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Abstract An artificial neural network that can predict the dielectric prop-
erties of wood was developed and tested with experimental data. The network
was capable of accurately predicting the loss factor of two wood species not
only as a function of ambient electro-thermal conditions but also as a function
of basic wood chemistry. This way, an important predictive tool is created that
allows optimization of dielectric heating and drying for many wood species
without significant experimentation should their chemical composition be
known under variable temperatures, moisture contents and electric filed
characteristics.

Introduction

In wood, radio frequency vacuum (RFV) drying (Koumoutsakos et al. 2001a,
b, 2003) and other high frequency electric field heating applications such
as veneer and finger-joint gluing and parallam manufacturing (Torgovnikov
1993), the knowledge of the fundamental dielectric properties of the material
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such as dielectric constant (¢"), loss tangent (tan ¢) and loss factor (¢’) are
imperative in process design, control, optimization and simulation.

In the past, these properties have been researched as a function of fiber
direction and field frequency for a variety of wood species that were con-
ditioned to various moisture contents and temperatures. All studies
revealed a strong relationship between the dielectric properties and wood
attributes studied plus frequency (James 1975; Torgovnikov 1993; Siau 1995;
Skaar 1948). For RFV drying, knowledge of ¢’ is imperative since this
attribute is directly proportional to power density, i.e., the thermal power
transferred to wood. This is because the amount of electric power converted
to thermal power is given by PD =556 x 107" E*f¢” where PD is the
power density in W/m®, E is the field strength in V/m and f is the frequency
in Hz (Koumoutsakos 2001a). PD is analogous to dry-bulb in convective
drying, for example, as PD increases, so does the rate of heating and
consequently the final temperature of the material. Therefore, for timber
RFV drying simulation and optimization, knowledge of PD variation in
space and time is crucial. It is therefore apparent that PD is a strong
function of E, and consequently of the voltage of the dielectric field for a
fixed frequency. By increasing or decreasing the field voltage drying can be
accelerated or decelerated, and consequently optimal drying conditions can
be maintained. Naturally, the increase of voltage cannot be unlimited
because the electric field will break down above an E value and arcing will
occur. This phenomenon has been extensively reviewed in Biryukov (1961)
and Torgovnikov (1993).

Equation (1) also demonstrates the strong relationship between ¢’ and PD.
As the former is a measure of how much electric filed is converted to heat in
the material, its relation to various woods attributes, such as, density, moisture
content, temperature and direction are documented in the literature
(Torgovnikov 1993). The former three have been shown experimentally to
have a positive effect on €¢”, whereas no significant effect has been found for
direction. The above relationships can explain why the voltage has to increase
as wood dries (Avramidis et al. 1996; Avramidis and Zwick 1996, 1997).

Although there is clear knowledge regarding the effect of wood macro-
attributes such as those previously mentioned on ¢”, there is very little
respective knowledge regarding the effect of wood chemical composition on
the same factor. Norimoto (1976) and Norimoto et al. (1978) have investigated
the dielectric properties of some wood chemical constituents as a function of
frequency and temperature, but no attempt was made to correlate their per-
cent content in the cell-wall composition to the gross wood €’ values.
Knowledge of the effect of wood chemical constituents in combination with
the macro-physical properties of wood could exclude the wood species vari-
able, and thus allow for a more global modeling of ¢’ behavior.

While past research has produced useful ¢’ data, unfortunately, they have
originated from assorted species, under different thermo-physical conditions
and variable frequencies and thus, it has been difficult to employ this data in
drying modeling. Furthermore, there is a noticeable absence in the literature
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of sophisticated models that will describe ¢’ as a function of macro-physical
attributes and chemical composition of wood. This type of model is necessary
in RFV drying heat and mass transfer simulations as described previously by
Koumoutsakos et al. (2003) and in the development of process optimization
software.

Since the development of a ¢’-model based on thermo-physical and
dielectric theories is particularly complicated, this study attempted to develop
a more general model based on artificial neural networks (ANN). Neural
networks represent a technology that is rooted in many disciplines, like neu-
rosciences, mathematics, statistics, physics and engineering, and ANN subse-
quently find applications in such diverse fields as modeling, time series
analysis, pattern recognition and signal processing, due to their ability to learn
from input data with or without a trainer.

The computing power of ANN is achieved through their massively par-
allel distributed structure and their ability to learn and therefore generalize
(Haykin 1999), the latter referring to their ability to produce reasonable
output for given inputs not encountered during the training process. In fact
they are networks of interconnected elements, which were inspired from
studies of biological nervous systems. In other words, ANNs are an attempt
to create systems that work in a similar way to the human brain. The brain
consists of tens of billions of neurons tightly interconnected. Their aim is to
produce an output pattern when presented with an input. Specifically, an
ANN is a collection of units that are connected in some pattern to allow
communication between them. These units are called neurons or nodes or
processing elements, and they are simple processors whose computing
ability is typically restricted to a rule for combining input signals and an
activation rule that takes the combined input to calculate the output signal
(Callan 1999). Output signals may be sent to other units along connections
known as weights which excite or inhibit the signal that is being commu-
nicated. More information about ANNs can be found in Avramidis and
Iliadis (2005).

Materials and methods

The wood €¢” and macro-physical data that were used in developing the ANN
model were previously reported by Zhou and Avramidis (1999). In that study,
all-sapwood and all-heartwood western hemlock (7suga heterophylla (Raf.)
Sarg.), and all-heartwood western red cedar (Thuja plicata Donn) specimens
were evaluated in the radial direction (thickness) and at various moisture
contents and temperature levels and were exposed to two levels of electric
field voltage. The ¢” values were calculated indirectly from heating studies at a
13.56 MHz fixed frequency with a laboratory size RFV dryer.

The same wood species/types were also analyzed for chemical composi-
tion as follows: air dried wood samples were ground in a Wiley Mill to pass
a 40-mesh screen and extracted in a Soxhlet apparatus with acetone for 12 h,
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and extractives were determined gravimetrically. Lignin content was deter-
mined using a modified Klason method derived from the TAPPI Standard
method T222 om-98. Briefly, 0.2 g acetone-extracted ground stem sample
was treated with 3 ml 72% H,SO, for 2 h at 20°C with mixing every 10 min.
This mixture was diluted with 112 ml de-ionized water to achieve a final acid
concentration of 4% H,SO, and transferred to a serum bottle. The solution
was then autoclaved at 121°C for 1h and filtered through a medium
coarseness sintered glass filter for the gravimetric determination of acid-
insoluble lignin. Acid soluble lignin was quantified by spectrophotometric
analysis of the filtrate at 205 nm (Tappi Useful Method UM-250). Carbo-
hydrate concentrations in the hydrolysate were determined by HPLC
(Dionex DX-600, Dionex, CA, USA) equipped with an ion exchange PA1l
(Dionex) column, a pulsed amperometric detector with a gold electrode, and
a Spectra AS 3500 autoinjector (Spectra-Physics, CA, USA). Prior to
injection, samples were filtered through 0.45 um HYV filters (Millipore, MA,
USA) and a volume of 20 ul was loaded on the column equilibrated with
250 mM NaOH and eluted with de-ionized water at a flow rate of 1.0 ml/min
followed by a post-column addition of 200 mM NaOH at a flow rate of
0.5 ml/min. Each experiment was run in triplicate.

Once the experimental data (exp) were gathered and tabulated, the
selection of an optimal configuration for the ANN commenced. In order to
develop the most suitable ANN, the Neuralworks Professional II/Plus
(NeuralWare Inc, PA) software integrated environment was employed. Ele-
ven variables were used as inputs, including: the percentage of glucose (GLU),
mannose (MAN), xylose (XYL), galactose (GAL), arabinose (ARA), lignin
(LIG), extractives (EXTR), density, moisture content, voltage, and temper-
ature (Tables 1, 2, 3, 4). Only one variable was used as an output, namely,
dielectric loss factor (¢”) as shown in Fig. 1.

Following the design of the ANN structure, the input data were normalized
in order to avoid problems like saturation that can occur due to the range of
the input data and the nature of the learning function employed. For example,
when a value that is coming into a processing element is beyond its transfer
function range, that element is said to be saturated. The tangent hyperbolic
function used here is mapping into the range —1.0 to 1.0, but it accepts values
only between -3 and +3. Saturation occurs when an element’s summation
value (the sum of the inputs times the weights) exceeds this range. Thus, the
input data were normalized by dividing them properly (by 1,000) so that they
will not exceed the acceptable range.

The equations developed by Zhou and Avramidis (1999) of the form

'=a+pm? + ym + 6T + (mT (1)

were used (m = 0.01 M) to calculate the regression (reg) values for the ¢’ and
are listed in Tables 1, 2 and 3. The coefficients of the independent variables
were obtained by stepwise regression and can be found in Zhou and
Avramidis (1999).
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Table 1 Experimental (exp), calculated regression (reg) and ANN data for Hemlock sapwood

(HS)

Species T M D |4 exp reg reg ANN Aexp- Aexp— Aexp-
°C) (%) (kg/m3) kV) ¢ e 2 € reg (1) reg(2) ANN

HS 25 10 440 08 0.94

HS 25 20 440 0.8 1.89 1.75 296 1.86 0.14 -1.07 0.03

HS 25 30 440 08 263

HS 25 40 440 08 312 302 482 3.18 0.10 -1.70 -0.06

HS 25 50 440 08 354

HS 25 60 440 08 386 395 6.69 398 -0.09 -2.83 -0.12

HS 25 70 440 08 424

HS 25 80 440 08 458 455 855 4.66 0.03 -3.97 -0.08

HS 35 10 440 08 1.11

HS 35 20 440 0.8 1.92 194 247 198 -0.02 -0.55 -0.06

HS 35 30 440 08 285

HS 35 40 440 08 349 334 434 338 0.15 -0.85 0.12

HS 35 50 440 08  4.00

HS 35 60 440 08 448 440 620 431 0.08 -1.72 0.17

HS 35 70 440 08 4.88

HS 35 80 440 08 539 512 807 513 0.27 -2.68 0.26

HS 45 10 440 08 116

HS 45 20 440 08 202 213 199 213 -0.11 0.03 -0.11

HS 45 30 440 08 277

HS 45 40 440 08 359 365 385 3.63 -0.06 -0.26 -0.04

HS 45 50 440 08 414

HS 45 60 440 08 461 484 572 474 -0.23 -1.11 -0.13

HS 45 70 440 08 5.10

HS 45 80 440 08 575 569 758 570 0.06 -1.83 0.05

HS 55 10 440 08 1.39

HS 55 20 440 08 262 232 105 237 0.30 1.57 0.25

HS 55 30 440 08 338

HS 55 40 440 08 405 397 337 4.03 0.08 0.68 0.02

HS 55 50 440 08 470

HS 55 60 440 08 529 528 523 529 0.01 0.06 0.00

HS 55 70 440 08  5.90

HS 55 80 440 08 648 626 710 6.31 0.22 -0.62 0.17

HS 25 10 440 1.1 0.86

HS 25 20 440 1.1 143 144 296 149 -0.01 -1.53 -0.06

HS 25 30 440 1.1 2.13

HS 25 40 440 1.1 269 257 482 270 0.12 -2.13 -0.01

HS 25 50 440 1.1 3.20

HS 25 60 440 1.1 367 351 6.69 3.68 0.16 -3.02 -0.01

HS 25 70 440 1.1 4.13

HS 25 80 440 1.1 452 425 855 449 0.27 -4.03 0.03

HS 35 10 440 1.1 1.05

HS 35 20 440 1.1 1.73 1.60 247 1.67 0.13 -0.74 0.06

HS 35 30 440 1.1 229

HS 35 40 440 1.1 3.00 276 434 2.89 0.24 -1.34 0.11

HS 35 50 440 1.1 340

HS 35 60 440 1.1 407 372 620 393 0.35 -2.13 0.14

HS 35 70 440 1.1 4.46

HS 35 80 440 1.1 486 449 8.07 4.85 0.37 -3.21 0.01

HS 45 10 440 1.1 1.10

HS 45 20 440 1.1 1.76 175 199 1.87 0.01 -0.23 -0.11

HS 45 30 440 1.1 2.49
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Table 1 continued

Species T M D |4 exp reg reg ANN Aexp- Aexp— Aexp-
°C) (%) (kg/m3) kV) ¢ M Qe ¢ reg (1) reg(2) ANN

HS 45 40 440 1.1 328 294 385 310 034 -0.57 0.18

HS 45 50 440 1.1 371

HS 45 60 440 1.1 406 393 572 421 0.13 -1.66 -0.15

HS 45 70 440 1.1 4.77

HS 45 80 440 1.1 531 472 758 525 059 -2.27 0.06

HS 55 10 440 1.1 1.26

HS 55 20 440 1.1 199 191 150 2.05 0.08 0.49 -0.06

HS 55 30 440 1.1 2.79

HS 55 40 440 1.1 352 312 337 334 040 0.15 0.18

HS 55 50 440 1.1 4.07

HS 55 60 440 1.1 442 414 523 454 028 -0.81 -0.12

HS 55 70 440 1.1 5.06

HS 55 80 440 1.1 546 496 710 569 0.50 -1.64 -0.23

Experimental data in “‘italics” are the ones used for ANN training
Results and discussion

Learning or training is the process of adapting or modifying the connection
weights in response to the stimuli being presented at the input buffer and
optionally to the output buffer. A stimulus presented at the output buffer
corresponds to a desired response to a given input. This desired response is
provided by a knowledge ‘“‘teacher”. In such a case the learning is called
“supervised learning”. Though an ANN consists of units that have a very
limited computing capability, when many of these units are connected
together, the complete network is capable of performing a very complicated
task. Typically, the architecture of an ANN consists of the input layer, the
hidden layer and the output layer. The hidden layer processes the data and
may consist of one or more sub-layers depending on the designer’s view
(Fig. 1).

The selection of the proper model for the ANN structure always requires
the performance of several training runs. In the current study, a feed forward
network structure with input, output and hidden layers varying from 1 to 3 was
used (Gaupe 1997). The input layer consisted of eleven neurons that corre-
spond to eleven input variables (Fig. 1), whereas the output layer had only
one neuron representing ¢”. Standard back-propagation algorithm and tangent
hyperbolic function (mapping into the range —1.0 to 1.0) with the extended
delta bar delta (Ext DBD) learning rule (Jacobs 1988; Minai and Wiliams
1990) was employed for the training of the ANN. It should be clarified here
that the Ext DBD is a heuristic technique that has been successful in a number
of application areas, and that it utilizes termed momentum. A term is added to
the standard weight change, which is proportional to the previous weight
change. In this way good general trends are reinforced and oscillations are
damped. The back-propagation algorithm is one of the most popular local
algorithms for adjusting the weights of a multi-layer neural network
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Table 2 Experimental (exp), calculated regression (reg) and ANN data for Hemlock heartwood
(HH)

Species T M D 14 exp reg reg ANN Aexp- Aexp- Aexp-
CC) (%) (kgm’) (kV) ¢ D) @) € ¢ reg (1) reg(2) ANN

HH 25 10 445 08 1.31
HH 25 20 445 08 286 341 293 260 -055 -0.07 0.26
HH 25 30 445 0.8 390
HH 25 40 445 08 408 573 480 489 -1.65 -0.72 -0.81
HH 25 50 445 08 588
HH 35 10 445 08 143 217 152 138 -0.74 -0.09 0.05
HH 35 20 445 08 288
HH 35 30 445 08 406 482 338 388 -0.76 0.68 0.18
HH 35 40 445 08  5.01
HH 35 50 445 08 618 680 525 590 -0.62 0.93 0.28
HH 45 10 445 0.8 1.50

HH 45 20 445 08 300 375 19 280 -0.75 1.04 0.20
HH 45 30 445 08 411
HH 45 40 445 08 518 6.07 383 519 -0.89 1.35 -0.01
HH 45 50 445 08 625
HH 55 10 445 08 1.63 251 055 167 -088 1.08 -0.04

HH 55 20 445 08 319
HH 55 30 445 08 450 516 241 441 -0.66 2.09 0.09
HH 55 40 445 08  5.67
HH 55 50 445 08 681 7.14 427 652 -033 2.54 0.29
HH 25 10 445 1.1 1.11

HH 25 20 445 1.1 193 189 293 1.85 0.04 -1.00 0.08
HH 25 30 445 1.1 256
HH 25 40 445 1.1 325 324 480 317 0.01 -1.55 0.08
HH 25 50 445 1.1 3.84
HH 35 10 445 1.1 118 119 152 114 -0.01 -0.34 0.04

HH 35 20 445 1.1 210
HH 35 30 445 1.1 266 271 338 266 -0.05 -0.72 0.00
HH 35 40 445 1.1 334

HH 35 50 445 1.1 401 401 525 386 0.00 -1.24 0.15
HH 45 10 445 1.1 121
HH 45 20 445 1.1 206 207 196 200 -0.01 0.10 0.06

HH 45 30 445 1.1 279
HH 45 40 445 1.1 345 354 383 345 -0.09 -0.38 0.00
HH 45 50 445 1.1 4.18
HH 55 10 445 1.1 135 131 055 124 0.04 0.80 0.12
HH 55 20 445 1.1 214
HH 55 30 445 1.1 293 295 241 283 -0.02 0.52 0.10
HH 55 40 445 1.1 367
HH 55 50 445 1.1 438 436 427 428 0.02 0.11 0.10

Experimental data in ““italics” are the ones used for ANN training

(Rummelhart et al. 1985). The random number seed was kept constant before
each training round and the learning coefficient ratio was kept at 1.

In this study, one hundred forty-four (144) sets of experimental data, where
the ¢” was measured under different temperature and moisture conditions and
for various types of chemical composition, were used. In order to achieve a
good level of generalization, a sub-set of 72 experimental cases were used in
the training phase whereas the remaining 72 data records were used for
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Table 3 Experimental (exp), calculated regression (reg) and ANN data for cedar heartwood
(CH)

Species T M D |4 exp reg reg ANN Aexp- Aexp— Aexp-
(°C) (%) (kg/m®) (kV) ¢ (1) ()€ ¢ reg (1) reg(2) ANN

CH 25 10 340 08 1.51
CH 25 20 340 08 317 382 285 3.04 -0.65 0.32 0.13
CH 25 30 340 08 442
CH 25 40 340 08 544 642 471 552 098 0.73 -0.08
CH 25 50 340 08 6.37
CH 35 10 340 08 159 239 143 158 -0.80 0.16 0.01
CH 35 20 340 08 317
CH 35 30 340 0.8 453 539 329 459 -086 1.24 -0.06
CH 35 40 340 08 570
CH 35 50 340 08 680 7.60 516 678 -0.80 1.64 0.02
CH 45 10 340 08 1.63
CH 45 20 340 08 337 416 183 324 -0.79 1.49 0.13
CH 45 30 340 08 463
CH 45 40 340 08 596 676 374 6.10 -0.80 222 -0.14
CH 45 50 340 08 725
CH 55 10 340 08 185 273 046 192 088 1.39 -0.07
CH 55 20 340 08 362
CH 55 30 340 08 497 573 232 512 -0.76 2.65 -0.15
CH 55 40 340 08 6.26

CH 55 50 340 08 770 794 419 726 -024 3.51 0.44
CH 25 10 340 1.1 088
CH 25 20 340 1.1 1.74 138 285 1.68 0.36 -1.11 0.06

CH 25 30 340 1.1 244
CH 25 40 340 1.1 3.05 226 471 3.04 0.79 -1.66 0.01
CH 25 50 340 1.1 370
CH 35 10 340 1.1 094 0.85 143 1.06 0.09 -0.49 -0.12
CH 35 20 340 1.1 1.88
CH 35 30 340 1.1 260 192 329 272 0.68 -0.69 -0.12
CH 35 40 340 1.1 333
CH 35 50 340 1.1 403 262 516 419 1.41 -1.13 -0.16
CH 45 10 340 1.1 116
CH 45 20 340 1.1 227 148 188 212 0.79 0.39 0.15
CH 45 30 340 1.1 318
CH 45 40 340 1.1 404 236 374 391 1.68 0.30 0.14
CH 45 50 340 1.1 4.74
CH 55 10 340 1.1 131 095 046 1.38 0.36 0.85 -0.07
CH 55 20 340 1.1 235

CH 55 30 340 1.1 338 202 232 338 1.36 1.06 0.00
CH 55 40 340 1.1 428
CH 55 50 340 1.1 525 272 419 520 2.53 1.06 0.05

Experimental data in ““italics” are the ones used for ANN training

Table 4 The chemical analysis of the three wood types

Species GLU (%) MAN (%) XYL (%) GAL (%) ARA (%) LIG (%) EXTR (%)

HS 49.32 13.56 3.61 1.65 0.9 27.67 0.92
HH 46.6 12.61 4.08 2.38 1.03 29.65 1.42
CH 43.38 8.79 5.37 1.66 0.48 32.24 10.67
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testing. The set of experimental values used for ANN training can be seen in
Tables 1, 2 and 3.

Initially, we trained the ANN using the original 72 data sets and applying
one to three sub-layers in order to determine its most appropriate structure.
The optimal ANN was found to consist of eleven processing elements in the
input layer, three sub-layers in the hidden layer each one consisting of nine
processing elements, and one output layer consisting of one processing ele-
ment. Figure 1 depicts the architecture of the developed optimal ANN.

The optimal configuration was determined based on minimizing the dif-
ference between the ANN predicted values and the actual experimental data.
The initial prototype ANN performed very well in the training phase giving an
R? =0.9989 after 100,000 iterations. Additionally, two ANN instruments, the
root mean square error (RMS error) and the confusion matrix were used to
check its validity. The RMS error adds up the squares of the errors for each
PE in the output layer then divides it by the number of process elements in the
output layer to obtain an average and lastly takes the square root of that
average — hence the name root square. The RMS error of the prototype ANN
during training had a very low value, specifically 0.0170.

The confusion matrix provides an advanced mechanism of measuring the
ANN’s performance during the “learn” and ‘recall” phases. It allows
the correlation of the actual results of the ANN to the desired results in a visual
display (Neuralware 2001). Furthermore, it provides the user with a visual
indication of how well the ANN is performing. The network with the opti-
mal configuration must have the bins (the cells in each matrix) on the diagonal
from the lower left to the upper right. The fact that the confusion matrix has all
of its bins positioned in the main diagonal as in this case, suggests excellent
performance of the ANN. The values of the instruments can be seen in Fig. 2.
After determining the final structure of the optimal ANN the training process
was performed.

Oth Neurnn

9th Neuron 9thNeuron
GLU —— ‘;
‘i'l».. = e
MAN —» W '4 \\\\
2\
XL > e \\
.,
NN
GAL 13 - N
e
N\
AR et 25 _\)r
Input Layer [N(— = ¥ o U 1 1 - N A T
- -  ouput Laye

Hidden Hidlden Hidden
sub-Layet 1 cublayer 2 sub.Layer 3

Fig. 1 Architecture of the optimal ANN used in this study
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1 1

0 0 o ——.

RMS Error 0.0170 Correlation 0.9989 Y o ———
oL _ i
] a—
] —

Desired

Conf. Matrix 1

Fig. 2 Instruments values after training of the ANN

Testing is the process that actually determines the strength of the ANN and
its ability to generalize. The performance of an ANN is critically dependent
on the training data that must be representative of the task to learn (Callan
1999). For this purpose we have chosen randomly 72 actual cases that were not
applied in the training phase. In the testing process we have applied the same
evaluation instruments that we used in the training. The testing process
proved to be very successful giving an R of 0.9945 and RMS error of 0.0382
after a single pass. Furthermore, the confusion matrix demonstrated a very
desirable shape with all of the bins positioned in the main diagonal (Fig. 3).

The input contribution (IC) instrument of the ANN has verified that
galactose plays the most important role in the evaluation of €”, between the
chemicals characterizing the wood type, whereas lignin and glucose are close
second and mannose is ranked as the last one (Fig. 4). The IC is a bar chart
which displays an analysis of weights between the Input layer and other layers.
The height of each bar of the graph readily shows the relative contribution
made by each Input layer processing element (PE), with the tallest bar indi-
cating the highest contributor. This provides a useful method of determining
the key inputs to an application (Neuralware 2001). Normal usage requires the
network to be trained, and then the contribution of each Input PE can be
gauged by performing a test command. By default the IC graph is not active
during Learn and Save Best operations.

Tables 1, 2 and 3 contain the experimental ¢’ values, the calculated ones
from the regression equations (Zhou and Avramidis 1999) and the ones
estimated by the ANN. The ANN was designed and developed in order to
estimate ¢’ under different temperature and moisture conditions and for
various types of chemical compositions. On the other hand the existing

1 1
NN (. . =)
[RMS Error 00382 Correlation 0.9945 Y meemn e
el __m
E I ———
Desired
Conf. Matrix 1

Fig. 3 Evaluation of instruments values after testing of the ANN
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Fig. 4 The input contribution instrument of the importance of various polymers on ¢’

regression analysis efforts (Zhou and Avramidis 1999) were performed
without considering the chemical composition of the wood. Thus we have
performed an integrated linear regression analysis (LRA), using data from all
three wood types (HS, HH and CH) and considering their chemical compo-
sition as well. In this way the performance of the ANN would be comparable
with the one of the pure statistical approach. The independent variables of the
linear regression were T, M, D, V, EXP, LIG, ARA, GAL, XYL, MAN, GLU
and the only dependent variable was ¢”. The LRA has proven that there exists
a line with the following equation describing the case of our 144 data records:

¢ = 12406 +0.026 x T +0.072 x M —3.334 x V
+0.551 x GAL — 0.224 x GLU. )

The linear regression has also proven that galactose plays the most important
role in the evaluation of ¢’ and glucose is also included in the equation
whereas the other chemicals characterizing the wood type are not considered
to be significant. The R” value of the LRA was equal to 0.8685 and the degrees
of freedom were 136. This regression effort is deemed reasonable, but its
performance was obviously much poorer than the one of the ANN which gave
much higher R? values as it was discussed in the previous chapter. Further-
more, the ANN was proven to be adjustable to new data rows and its per-
formance has been confirmed to be of high calibre even when new (first time
seen) data were entered in the testing phase.

Conclusion
The artificial neural network developed in this study has exceptional perfor-
mance and clearly indicates that it is a reliable tool for estimating the

dielectric loss factor values when wood attributes like its chemical composi-
tion are taken into consideration. Its main advantage is the fact that it can
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produce dielectric loss factor estimations without any cost in time or money.
Obviously new data sets at more voltage levels and greater variety of wood
attributes should be produced and used as input to the ANN in order to
improve it further. This project was aimed at proving the potential use of
ANN towards easy estimations of dielectric loss factor, and has succeeded by
conclusively demonstrating their predictive power.

References

Avramidis S, Iliadis L (2005) Wood-water sorption isotherm prediction with artificial neural
networks: a preliminary study. Holzforschung 59(3):336-341

Avramidis S, Zwick RL (1996) Commercial-scale RF/V drying of softwood lumber. Part 2. Drying
characteristics and lumber quality. Forest Prod J 46(6):27-36

Avramidis S, Zwick RL (1997) Commercial-scale RF/V drying of softwood lumber. Part 3. Energy
consumption and economics. Forest Prod J 47(1):48-56

Avramidis S, Zwick RL, Neilson JB (1996) Commercial-scale RF/V drying of softwood lumber.
Part 1. Basic kiln design considerations. Forest Prod J 46(5):44-51

Biryukov VA (1961) Dielectric heating and drying of wood. GLBI Goslesbumizdat, Moskva-
Leningrad

Callan R (1999) The essence of neural networks. Prentice Hall, Englewood Cliffs

Gaupe D (1997) Principles of artificial neural networks. World Scientific. Singapore

Haykin S (1999) Neural networks: a comprehensive foundation. Mcmillan College Publishing
Company, New York

Jacobs RA (1988) Increased rates of convergence through learning rate adaption. Neural Netw
1:295-307

James WL (1975) Dielectric properties of wood and hardboard: variation with temperature, fre-
quency, moisture content and grain orientation. USDA, Forest Service Research Paper, FPL
245

Koumoutsakos A, Avramidis S, Hatzikiriakos S (2001a) Radio frequency vacuum drying. Part 1.
Theoretical model. Drying Technol 19(1):65-84

Koumoutsakos A, Avramidis S, Hatzikiriakos S (2001b) Radio frequency vacuum drying. Part II.
Experimental model evaluation. Drying Technol 19(1):85-98

Koumoutsakos A, Avramidis S, Hatzikiriakos S (2003) Radio frequency vacuum drying. Part III.
Two dimensional model, optimization and validation. Drying Technol 21(8):1399-1410

Minai AA, Wiliams RD (1990) Acceleration of back-propagation through learning rate and
momentum adaption. In: International joint conference on neural networks, vol I, pp 676-679

Neuralware (2001) Getting started. A tutorial for Neuralworks Professional II/PLUS. Carnegie,
PA, USA

Norimoto M (1976) Dielectric properties of wood. Wood Research. No. 59/60:106-152

Norimoto M, Hayashi S, Yamada T (1978) Anisotropy of dielectric constants in coniferous wood.
Holzforschung 32:167-172

Rummelhart DE, Hinton GE, Wiliams RJ (1985) Learning internal representations by error
propagation. Institute for Cognitive Science Report 8506. University of California, San Diego

Siau JF (1995) Wood: influence of moisture on physical properties. Department of Wood Science
and Forest Products, VPI&SU

Skaar C (1948) The dielectrical properties of wood at several radio frequencies. New York State
College of Forestry Technical Publication No. 69

Torgovnikov GI (1993) Dielectric properties of wood and wood-based material. Springer, Berlin
Heidelberg New York

Zhou B, Avramidis S (1999) On the loss factor of two B.C. softwoods. Wood Sci Technol
33(4):299-310

@ Springer



	Wood dielectric loss factor prediction with artificial neural networks
	Abstract
	Introduction
	Materials and methods
	Results and discussion
	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


