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Abstract The industrial manufacturing of wood-based panels has become a highly

technological process, where all parameters have to be perfectly adjusted to man-

ufacture products of high quality. However, variations caused by differing wood

characteristics as well as variations of single process parameters can cause out-of-

control events. These undesirable events can be diminished by monitoring and

controlling the entire manufacturing process using multivariate statistical tech-

niques. Hence, a real-time process adaptation of an industrial scale fibreboard

manufacturing process was simulated. Regression results revealed a mean norma-

lised root mean squared error of prediction of 4.6 %, when predicting the internal

bond strength of fibreboards. The regression model is regularly validated and, if

necessary, recalibrated using the offline determined board properties (feedback

control). Consequently, the process can immediately be adapted as soon as the board

is produced (feedforward control). The investigations resulted in reliable models

and revealed high potential for permanent industrial implementation.
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Introduction

The supply of wood as most important raw material for the wood-based panels

industry has been increasingly challenging, due to the rising demand for wood used

as an energy resource (Marutzky 2006). A more efficient utilisation of raw materials

in combination with lower energy consumption is both seen as strategies to address

this situation. In this respect, the quality control of industrially produced wood-

based panels has become a major prerequisite in achieving higher efficiency levels.

During the past decades, procedures for testing of physical, chemical and biological

properties of wood-based panels under standardised conditions have been developed

(EN 622-5 2006). Such procedures are normally used for evaluating the adherence

of the required minimum product quality. Additionally, data from manufacturing

process parameters as well as technological properties of raw materials are

determined. These data can be used for building models, which are capable of

predicting the properties of wood-based panels using multivariate regression

analysis (Andre et al. 2010; Weigl et al. 2012). Once models of high predictive

capability are developed, the process of manufacturing wood-based panels can be

automatically adapted in real time to reduce process variability and out-of-control

events.

While real-time adaptation is commonly used in chemometrics (Danzer et al.

2001) for sectors such as biotechnology (Vojinović et al. 2006) or chemical

engineering, it is rarely used in wood industry. Bernardy and Scherff (1997)

developed a software programme that is able to predict final properties of wood-

based panels. Cook and Chiu (1997) predicted internal bond strength (IB) of

particleboards using a radial basis function (RBF) neural network, resulting in an

error of prediction of 12.5 %. Andre et al. (2008) concluded, after comparing four

different algorithms [RBF neural network, partial least squares regression (PLSR),

orthogonal PLSR and supervised probabilistic principal component analysis

(SPPCA)] for predicting IB in medium density fibreboards (MDF), that SPPCA

performed best (error of prediction = 5.9 %). PLSR performed second best with an

error of prediction of 6.18 %. Esteban et al. (2011) used an artificial neural network

with feedforward multilayer perceptron to predict the bonding quality of plywood

with an overall average accuracy of 93 % (number of correctly classified testing

samples divided by the total number of testing samples in per cent). Predicting

strength properties of particleboards using a combination of algorithms (multiple

linear regression (MLR), ridge regression, PLSR and neural network) resulted in

errors of prediction of 9.0 % for predicting IB and 6.9 % for predicting the bending

strength (MOR) of particleboards (Andre et al. 2010). Here, an error of prediction of

15 % was used as a threshold for recalibrating the PLSR model. Young et al. (2008)

used MLR and quantile regression for modelling the IB of MDF. Dolezel-Horwath

et al. (2005) obtained an error of prediction of about 11 % when predicting IB of

hardboards using UV–Vis spectra of fibres. The database management was

frequently realised by relational databases using SQL programming language

(Andre et al. 2008; Bernardy and Scherff 1997; Young and Guess 2002).

The occurrence of missing values is a common problem when analysing data sets

from industrial processes. As the deletion of entire observations would lead to
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considerable data loss, algorithms such as the non-linear iterative partial least

squares (NIPALS) algorithm (Nelson et al. 1996) or the expectation–maximisation

algorithm (Zeng 2011) are appropriate for replacing missing values. Detailed

information about treating missing values in statistical analysis can be found in

Little and Rubin (2002).

Advantages of PLSR compared to MLR lie in the possibility to analyse highly

multi-collinear, noisy and numerous predictor variables as well as to simultaneously

model several predicted variables (Wold et al. 2001). Commonly used algorithms

for PLSR are the simple partial least squares (SIMPLS) algorithm (introduced by De

Jong 1993), which maximises the variance–covariance between predictor and

predicted variables, and the NIPALS algorithm. Although the SIMPLS algorithm is

faster than NIPALS, both will lead to the same result in the case of using a single

predicted variable (Wise et al. 2006). Ideally, all relevant product properties should

be optimised simultaneously (multivariate case). However, if properties of panels

are not correlated, they should not be analysed together, as this would cause a higher

number of selected significant variables, lower predictability and hence a more

difficult interpretation of results (Wold et al. 2001).

The exclusion of variables that do not contribute to the explanation of the model

improved interpretability and predictability of the PLSR model (Mehmood et al.

2012). When predicting properties of wood-based panels, the selection of significant

process parameters has been carried out using F tests paired with the experience of an

operator (Steffen et al. 2001), genetic algorithms (GA) in combination with PLSR

(Andre et al. 2008) and MLR (Andre et al. 2010) as well as principal component

analysis (PCA) (Clapp Jr et al. 2008). Mehmood et al. (2012) gave an overview of

possible methods for variable selection with PLSR. Nørgaard et al. (2000) presented

an iterative procedure for selecting intervals of spectra, called interval partial least

squares regression (IPLS), from near infrared spectroscopy (NIR).

To improve the predictability and interpretability of established models,

information on raw material properties should be recorded in more detail (Weigl

et al. 2012). In particular, Weigl et al. (2012) detected significant influences of raw

material parameters when modelling thickness swelling of high-density fibreboards

(HDF) using PLSR. A major factor for the mechanical properties of wood-based

panels is the distribution of resin on particles (Wilson and Krahmer 1976). The

fluorescent dye brilliant sulphaflavine can serve as indicator for a semi-online

measurement of the distribution and size of resin droplets (Riegler et al. 2012).

Similarly, NIR only or in combination with UV–Vis spectroscopy can be used for

determining wood characteristics. These characteristics are used to model strength

properties of particleboards with PCA and PLSR (Dolezel-Horwath et al. 2005;

Rials et al. 2002; Sjöblom et al. 2004). Sjöblom et al. (2004) detected cost savings

of 2.8 euros/m3 due to a lower variability of particleboard properties.

As high product variability entails higher safety margins and thus higher energy

and raw material input, product variability should be kept to a minimum. This can

be achieved by defining optimisation problems and using feedback control to adapt

process parameters (Chachuat et al. 2009). Hence, the objective of the present study

was to evaluate the potential of adapting process parameters in real time to minimise

product variability using multivariate statistical methods.
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Materials and methods

Data logging

The industrial production of 7-mm-thick HDF with a target density of 875 kg/m3

was investigated. Therefore, 804 process and raw material parameters were

recorded every 20 seconds. Figure 1 shows the approach of the applied process

adaptation with the four main steps, i.e. calibration (I), validation (II), prediction

(III) and feedforward adaptation (IV). Data records had to be time corrected by

defining time-lags between consecutive process sections before storing in a ‘‘real-

time database’’ (Fig. 1). As the internal bond strength (IB) is one of the most

important board parameters in the industrial production of fibreboards (Dunky and

Niemz 2002), it was used as predicted variable to exemplify the method used in the

present study. At four-hour intervals, the IB of panels was determined offline,

following EN 319 (1993) and EN 326-1 (1994). IB data were stored in an ‘‘offline

database’’. To simulate the adaptation of the manufacturing process of HDF,

statistical models were calculated using PLSR analysis. Thus, 440 data records of

Fig. 1 Approach of process adaptation using feedback and feedforward control of offline and online
determined parameters using 4 main steps: calibration (I), validation (II), prediction (III) and feedforward
adaptation (IV)
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offline data, representing the recent 6 months of production, were merged with the

time-lag-corrected real-time database records (data fusion). These 440 data records

were divided by alternately selecting every 11th data record for evaluating the error

of prediction (40) and the rest for calibration (400). Statistical analyses were carried

out with MATLAB (version R2010b) and PLS Toolbox from Eigenvector Research

Inc.

Pre-processing of data

After the above-mentioned data fusion step, predictor variables were grouped

according to their respective process sections: silo, digester, refiner, gluing, drying,

forming, pressing and laboratory. Variables with values outside of a predefined

realistic range were removed to exclude corrupt sensor signals. In addition,

predictor variables with more than 50 % missing values were excluded as well.

Predictor variables with less than 50 % missing values were imputed by iteratively

fitting a PCA model to the data. Missing values were initially replaced by the

arithmetic mean of their corresponding variables. From the obtained data matrix, the

covariance matrix was calculated. This covariance matrix was factorised using

the singular value decomposition to impute originally missing values with values

that are most consistent with the loadings of the PCA model. This routine was

successively carried out (maximum 100 times) until the change in the replaced

values dropped below the threshold of 1E-6, using PLS Toolbox (Wise et al. 2012).

Predictor variables that were technologically related were manually clustered into

groups (refining, gluing, drying, etc.), to improve imputation of missing values. If

single observations of the predicted variable (IB) were missing, the entire respective

observation was removed from the data set. Predictor variables with a coefficient of

variation below 0.2 % were excluded, as these variables did not contribute to the

explanation of the predicted IB. Afterwards, the filtered data (X(orig)) were

standardised to X(sc) (scaled X-matrix) that comprises variables with an arithmetic

mean (�x:j) of 0 and a standard deviation (s.j) of 1 by

X
ðscÞ
ij ¼

X
ðorigÞ
ij � �x:j

s:j
; i ¼ 1. . . n; j ¼ 1. . . m; ð1Þ

where m is the number of variables and n the number of observations.

Regression analysis with PLSR

Using PLSR and the SIMPLS algorithm (Wold et al. 2001) as basis for adapting the

process of manufacturing fibreboards, the scaled X-matrix X(sc) was transformed into

X-scores T and X-loadings P aiming at minimising the residuals E by

XðscÞ ¼ TP0 þ E: ð2Þ
The scores matrix T was used to predict the scaled Y-matrix using Y-loadings C

and minimised residuals F by
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YðcÞ ¼ TC0 þ F: ð3Þ
These transformations were calculated using the weights matrix W as linear

combinations of X(sc) by

T ¼ XðscÞW P0Wð Þ�1
; ð4Þ

resulting in regression coefficients B by calculating

B ¼ W P0Wð Þ�1
C0: ð5Þ

Calibration and validation

Calibration (1st PLSR model) was carried out with the offline database using 400

data records from the most recent 6 months (Fig. 1, I). To evaluate the predictability

of PLSR models, the root mean squared error of calibration (RMSEC) (Formula 6)

and the root mean squared error of cross validation (RMSECV) (Formula 7) were

calculated, where the deviation of the predicted value (Ŷ cð Þ,Ŷ cvð Þ) from the actual

value (Y) was of interest. The RMSECV was determined by applying a b-fold cross

validation, where b is the number of contiguous blocks, and n/b is the number of

observations per block. Here, n was 400 and b was set to 10. In addition, RMSECV

values were standardised for better comparison by dividing them by the absolute

arithmetic mean of the actual values (mean normalised root mean squared error of

cross validation (MNRMSECV) in Formula 8).

RMSEC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 Ŷ

cð Þ
i � Yi

� �2

n

v

u

u

t

ð6Þ

RMSECV ¼ b�1 �
X

b

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b �
Pn=b

i¼1 Ŷ
cvð Þ

i � Yi

� �2

n

v

u

u

t

ð7Þ

MNRMSECV ¼ RMSECV �
Pn

i¼1 Yi

n

�

�

�

�

�

�

�

�

� ��1

�100 ð8Þ

The 1st calculated PLSR model used all predictor variables (X(sc)) and an

optimum number of latent variables (LV) by searching for a significant change (see

below) in the RMSEC and RMSECV using the function choosecomp (Wise et al.

2012). The function’s principle is described in Formulas 9–11. The first significant

drop in RMSEC is indicated by

knee ¼ 1þ min
l¼1;...;k�2

l :
RMSEClð Þ1þa

RMSEClþ1 þ e
� RMSEClþ1ð Þ1þa

RMSEClþ2 þ e
[ 0

( )

ð9Þ

where knee is the minimum subscript of the positive integers, a is a sensitivity

parameter (set to 0.2) for detecting a drop in RMSEC, k is the maximum number of

LV and e [ 0 (small to avoid division by zero). The resulting suggestion of LV

(knee) was altered if the addition or removal of further LV resulted in lower
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RMSECV values, using the mean of the absolute difference of adjacent relative

RMSECV values as threshold. In this case, RMSECV values were searched for

drops up to the suggested number of LV by

pc ¼ 1þ max
l¼1;...;p

l :
RMSECVlþ1 � RMSECVl

max RMSECVð Þ \
� 1

k�1

Pk�1
i¼1 RMSECViþ1 � RMSECVij j

max RMSECVð Þ

( )

ð10Þ

where p is equal to knee, and pc is the maximum subscript of the positive integers.

Afterwards, the final suggestion was made by comparing pc with the change of the

remaining number of LV by

optlv ¼ pc� 1

þ min
l¼1;...;k�pc

l :
RMSECVpcþl � RMSECVpcþl�1

max RMSECVð Þ [
� 1

k�1

Pk�1
i¼1 RMSECViþ1 � RMSECVij j

max RMSECVð Þ

( )

ð11Þ

where optlv is the minimum subscript of the positive integers. Finally, optlv was

used as the optimum number of LV for the 1st PLSR model.

To improve the predictability of this 1st PLSR model, the most important

predictor variables were selected using IPLS (Nørgaard et al. 2000). In this iterative

process of variable selection, a 2nd PLSR model (Fig. 1, II—validation) was

calculated by successively selecting predictor variables that minimised the

RMSECV (determined by cross validation with 10 contiguous blocks). The number

of LV for the 2nd PLSR model was equal to the number of LV that was used to

calculate the final IPLS iteration.

Prediction

Estimated regression coefficients (B) from the calibrated PLSR model were used to

simulate a real-time prediction of the IB. The simulation was carried out using

collected real-time data of predictor variables obtained over 2 days of production

(X(r)), retrieved at 20-second intervals (Fig. 1, III). Missing values were replaced

according to the algorithm described in section pre-processing of data, using the

most recent 100 real-time records. Time-lag correction as well as data quality

improvements were applied to the real-time data, analogous to the steps mentioned

above. The prediction of the IB (Ŷ pð Þ) with new real-time data was achieved by

using the linear regression equation

Ŷ pð Þ ¼ X rð Þ � B: ð12Þ
To evaluate the predictability of the PLSR model in real time, the predicted

values Ŷ pð Þ were compared to the newly measured actual values (Y(new)) that were

obtained from the offline database. Thus, the root mean squared error of prediction

(RMSEP) was calculated using every 11th data record from the most recent offline

database, resulting in d observations (Formula 13). Here, d was 40.
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RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pd
i¼1 Ŷ

pð Þ
i � Y

newð Þ
i

� �2

d

v

u

u

t

ð13Þ

Recalibration

For the evaluation of the feedback control (‘‘actual & pre’’ in Fig. 1), two thresholds

were defined to indicate whether a recalibration was necessary. If the average of three

consecutive predictions of Ŷ pð Þ (to exclude short-term variations) was out of the range

of ±3 times the standard deviation of Ŷ cð Þ, a negative decision was obtained from the

feedback control and the PLSR model was recalibrated using the most recent offline

data. For a definition of the confidence interval see Wold et al. (2001). Additionally, a

recalibration was carried out if the mean normalised root mean squared error of

prediction (MNRMSEP) values (Formula 14) were [5 %. Recalibration was

neglected if the MNRMSEP value of the newly calibrated PLSR model was higher

than the MNRMSEP value of the previous model.

MNRMSEP ¼ RMSEP �
Pd

i¼1 Y
newð Þ

i

d

�

�

�

�

�

�

�

�

�

�

 !�1

�100 ð14Þ

Process adaptation

If the result of the feedback function was positive (Fig. 1), theoretical values for predictor

variables of the current model were calculated, which should result in fibreboards with a

defined target IB (Ŷ tð Þ) of 1.70 N/mm2 (Fig. 1, IV). In particular, the function

~X að Þ ¼ arg min
X að Þ

X að Þ � B að Þ þ X uð Þ � B uð Þ � Ŷ tð Þ
� �2

ð15Þ

was minimised [using the trust-region-reflective algorithm (Coleman and Li 1994)]

while searching for controllable variables (X(a)) and using the predefined limits for

each selected variable as constraints. Nonadjustable predictor variables and pre-

dictor variables that had been changed manually by the operator (uncontrollable

variables X(u)) were not allowed to be adapted by the function and were defined as

absolute terms. B(a) and B(u) were the corresponding regression coefficients of the

controllable and uncontrollable variables, respectively. As abrupt changes in spe-

cific processes could destabilise the overall manufacturing process, controllable

variables in ~XðaÞ were not allowed to vary by more than ± the standard deviation of

the same variables in X(sc).

Results and discussion

Model calibration and validation

The simulated process adaptation was an iterative process, i.e. one calibration

(A) and one recalibration stage (B) (Fig. 2), each stage consisting of a calibrating
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(‘‘1st PLSR model’’) and a validating (‘‘2nd PLSR model’’) step, were carried out.

To exemplify the results of model calibration, the first calibration stage (A) is

presented in detail. Offline determined IB data with an arithmetic mean of 1.74 N/

mm2 (CV = 7.1 %) were used for calibrating the 1st PLSR model. From the

original 804 predictor variables, 19 were excluded due to values deviating from the

predefined range. 22 predictor variables were excluded because of unavailability in

the real-time database, 156 predictor variables were excluded because of [50 %

missing values, and 47 predictor variables were excluded due to low variation

(CV \ 0.2 %). In total, 244 variables were filtered and the remaining 560 predictor

variables were used to calibrate the 1st PLSR model. The number of remaining

variables was almost three times higher than the 179 variables used by Clapp Jr

et al. (2008), who suggested the collection of additional predictor variables to

improve model performance. A high number of collected predictor variables, from

which the most significant variables are selected, should diminish unobserved

influences and consequently the RMSEP (Clapp Jr et al. 2008). Thus, it is assumed

that the 560 predictor variables used for calibration in the present study can

sufficiently explain the variation within the predicted variable.

The MNRMSECV of the 1st PLSR model using all 560 predictor variables and

an optimum number of LV of 1 was 7.2 %. Using IPLS, this error was reduced by

selecting the variables that contributed most to the explanation of the variance of the

predicted variable (IB). In addition, selecting the most important predictor variables

allowed a technological interpretation of the current process and facilitated an

adaptation of process parameters. Thus, 47 predictor variables were selected in the

Fig. 2 Simulation of a real-time process adaptation with predictions of unadapted (Fig. 1, III) and
adapted (Fig. 1, IV) predictor variables over 2 days of production using two calibrated PLSR models
(A calibration, B recalibration). Actual IB values (circled points) and the calibrated range of IB values
(solid and dashed lines) are used as criteria for recalibration
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2nd PLSR model with 5 LV resulting in an MNRMSECV of 4.7 %. The coefficient

of correlation of actual IB values versus predicted IB values from the 1st PLSR

model was 0.45 (Rcal in Fig. 3). Using the 2nd PLSR model, the correlation between

actual and predicted IB values could be improved to a coefficient of correlation

(Rval) of 0.78.

Model prediction with recalibration (feedback)

Based on the calibrated PLSR model, the IB was predicted in a simulation using

real-time process data (Fig. 2). The grey crosses in Fig. 2 are real-time predictions

of the IB at 20-second intervals, with the dashed line (mean) and the dotted lines

(±3 times standard deviation) depicting the range of predicted values from the

calibrated model. The circled points show the actual IB values determined by

destructive offline measurements. The crosses in black depict predicted IB values at

the time when actual IB values were measured to evaluate MNRMSEP values.

Predicted IB values (black crosses) deviated with a CV of 2.2 % from their

arithmetic mean of 1.77 N/mm2 and were consistently within the range of ±3 times

the standard deviation of their respective Ŷ cð Þ. The arithmetic mean of actual IB

values was 1.76 N/mm2 with a CV of 5.8 %. Thus, the model predictions

overestimated the IB on average by 0.01 N/mm2. The CV of predicted IB values

was more than half lower than the CV of actual IB values, which indicates that

short-term deviations between two subsequent actual IB values (see second actual

value in Fig. 2) are neglected by the calibrated PLSR model. This can especially be

Fig. 3 Correlation between actual and predicted IB values obtained from the 1st PLSR model
[calibration (Fig. 1, I)] and the 2nd PLSR model [validation (Fig. 1, II)] in stage A, showing the target
line (R = 1) and regression lines
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seen in the predicted IB values at 7.7 h after starting the simulation as they are not

affected by the low actual IB value of 1.57 N/mm2.

After 11.1, 35.0 and 43.0 h of simulating the production of HDF, MNRMSEP

values were above the threshold of 5 % and PLSR models were recalibrated

(Table 1). MNRMSEP values obtained after 11.1 h (7.1 %) and after 35.0 h (6.7 %)

were higher than their corresponding MNRMSEP values obtained from calibration

(5.5 % after 11.1 h and 5.1 % after 35.0 h). Thus, the calibrated PLSR model,

which was used up to these points (11.1 and 35.0 h), was used as basis for further

simulation instead of the recalibrated PLSR models. After 43.0 h, predicted IB

values deviated from actual IB values by an MNRMSEP of 6.1 %. The

corresponding MNRMSEP obtained from recalibration was 5.6 % (Table 1). As

this recalibration stage improved the MNRMSEP, the recalibrated PLSR model was

used for further simulation (Fig. 2, B). The mean of all MNRMSEP values from

PLSR models used for predicting IB values was 4.6 %. The coefficient of

correlation between actual and predicted IB values that were used for calculating

MNRMSEP values was 0.74 (Fig. 4). Looking at the regression line in Fig. 4, low

actual values were overestimated and high actual values were underestimated. This

effect can be ascribed to the length of time periods chosen for calibration, which

could be observed in preliminary investigations explained in the following

paragraph.

In preliminary investigations, the approach presented in the present study was

applied to different time periods. In this pre-examination, the usage of a time period

of 2 months (100 data records for calibration) resulted in MNRMSEP values down

to 2.9 % but also in a high number of recalibration stages (up to five stages within

2 days of production). A process modelling scheme that needs such a high number

of recalibration stages could produce over-fitted PLSR models and is considered to

be unstable for a process adaptation in real time. The higher susceptibility to over-

fitted models could also be seen in the higher variation of predicted IB values

(CV = 3.6 %). Models using time periods longer than 2 months resulted in more

stable models (one or even no recalibration stage necessary within 2 days of

production), but also in higher MNRMSEP values (increase from 2.9 up to 6.1 %).

Table 1 MNRMSEP values of

calibration and recalibration

stages

Time of

production (h)

MNRMSEP

calibration (%)

MNRMSEP

recalibration (%)

2.8 4.0 –

7.7 4.3 –

11.1 5.5 7.1

15.3 4.5 –

18.8 4.9 –

23.9 4.4 –

27.2 4.0 –

31.5 4.1 –

35.0 5.1 6.7

39.6 4.4 –

43.0 6.1 5.6
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Thus, the periods for model calibration, validation and prediction have to be

carefully chosen in practice, to obtain models that are both stable over time and able

to predict short-term variations (e.g. in the range of a few hours). In the present

study, the alternate selection of data for evaluating the MNRMSEP ensures the

inclusion of recently generated data for calibration (to allow the analysis of most

recent process variability) as well as considering data for a longer time period to

obtain stable and statistically reliable models. The resulting MNRMSEP of 4.6 %

seems to be an ideal prerequisite for the following adaptation.

Andre et al. (2008) obtained a MNRMSEP of 6.2 % while selecting 56 variables

from a total of 164. Hasener (2004) obtained MNRMSEP values of 5.8 % when

predicting IB over a one-year period using up to 281 variables. One explanation for

the lower MNRMSEP in the present study could be the higher number of available

predictor variables (560), of which the final variables ranging from 41 to 47 were

selected (Table 2). Results of calibration and recalibration stages are shown in

Table 2, indicating high predictability of all PLSR models with MNRMSECV

values ranging from 4.7 to 4.8 %.

The most important selected predictor variables over all calibration stages are

shown in Table 3 ranked by their scaled regression coefficients ([|0.15|) in

descending order. Significant variables that were selected at multiple calibration

stages showed the same trend of influence at all calibration stages. During model

generation, the selection as well as the ranking of variables depended on the used

number of LV and the inclusion of new observations. However, the three most

important variables were selected consistently. Higher board densities as well as

increased steam consumptions for preheating chips prior to refining would have

Fig. 4 Correlation between actual and predicted IB values obtained from PLSR models for calculating
MNRMSEP values in all stages, showing the target line (R = 1) and the regression line. Larger symbols
indicate the 11 IB values used in the simulation of process adaptation in Fig. 2
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increased the IB of boards (positive regression coefficients). Increased amounts of

water-repellent led to deteriorated IB values (negative regression coefficient). An

increase in moisture content of added sawdust decreased IB values. Similarly, the

amount of water sprinkled onto the forming belt prior to forming should have been

lower to increase IB values. The drying temperature of fibres, cooking time of chips

as well as press parameters such as press platen distance and press pressure

additionally influenced IB values of boards. Lower press pressures at the end of the

press would have increased IB values. This could be ascribed to an undesired

breaking of already cured bonds between the fibres. The inclusion of a three-

dimensional model of the hot-pressing process of fibreboards, introduced by

Thömen (2000), could further improve the technological interpretation of significant

press parameters.

Adaptation (feedforward)

After PLSR models were obtained that fulfilled the feedback function (actual & pre

in Fig. 1), significant model parameters were adapted to lower the variation of

predicted IB values (Fig. 1, IV). Similarly, the variation of actual IB values should

Table 2 Predictability and model parameters of calibration stages A and B

Calibration stage Number of observations

for calibration

Selected predictor

variables

Number of

LV

MNRMSECV

(%)

A 400 47 5 4.7

B 400 41 4 4.8

Table 3 Scaled regression coefficients and deviation of actual values from adapted values (RMS_d) of

most important model variables (scaled regression coefficients[|0.15|) at two calibration stages A and B

Variables Scaled regression

coefficient

RMS_d of actual-adapted

values

A B A B

1 Board density 0.32 0.41 0.44 0.33

2 Steam consumption preheating chips 0.25 0.26 0.34 0.21

3 Amount water-repellent -0.21 -0.17 0.28 0.13

4 Distance press system 06 right 0.20 0.16

5 Moisture content sawdusta -0.18 –

6 Distance press system 12 left 0.18 0.14

7 Drying temperature -0.18 0.14

8 Sprinkling water fibre mat bottom -0.17 0.22

9 Cooking time chips 0.17 0.13

10 Pressure press system 19 -0.16 0.21

a Uncontrollable
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be decreased as well when using the approach of process adaptation in an industrial

environment. Due to this feedforward process control, the mean of predicted IB

values obtained from models that used adapted predictor variables was in

accordance with the target IB value of 1.70 N/mm2 (adapted values depicted as

grey dots with black edge colour in Fig. 2). The variation of predicted IB values was

minimised to 0.2 % (CV). This was achieved by adapting controllable model

variables using the minimisation function in Formula 15. Scaled mean values of

actual and adapted predictor variables (Table 3) are depicted in Fig. 5. As the mean

of actual IB values (1.76 N/mm2) was above the target IB value of 1.70 N/mm2,

adaptable predictor variables with positive regression coefficients were decreased

and adaptable predictor variables with negative regression coefficients were

increased to gain the target IB. The root mean square deviation (RMS_d) of actual

versus adapted values of predictor variables in Fig. 5 was 0.17. This deviation was

clearly below the maximum deviation allowed in function 15 (± the standard

deviation of variables in X(sc) which is ±1). The single RMS_d values of

controllable predictor variables are shown in Table 3, ranging from 0.13 to 0.44.

The developed optimisation programme predicted IB values of fibreboards with

high precision. The simulation of adapting controllable predictor variables to gain a

specific target value revealed promising results, as all predictions over the 2 days of

simulation had a value of 1.70 N/mm2. Using the presented adaptation technique,

process variables that consume high energy, gain low yield or have low cost

efficiency can be optimised. This can be achieved by defining uncontrollable

variables (Formula 15) and assigning them a specific value. Adapting the

controllable predictor variables of the calibrated PLSR model should allow a

compensation of this measure up to a certain degree. The validation of this

Fig. 5 Scaled mean values of most significant actual (X(a), X(u)) and adapted ( ~X að Þ) predictor variables
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hypothesis should be carried out in an industrial environment by using simultaneous

modelling of different product properties, which can be achieved with a

combination of PCA and PLSR (Wold et al. 2001). The determination of additional

process and raw material parameters, such as the gluing quality of wood particles,

will lead to higher predictability of PLSR models and should be considered in future

trials. The presented study serves as basis for a simultaneous optimisation of

relevant board properties mentioned in EN 622-5 (2006).

Conclusion

The outcome of this study shows that process parameters can be adapted in a real-

time simulation using the multivariate statistical tools presented. Particularly, IPLS

seems to be appropriate as algorithm for selecting significant variables when

modelling the manufacturing process of wood-based panels in real time. The first of

the two main benefits of the developed process adaptation is the newly gained

knowledge about interactions between properties of the final board and process as

well as raw material parameters. In this respect, significant parameters such as press

conditions, preheating conditions of chips, amounts of water-repellent or drying

conditions could be detected and their influence on the IB was interpreted. The

second benefit is the possibility to change process parameters in real time to gain a

specific target value, minimise safety margins and save precious resources. The

adaptation of controllable predictor variables can be limited by predefining upper

and lower limits to avoid excessive changes in the variables.

To test the performance of the developed adaptation tool under real conditions,

the simulation should be carried out in an industrial environment. Consequently, the

influence of adapted process variables on the subsequent adaptation periods is

subject to future researches. The approach presented in this study serves as basis for

implementing a feedforward real-time process adaptation in industrial manufactur-

ing processes.
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Sjöblom E, Johnsson B, Sundström H (2004) Optimization of particleboard production using NIR

spectroscopy and multivariate techniques. For Prod J 54(6):71–75

Steffen A, Janssen A, Kruse K (2001) Analysis of the MDF production process by means of statistical

process modelling. Holz Roh Werkst 58(6):419–431
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