractions. This result suggests that sieving can constitute a first dry

fractionation step resulting in preliminary enrichment of desirable components of

biomass into suitable fractions for different applications.

Conclusion

It was shown that bark chemical composition differs between species, and for the

four species analysed, the chemical variables may be used to differentiate between

them. Size reduction yields granulometric fractions that are not chemically

homogeneous and that can also be discriminated. Therefore, the potential

applications of barks in valorization programs have to carefully consider the

species-specific composition and their size reduction patterns. However, in general,

the fine particles concentrate higher amounts of inorganic material, and extractives

and therefore should be separated prior to further processing.

Chemometrics statistical methods were shown to be useful tools to analyse bark

fractions and chemically discriminate species and granulometric fractions. They are

therefore useful to study the chemical potential for biorefineries of different barks.
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