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Abstract X-ray diffraction is a well-established method for the determination
of the mean microfibril angle (MFA). When the sample is a slice of wood
variations in the fibre orientation, the shape of the cells, and the measurement
geometry affect the intensity curve. A general form for diffraction conditions in
terms of angles describing the fibre orientation and the shape of the cell was
derived. Intensity curves were calculated by using Monte Carlo method and
compared with experimental ones. Both peak fitting and variance methods were
used for determining the mean MFA from the intensity curves. Norway spruce
was used as an example. Results indicate that deviations in the fibre orientation,
the spiral grain, do not affect the mean MFA considerably when using the
symmetrical transmission geometry. When using the perpendicular transmis-
sion geometry large deviations in spiral grain or tips tend to increase the MFA
determined with the variance method and decrease the MFA determined with
the fitting method. The shape of the cell should be considered when using the
reflection 200 and the fitting method. The variance method is insensitive to the
shape of the cell.

Abbreviations

MFA Microfibril angle

XRD X-ray diffraction

PTG Perpendicular transmission geometry

STG Symmetrical transmission geometry

STD Standard deviation
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Introduction

Cell walls of softwood tracheids consist of thin primary cell wall and thick
secondary cell wall, which is composed of several layers. The main constituent
of the cell wall is cellulose, which forms long, partly crystalline, and helically
wound microfibrils. In Norway spruce, the diameter of crystallites is about
3.1 nm and the length is about 30 nm (Andersson et al. 2003). The angle be-
tween the microfibril and the cell axis is called the microfibril angle (MFA). The
orientation of microfibrils in the thick S2 layer of the secondary cell wall has
been argued to be a principal predictor of wood quality, with density behaving
as an auxiliary variable (Cave and Walker 1994). The longitudinal shrinkage
was reported to decrease with diminishing MFA (Harris and Meylan 1965).
MFA has been shown to play an important role in keeping the developing stem
mechanically stable in changing environmental conditions (Booker and Sell
1998; Lichtenegger et al. 1999).

X-ray diffraction (XRD) is a well-established method for determining MFA
(e.g. Cave 1966; 1997a, b). Many other methods, such as polarized light
(Donaldson 1991; Ye et al. 1994), confocal (Batchelor et al. 1997; Verbelen and
Stickens 1995), and electron microscopy (Abe et al. 1991), and soft-rot induced
cavities (Bailey and Vestal 1937; Anagnoste et al. 2000) are also used. Most of
these methods, however, are destructive, tedious, and time consuming and thus
not applicable for large sets of samples.

Regardless of the measurement geometry and the preparation of the sample,
data analysis of XRD measurements is complicated. Determination of MFA is
a special case of a texture measurement, simplified by the assumption of the
fibre symmetry and the structure of wood cells. Cave (1966) presented dif-
fraction conditions for cellulose crystallites for the perpendicular transmission
geometry (PTG). In that paper intensity profiles of the 200 reflection were
calculated for cells with round and square cross sections and the effect of
misalignment of the sample was considered. Here, reflections are indexed
according to Nishiyama et al. (2002), in which the unit cell is monoclinic, P21,
with a=0.7784(8) nm, b=0.8201(8) nm, c=1.0380(10) nm and c=96.5�. In
Cave (1966), the MFA distribution was assumed Gaussian and the T-parameter
method was introduced for determining MFA. T-parameter is affected by the
cross-sectional shape of the cells (Cave 1966) and Yamamoto (1993) attempted
to refine this method by improving the calculation of the mean MFA from the
T-parameter. In order to eliminate the effect of the shape of the cross section of
the cell, Evans (1999) presented a method based on a variance approach for
determining MFA. Prud’homme and Noah (1975) proposed a method for
determining the MFA distribution by using the 200 reflection for cells with a
circular cross section.

Peura et al. (2005) determined the MFA distribution in a single cell wall using
a very small X-ray beam guided through a bordered pit and showed that the
shape of the MFA distribution usually differs from Gaussian for Norway
spruce. Furthermore, the local mean orientation of the cellulose microfibrils in
the cell wall was studied using a small synchrotron beam and PTG and samples
cut perpendicularly to longitudinal axis of the cell (Lichtenegger et al. 1999;
Paris and Müller 2003), but variations in the MFA in different cell wall layers
were not quantified.
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Lotfy et al. (1973) used the symmetrical transmission geometry (STG) and
considered the reflection 004. They developed a numerical method for deter-
mining MFA, which is applicable also for other reflections and different cross-
sectional shapes of the cells. The intensity curve of the reflection 004 is unaf-
fected by the shape of the cross section of the cells. Unfortunately, there are
other reflections close to it complicating the data analysis (Lofty et al. 1973;
Andersson et al. 2000). Paakkari and Serimaa (1984) presented data analysis
based on curve fitting and considered the separation of the contributions of S1,
S2 and S3 layers from the measured intensity curve. Cave (1997a, b) examined
analysis of the reflections 200 and 004 together in order to find the average
MFA distribution. By that means it is possible to determine both the average
shape of the cross section of the cells and MFA (Andersson et al. 2000).

Wood cells are not perfectly parallel to each other in a wood sample as one
usually assumes in order to simplify the determination of MFA. The deviation
of the direction of tracheids from the longitudinal direction in a tree is called the
spiral grain, and it can be found in practically every tree (Kozlowski and
Winget 1963). The spiral grain may change between early and latewood (Wobst
et al. 1994; Sarén et al. 2005b). Therefore, in this work, we investigate the effects
of variations in the fibre and cell wall orientation on the obtained MFA and use
Norway spruce as an example. Variation in the cross-sectional shape was
studied with optical microscopy. For the calculations, we combine findings of
several papers to a single mathematical treatment. With the aid of it, properties
of X-ray set-ups with STG or PTG and their data analysis are discussed.

Theory

According to the elementary diffraction theory the diffraction conditions are
met when

sdiff � sin

k
¼ s ¼ r�hkl, and sj j ¼ 2 sin h

k
¼ 1

dhkl
ð1Þ

where s is the scattering vector, sdiff and sin are the wave vectors of the diffracted
and incident X-ray beams, respectively, 2h is the scattering angle, k is the
wavelength, rhkl

*is the reciprocal lattice vector, and dhkl is the lattice spacing.
(e.g. Guinier 1994)

The scattering angle for the cellulose reflection 004 is ca. 34.2� (Nishiyama
et al. 2002), when CuKa radiation is used. The normal of the (004) planes is
parallel to the cellulose chains. For CuKa radiation the scattering angle for the
strong reflection 200 is about 22.8�. The (200) planes are parallel to the cellulose
chains. Because a- and b-axes are uniformly distributed about the cell axis
(Lichtenegger et al. 1999), the reciprocal lattice vectors that are not parallel to
the reciprocal lattice vector of the plane (004) form a cone around this direction.
Due to this symmetry, the diffraction conditions can be written

s � r�hkl
sj j � r�hkl
�
�

�
�
¼ cos a; ð2Þ

where a is the space angle between the reciprocal lattice vector of (004) plane
and the reciprocal lattice vector of the plane investigated. Therefore, a=0� and
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a=90� for the reflections 004 and 002, respectively. The aim of the following
calculation is to obtain the intensity curve, I(/), of the reflection hkl as a
function of /, which is the azimuth angle in the detector plane (Fig. 1).

Scattering vector

In PTG the detector plane is perpendicular to the incident beam (Fig. 1). The
angle between the incident and diffracted beam is 2h and / is the azimuth angle
in the detector plane (Fig. 1). In laboratory co-ordinates (e1, e2 and e3) the
incident beam hits the sample at origin from the negative direction of e2. The
direction of the scattering vector s is given by the angles d and /. The angle d is
the angle between the scattering vector and e1, e3-plane, counter clockwise from
the positive axis of e1, and in the case of PTG d=h. The unit vector parallel to
the scattering vector s is given in laboratory co-ordinates by

bs ¼
cos/ 0 sin/
0 1 0

� sin/ 0 cos/

2

4

3

5

0
� sin d
cos d

2

4

3

5 ¼
sin/ cos d
� sin d

cos/ cos d

2

4

3

5 ð3Þ

For PTG the scattering vectors for each reflection form a cone, with an apex
in the origin and an opening angle of 180�)2h.

When STG is used, both the incident and diffracted beam are in e2, e3 -plane
(Fig. 2), and the angle between the incident beam and e2 -axis and the angle
between the diffracted beam and the axis e2 is h. Thus the scattering vector is
parallel to e3-axis (d=0�). The sample is rotated around its normal (e2-axis) and
the diffracted intensity is measured as a function of the rotation angle. How-
ever, from the point of view of the diffraction condition rotation of the sample
around its normal and solving diffraction conditions as a function of / are
analogous. Thus, both STG and PTG can be treated together.

Fig. 1 Perpendicular transmission geometry (PTG). The incident beam and the detector are
perpendicular to the surface of the sample. The diffraction pattern is recorded with a position
sensitive detector. Incident beam is parallel to e2 and the angle between the incident and
diffracted beam is 2h
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Reciprocal lattice vectors

Let one assume that the longitudinal direction of the sample is parallel to the
axis e3 and that the surface of the sample is perpendicular to the axis e2. The
reciprocal lattice vector r00l

* is parallel to the direction of the microfibril and the
c-axis of cellulose unit cell. The angle l is the MFA, which is the angle between
r00l

* and the positive e3-axis (Fig. 3a). The angle c is the azimuth angle of the
normal of the cell wall seen in counter clockwise direction from the positive e3-
axis. The unit vector r̂�00l is given by

r̂�00l ¼
sin l cos c
sin l sin c

cos l

2

4

3

5 ð4Þ

To calculate the intensity profile for samples where not all fibres are parallel,
(e.g. spiral-graining) angles q and x are introduced. The angle q is the angle
between the axis e1 and the longitudinal direction of a cell, in counter clockwise
direction seen from positive axis (Fig. 3b). The angle x is the angle between the
axis e2 and the longitudinal direction of a cell, in counter clockwise direction
seen from positive axis (Fig. 3c). The vector r̂�00l is now given by

Fig. 2 Symmetrical transmission geometry (STG). The X-ray beam and the scintillation
counter are at the angle h with respect to the normal of the surface of the sample. The sample is
rotated about the normal of its surface and the intensity is measured as a function of the
rotation angle

a b c

Fig. 3 The direction of the cellulose chains. This is the same as the direction of the reciprocal
lattice vector r

*
00l of the (004) plane (a). The angle l is the microfibril angle and c is the

azimuth angle of the cell wall. To take into account the fact that not all cells are parallel to the
longitudinal direction (e3), r

*
00l is first rotated by the angle q around e1 (b) and then around e2

by the angle x (c)
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r̂�00l ¼
cosx 0 sinx
0 1 0

� sinx 0 cosx

2

4

3

5 �
1 0 0
0 cosq � sin q
0 sin q cos q

2

4

3

5 �
sin l cos c
sin l sin c
cos l

2

4

3

5

¼
cos c cosx sin lþ sinx cosl cos qþ sin c sin l sin qð Þ

cos q sin c sin l� cos l sin q
cosx cos l cos qþ sin c sin l sin qð Þ � cos c sin l sinx

2

4

3

5

ð5Þ

Diffraction conditions

Combining Eqs. 2, 3, and 5 the diffraction condition is given by

ŝ � �r̂�00l ¼ � sin /� xð Þð cos d sin l cos c� sin d cos q sin l sin c� sin q cos lð Þ
þ cos d cos /� xð Þ sin q sin l sin cþ cosq cos lð ÞÞ ¼ cos a:

ð6Þ

The plus minus sign is added to the reciprocal lattice vector in order to take
into account its possible orientations during rotations. The behaviour of the
azimuth angle / is needed as a function of l for data analysis. It can be solved
from Eq. 6 by manipulating it to the form

A cos#þ B sin# ¼ W cos #� Uð Þ ¼ C; ð7Þ

where the amplitude W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ B2
p

; the phase U = arctan(B/A) + mp, where
m=1 if A>0 and else m=0. Thus position of the intensity maximum as a
function of /–x resulting from cellulose crystallites that are oriented to the
single direction (l, c) as a function of angles q, d, x, and a calculated from Eq. 6
is

/� x ¼ arctan B
A

� �

� arccos Cffiffiffiffiffiffiffiffiffiffi
A2þB2
p
� �

þ mp; where

A ¼ cos d sin q sin l sin cþ cos d cos q cos l
B ¼ cos d sin l cos c

C ¼ � cos aþ sin d cos q sin l sin c� sin d sin q cosl:

ð8Þ

MFA is here considered as a random variable and intensity depends on its
probability density. An analytical expression can be derived considering
transformations of probability densities for the diffracted intensity (Cave 1997a,
b). However, the formulas obtained from Eq. 8 would become too complicated
for practical work. In this paper, the diffracted intensity is calculated using the
Monte Carlo method.

Perpendicular transmission geometry

In the PTG the angle between the scattering vector and the surface of the
sample is d = h, where 2h is the scattering angle (Fig. 1). The sample is as-
sumed to be perfectly oriented and to have cells with rectangular cross sections.
The longitudinal direction of the cells is parallel to the axis e3, and the angles q
and x are 0�. The shape of the cross section of the cell is taken into account in
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the angle c. For cells with rectangular cross sections c=0�, ±90�, or 180�. For
the cell walls that are perpendicular to the incident beam (c=0�, or 180�), Eq. 6
simplifies

cos l cosu� sin l sinu ¼ � cos a= cos h: ð9Þ

It is straightforward to verify that solutions for the reflection 200 are /
=l±90�, for c=0� and /=-l±90� for c=180�. For other cell walls c=±90�

cos/ ¼ � sin l sin h� cos a
cos l cos h

: ð10Þ

This equation is analogous to Eq. 10-3 presented in Klug and Alexander
(1974). For the reflection 200 solutions are more complicated; the diffracted
intensity is concentrated near the angles /=±90�.

For the reflection 004 the only solution of Eq. 10 is l=h, when c=)90� and
l=-h, when c=90�. For Eq. 9, there are no solutions for the 004 reflection,
because –1<coslcos/±sinlsin/<1 and cosa/cosh >1. Therefore, for an ideal
cell the diffracted intensity has no dependence on MFA.

Lichtenegger et al. (1999) suggested a novel diffraction experiment for
determination of MFA. In this set-up, a thin cross section of wood is placed
perpendicularly to a very narrow incident beam in such way that the longitu-
dinal direction of the cells is parallel to the incident beam. This method is
interesting since it may allow one to determine the MFA for S3 and S1 layers.
For this geometry parameters of Eq. 6 are c = x=0� and a = q =90� (Paris
and Müller 2003).

Symmetrical transmission geometry

In STG the scattering vector is parallel to the surface of the sample (Fig. 2) and
d=0�. The longitudinal direction of the cells is assumed to be parallel to the axis
e3, therefore angles q and x are 0�. Equation 6 simplifies now to

cos l cos/þ sin l sin/ cos c ¼ cos a: ð11Þ

Let the cross sections of the cells be rectangular. It is straightforward to verify
that the solutions for the reflection 200 are the same as for PTG; / =l±90�,
for c=0� and /=l±90� for c=180�. For cell walls c=90� and c=)90�
solutions are /=)90� and /=)90�, respectively.

For the 004 reflection the solutions for the cell walls c=0�and c=180� are /
=l and /=-l, respectively. For all other cell walls, there is only one solution,
l=0�. This means that the intensity as a function of / is independent of the
shape of the cross section of the cells.

When the cross section of the cells is round, one should note that the shape of
the intensity curve is the same for STG and PTG, when the 200 reflection is
used. The diffraction condition for the 004 reflection is met when cellulose
chains are parallel to the scattering vector. This is the case for STG, when
cellulose chains are running in e1, e3-plane. In PTG no single direction of
cellulose chains can be linked directly to the diffracted intensity.
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Experimental

Variations in the cell wall orientation were estimated experimentally using
microscopy, XRD and laser light scattering (Sarén et al. 2005a, b) and their
effects on the diffracted intensity were studied. Norway spruce (Picea abies [L]
Karst.) samples from Ruotsinkylä (lat. 60.21 N, long. 24.59 E), Finland, were
used. The same samples were used also in previous papers (Sarén et al. 2001,
2004). The clear wood samples were prepared from stem 1 at the second and
20th and from stem 2 at the fifth and 20th annual ring at breast height (1.3 m).
One compression wood sample was also prepared at the 25th annual ring from
stem 3.

For X-ray measurements with STG samples of radial thickness of 1 mm were
cut along the tangential direction from one earlywood zone. Measurements
were performed with CuKa1 radiation, by rotating the sample, and measuring
the intensity using a scintillation detector (Andersson et al. 2000; Sarén et al.
2001).

For PTG cylindrical samples of 1 mm diameter and 10 mm in longitudinal
direction of wood were prepared. These samples were measured with Bruker
AXS D8 discover-set-up (Bruker AXS, Karlsruhe, Germany). A sample was
attached to a holder capable of rotating the sample around its longitudinal axis.
The diffraction patterns were recorded using an area detector (Hi-Star).

For microscopy several thin sections 16 lm in thickness and 1 cm2 in area
were made from parallel samples by using cryomicrotome ()16�C). Thin sec-
tions were stained with safranine and 20 grey scale images were taken using a
digital camera attached to a microscope (Sarén et al. 2001). The resolution of
the camera was 1,600·1,200 pixels and the size of the pixel was 0.18 lm. The
cell wall was isolated using image processing software (Matlab, The Math-
Works, Inc., MA, USA).

Results and discussion

Both the shape of the cells and the orientation of the cells with respect to the
surfaces of the sample may affect the MFA determination from a piece of wood
using XRD. We first demonstrate these effects with experiments, then estimate
the extent of variations of the shape and orientation of the cells in our Norway
spruce samples, and finally show their effects on the MFA determined by curve
fitting (Paakkari and Serimaa 1984; Sarén et al. 2001, 2004) and the variance
approach (Evans 1999) using calculations.

Experimental intensity curves for the reflections 200 and 004 are shown in
Fig. 4 for samples with round and rectangular cell cross sections measured with
PTG and STG. Fig. 4c, d shows that for cells with round cross sections the
intensities for both reflections measured with STG and PTG agree well. This is
attributed to the round cells with plenty of crystallites fulfilling the diffraction
conditions in both measurement geometries. This sample is from the second
annual ring (Sarén et al. 2001) and its mean MFA is 22.2�. Using the variance
method (Evans 1999, Eq. 35) MFA of 25.7� is obtained. This might be due to
the asymmetry and broadness of the MFA distribution. Furthermore, the
calibration of the variance method may not be optimal for these samples.
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The sample with the rectangular cell cross section is from the 20th annual
ring of stem 1 and its mean MFA is small, only 7.0� (Sarén et al. 2001). The
intensity profile for the 200 reflection (Fig 4a) is narrower in the case of PTG
than STG. In PTG the intensity arising from cell walls with c=±90� is con-
centrated close to /=0�, and therefore the intensity profile is narrower than
that obtained with STG. This has been taken into account in fitting by adding
an extra peak at /=0�. This peak was then omitted when calculating the mean
MFA (Sarén et al. 2004). In the variance method, contributions of all cell wall
layers are in principle taken into account, and the effect of the extra peak on
MFA is only a few degrees. We estimate that for this sample this decrease in
MFA would be from 10.2� to 7.1�.

The intensity of the 004 reflection of the sample from the 20th year-ring
obtained with PTG is very small compared to that obtained with STG (Fig. 4b,
at 60�</<120�). This is attributed to the fact that tracheids in this sample are
almost parallel to each other. There are very few crystallites with lattice planes
(004) fulfilling the diffraction conditions (c.f. Eq. 10, when a=0�). Thus the
intensity curve does not give the MFA distribution in cell walls parallel to the
surface of the sample. The other peaks in the intensity curve are attributed to
reflections near 004 (Andersson et al. 2000).

As another demonstration we determined intensity profiles for the reflection
200 of a cylindrical sample using PTG while rotating the sample around its
longitudinal axis. In Fig. 5a, the cell cross sections are rectangular. The rotation
of the sample does not change the intensity curve remarkably. This is attributed
to the fact that in PTG are always contributions from every cell wall and the
mean MFA is small.
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Fig. 4 Intensity profiles for the reflection 200 (a, c) and 004 (b, d) for samples from the stem 1,
the 20th (a, b) and 2nd (c, d) annual rings. Solid line and dots indicate STG and PTG,
respectively
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In Fig. 5b, the cells are round and the intensity curve depends strongly on the
orientation of the sample. There are remarkable differences in intensity curves
obtained when the radial (c=0�) or tangential (c=90�) cell walls are parallel to
the incident beam. This is attributed to the bordered pits in the radial cell walls,
which may increase the mean MFA (e.g. Sarén et al. 2004). Furthermore, the
preferred orientation of the cell walls, and thereby cellulose crystallites, with
respect to tangential and radial directions (Fig. 6a) can be seen when the sample
is rotated 45�. There is no clear peak at /=0� at this angle. This is in agreement
with experimental data reported by Lichtenegger et al. (2001).

In order to estimate the variation in the cross-sectional shape of the cells thin
sections of the samples were investigated with optical microscopy (Sarén et al.
2004). The directions of the cell walls with respect to the tangential direction of
the samples were measured and are shown in Fig. 6. These curves represent
probability density functions for c. In the sapwood the cross-sectional shape of
the cells is almost rectangular (Sarén et al. 2004). In tangential direction the
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Fig. 5 Intensity curves for the reflection 200 of longitudinally cut, cylindrical samples from the
stem 1 with a diameter of 1 mm in both radial and tangential direction. In (a) the sample is
from the 20th and in (b) from the 2nd annual ring. The sample is rotated around longitudinal
direction with a step of 15�. The lowest curves are obtained when radial direction of the sample
is perpendicular to the incident X-ray beam
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Fig. 6 Probability densities of cell wall orientation as a function of c. Measurements are made
with optical microscopy from the cross sections. The tangential direction is c=0�. In (a) (stem
1) and (b) (stem 2) dashed line indicates a sample from the 20th annual ring and in (a) solid line
indicates a sample from the 2nd and in (b) from the 5th annual ring. In (c) the probability
density for compression wood from the 25th annual ring is shown
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orientation of the cell wall is almost Gaussian with standard deviation (STD)
8.7� and 10.3� for stems 1 and 2, respectively. In the radial direction deviations
are much larger. Near the pith variations in the cell wall orientation increase
and in the compression wood no direction is more pronounced than any other.

The orientation of the cells, like spiral grain and tilted tips of the cells varies
in real samples. This cannot be eliminated by sample preparation and may also
affect the determined MFA. The spiral grain has been studied thoroughly (e.g.
Harris 1988). For Norway spruce, Sarén et al. (2005b) found out that fibres are
almost parallel in the radial plane. The variation between the annual rings was
less than about 4� whereas in the tangential plane it was up to 15�. Variations in
tangential plane within an annual ring were also considerable. These values are
estimates for several hundreds of cells.

The following calculations are made for the 200 reflection using Eq. 6 and the
Monte Carlo method. The wavelength is equal to CuKa1 radiation. The angles
c, q and x describing the orientation of cells are considered random variables
with normal distributions. The variance of c corresponds to the cross-sectional
shape of the cell; if it is small the cross-sectional shape is rectangular. When
STD of c has reached a value of 45� the cross-sectional shape of the cells is
practically round. The mean value of c indicates how well the sample is pre-
pared relative to the radial and tangential directions. The angle c is zero if the
sample is cut parallel to these directions and there are no abnormalities in the
sample (e.g. defects during growth). The angle x represents the cell orientation
in the plane parallel to the surface of the sample. The mean value of q is linked
to the spiral grain and its variance is considered to represent local deviations in
spiral grain and tips.

Figure 7 shows calculated intensity curves for a sample having normally
distributed MFA with a mean of 15� and STD 5� for STG and PTG. For both
geometries the pattern for round cells is almost the same. However, in the case
of PTG the intensity maximum around /=±90� is more pronounced than in
the case of STG. This must be carefully considered when determining the mean
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Fig. 7 The effect of cross-sectional shape of the cells. Calculated intensity curves of the
reflection 200 as a function of / when the scattering angle 2h=22.8� for STG (a) and PTG (b).
Calculations were made for normally distributed MFA with a mean value of 15� and STD of
5�. The standard deviation of c was 0� (highest curves), 5�, 10�, 20�, or 45� (lowest curves). The
values 0� and 45� represent cells with perfect rectangular and round cross sections, respectively
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MFA by fitting especially when using PTG. The solved MFA distribution may
not be correct if the fitting is not successful.

Table 1 compares the mean MFA values determined from calculated inten-
sity profiles for PTG and STG using the fitting method and for PTG using the
variance method (Evans 1999). The STD of MFA obtained by fitting is also
given in Table 1. The sample is chosen to be a sapwood sample of Norway
spruce. The cells of the sample are assumed to have rectangular cross sections
and two cell walls are assumed to be parallel to the surface of the sample. The
mean MFA was chosen to be 10� and STD 8�. The MFA is chosen again to be
normally distributed. It is assumed that the MFA distribution represents the

Table 1 The mean MFA values determined from calculated intensity profiles for PTG and
STG using the fitting method and for PTG using the variance method

c[�] q[�] Symmetrical Perpendicular Variance method

Mean STD Mean STD Mean STD Mean STD lvariance

2
0 0 0 10.0 7.8 10.0 8.4 12.4

5
0 0 0 9.9 7.8 9.6 8.3 12.4

10
0 0 0 9.8 8.0 8.5 8.2 12.4

20
0 0 0 9.4 8.1 6.9 7.8 12.5

45
0 0 0 7.2 7.4 6.3 7.5 12.5

0
2 0 0 10.0 7.9 10.0 8.0 12.4

0
5 0 0 9.8 8.1 9.9 8.3 12.4

0
10 0 0 8.9 8.2 8.9 8.2 12.4

0
20 0 0 7.5 8.6 7.4 8.3 12.6

0
45 0 0 7.0 8.8 6.8 8.6 12.7

0
0 2 0 10.2 8.0 10.0 8.0 12.4

0
0 5 0 10.5 8.0 10.3 8.2 12.4

0
0 10 0 10.5 8.1 10.4 8.3 12.6

0
0 20 0 10.9 8.1 11.2 8.8 13.4

0
0 45 0 14.2 9.2 14.2 9.1 19.5

0
0 0 2 10.0 7.9 10.0 8.0 12.4

0
0 0 5 10.5 8.0 9.6 8.4 12.4

0
0 0 10 10.4 8.1 8.8 8.4 13.0

0
0 0 20 10.8 8.2 8.4 9.7 15.7

0
0 0 45 12.0 9.3 8.1 12.2 31.0
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mean MFA distribution of all cells in the sample. This is investigated in the
study of Sarén et al. (2005a), where the diffraction patterns of single fibres and
pieces of wood are compared. The model, that was fitted to the simulated I(/)
assumed rectangular cell cross sections and consisted of a pair of Gaussians
representing MFA distributions in the front and back wall (Sarén et al. 2001).
The results are valid also for larger MFA values. However, then the fitting is
easier (Fig. 7).

When the shape of the cell is almost rectangular and there is no spiral grain
the fitting method gives the correct mean MFA, 10�, both in the cases of PTG
and STG. The variance method gives 12–13� when using Eq. 35, when radd=6�
and k=1/3 (Evans 1999). If the mean value of c is increased, i.e. the cells are
rotated around the axis e3, the mean MFA determined by fitting decreases. This
decrease is larger for PTG than for STG. If the cells cross sections are not
rectangular, i.e. the STD of the angle c increases, the determined mean MFA
decreases almost equally for STG and PTG. Figure 8 demonstrates the effect of
the shape of the cell in the case of SGT and large MFA. Variations in the angle
c do not change MFA determined with the variance method.

The variations of the orientations of the cells in tangential and radial plane
are equal to variations in the angles q and x, respectively for sample cut from
one annual ring in tangential direction. The angle x has a simple relationship
with the diffracted intensity (Eq. 6). Its contribution to the intensity curve as a
function of / can be presented as a convolution of the intensity profile and the
probability density function of angle x. The deviations in x widen the intensity
curve.
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Fig. 8 The effect of the cross-sectional shape of the cells on the intensity curve of reflection
(200) when the STG is used. Curve A presents cells with round, B hexagonal and C rectangular
cross sections. Computations were made for normally distributed MFA with a mean value of
30� and STD of 15�
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The obtained MFA increases as q increases (Table 1). However, for Norway
spruce the effect may be smaller than the accuracy of determination. If the
samples are cut from one annual ring in tangential direction, which is common
for STG experiment, the effect of spiral grain can be neglected (Table 1). For
large values of q the determined MFA becomes clearly too large. According to
Table 1 large deviations in spiral grain or tips (large STDs of q) tend to increase
the MFA obtained using PTG and the variance method and decrease the MFA
obtained using PTG and the fitting method. When using STG and peak fitting
the mean MFA tends to increase. This is attributed to the fitting; if the STD of
MFA is large it is difficult to separate contributions from different cell walls.

Radial walls of Norway spruce contain a considerable amount of bordered
pits, which can also affect the determined MFA values. In Sarén et al. (2004) the
mean MFA values were determined experimentally from both radial and tan-
gential walls of the same wood material using PTG and the fitting method
taking the shape of the cell into account appropriately. The mean MFA
determined from radial walls was roughly 2� larger than those determined from
tangential walls.

Conclusions

In this paper a general form for diffraction conditions was derived and the
effects of the shape of the cell and the spiral grain on the MFA determinations
for Norway spruce using PTG and STG were discussed. The conditions are
valid also for other wood material with small MFA and other crystalline
materials with similar symmetry as wood cells. Monte Carlo method was used
to calculate the intensity profiles. This method is not convenient for data
analysis, but can be used for verification of the validity of data-analysis
methods.

According to the calculations the use of STG is favourable, since the data
analysis is simple and reliable. The most straightforward way for determining
the mean MFA is the use of the 004 reflection since this reflection is affected
neither by the shape of the cell nor the orientation of the cells in the sample.
However, the intensity arising from other reflections contaminates the solved
MFA distribution at larger angles.

Results indicate that small variations in the cell orientation do not affect the
mean MFA considerably for Norway spruce. When using STG and the
reflection 200 the cross-sectional shape of the cells should be taken into account
by using a suitable fitting model. In practice, small deviations from rectangular
cell cross sections may not affect the fitted mean MFA considerably. The fitting
of the extra peak at /=0� may complicate the analysis of data obtained using
PTG but it is well justified according to calculations presented in this paper. For
cells with round cross sections the model presented by Perret and Ruland (1969)
can be used.

The variance method (Evans 1999) requires some experimental coefficients,
which may be species specific. Nevertheless, it may suit well for screening a large
set of samples. By using the peak-fitting method one can determine the shape of
the MFA distribution in addition to the mean MFA. It is, however, more
laborious than the variance method.

458



Acknowledgements Dr. Samuele Ciattini and Prof. Marco Fioravantti are acknowledged for
the possibility to measure the cylindrical samples at Centro Interdipartimentale di Cristal-
lografia Strutturale, University of Florence, Italy.

References

Abe H, Ohtani J, Fukuzawa K (1991) FE-SEM observations on the microfibrillar orientation
in the secondary wall of tracheids. IAWA B 12:431–438

Anagnost SE, Mark RE, Hanna RB (2000) Utilization of soft-rot cavity orientation for the
determination of microfibril angle, Wood. Fib Sci 32:81–87

Andersson S, Serimaa R, Torkkeli M, Paakkari T, Saranpää P, Pesonen E (2000) Microfibril
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