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Abstract Based on different physical assumptions six possible models are
developed or adopted concerning the component of the elastic modulus of a
single microfibril, i.e. the elastic modulus that is parallel to cell axis about which
the microfibril is coiled like a loose or lazy spring. A thorough evaluation
regarding the disparities between the rigorous and simplified models is pre-
sented. The simulation demonstrates that the simplified models differ consid-
erably from the rigorous one especially in the small microfibril angle range. This
would explain the poor estimations of cell wall stiffness at low microfibril angles
as seen in previous modelling studies.

Introduction

Most of previous theoretical studies focused on the cell wall, and there has been
an absence of a thorough study regarding the mechanical properties of single
wood microfibril. The wood cell wall consists of cellulose microfibrils embedded
in a lignin-hemicelluloses matrix with the microfibrils coiled in a helix-like path
within the cell wall (Yamamoto and Kojima 2002). This means that: (1) mi-
crofibrils are crucial to the mechanical properties of the cell wall; (2) a single
microfibril is more flexible where a load is applied parallel to the cell axis than
where the same load is applied parallel to the microfibril itself, in a similar way
as a spring reacts to external forces; (3) an increase in the microfibril angle
would reduce the contribution of the microfibril to the cell wall stiffness and so
lead to a poor wood quality.

Hearle (1963) first attempted to quantify the structural effect of a helical
microfibril on the stiffness of plant cells (Preston 1974). Later Preston (1974)
and his co-workers adopted Hearle’s model to account for the reduction of
wood cell stiffness due to microfibril angle. The first model assumed the
microfibril was an isotropic material whereas Cowdrey and Preston in 1966
proposed a second model for an ‘‘anisotropic homogeneous wall’’ (cited in
Preston 1974). Cave (1968) suggested that
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...the uniform distribution of the crystal planes parallel to the
microfibril axis makes the cellulose appear isotropic in the plane
normal to the microfibril axis and allows the mathematical repre-
sentation of the cellulose to be simplified to an equivalent fibre with
transverse isotropic elastic properties equal to the average in plane
normal to the microfibril axis.

Thus, the cell wall was assumed as a planar mat of transversely isotropic
microfibrils embedded in a homogenous and isotropic matrix, and a cell wall was
divided into a series of elementary slabs with all microfibrils inclined at the same
angle to the cell axis within a slab (Cave 1968). Cave (1968) proposed a formula
to convert the elastic constants of microfibrils to the cell coordinate system,
which may be treated as the third model for the elastic modulus parallel to the
cell axis (Cave 1968, 1969; Cave and Walker 1994). Later, Yamamoto and
Kojima (2002) introduced the fourth model for their study concerning single cell
shrinkage, which is mathematically a further simplification of Cave’s model.

Cave’s material model of microfibrils and his estimation of cell wall stiffness
have been frequently quoted (Cave 1976, 1978; Cave and Walker 1994; Astley
et al. 1998). However, the predicted cell wall stiffness arising from Cave’s
microfibril elasticity model showed a considerable disparity with his experi-
mental results at lower microfibril angles (Fig. 1). Comparing the experimental

Fig. 1 The predictions and measurements of cell wall stiffness vs. mean microfibril angle (after
Cave 1968). Note: —o— represents the theoretical curve; • represents the experimental data
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curve (Fig. 2) with Cave’s theoretical curve (Fig. 1), one can see the experi-
mental curve behaved completely different from the theoretical curve: the
experimental curve is concave in form whereas the theoretical prediction is
sigmoidal. Similar problems existed when applying those previous models to the
estimation of cell wall stiffness in other tree species and in other plants (Hearle
1963; Navi 1998). These disagreements at low microfibril angles necessitate a
thorough investigation on the mechanical models for the modulus component
parallel to the cell axis in the microfibril compliance and stiffness matrices as
well as the errors arising from the simplified models. This paper aims to
examine the basis for calculation of the elastic modulus parallel to the cell axis
in single microfibril to provide a solid base for succeeding studies of cell wall
stiffness.

Features of a single microfibril

Microfibrils are known to be pure crystalline cellulose I consisting of two dis-
tinct forms of molecular packing, i.e. cellulose Ia (triclinic) and cellulose Ib
(monoclinic). Wada et al. (1994) reported that cellulose Ib was a major sub-
allomorph of wood cellulose, while a test using carbon-13 nuclear magnetic
resonance showed that cellulose Ia and Ib were present in almost equal parts in
Pinus radiata (the fraction of Ia was 0.51) (Newman 1999). Brown (1999) re-
ported that ‘‘Usually these two sub-allomorphs coexist together within a given
microfibril’’. However, the precise manner in which Ib and Ia are distributed in
wood microfibril is still not well-known.

The cellulose microfibrils have been assumed transverse isotropy in the early
studies (Cave 1968, 1969, 1976; Mark 1967; Bodig and Goodman 1973; Preston
1974). Recently, it has been found that the cellulose chains were less tightly-
packed on the surface than they were within the microfibril (Kroon-Batenbury

Fig. 2 The experimental relationships between stiffness and mean microfibril angle in S2 layer
of Picea wood cell (after Preston 1974). Note: — represents the experimental curve; +
represents the experimental data
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et al. 1986; Newman 1994, 1998, 1999). This means that a wood microfibril is
actually a composite with a highly ordered core and a surface layer in which the
cellulose chains are only hydrogen-bonded to the interior chains on only one
side (Tashiro and Kobayashi 1991; Reiling and Brickmann 1995). Thus the
elastic constants of a microfibril should be the weighted-average of the con-
stituents over their volume fractions, following the rule of mixtures. Unfortu-
nately, there is not enough direct data allowing one to derive the stiffness matrix
of the cellulose chains lying in the surface layer of the microfibril. Only one of
the elastic constants, i.e. the longitudinal elastic modulus of single microfibril,
was estimated recently using an indirect method (Newman 1998, 1999).
Therefore, this paper uses the microfibril stiffness matrix data from the earlier
literature (Mark 1965, 1967). This should not affect our comments about the
difference observed when comparing models of varying rigour.

The cross-section of microfibrils has been proposed as square, rectangular or
hexagonal in different publications (Preston 1974; Fengel and Wegener 1984;
Sugiyama et al. 1986; Newman 1998). The size of microfibril in Pinus species
has decreased as the resolving power of electron microscopy improved, from a
mean width of 3.5 nm (Heyn 1969) to 2.5 nm (Harada and Goto 1982). Fol-
lowing the descriptions of microfibril geometry, this paper assumes a slim
prismatic microfibril with uniform cross-section and constant spatial angle h
between the microfibril path and the cell axis.

The rigorous model

In modelling, a cell wall can be ‘‘opened’’ into a flat sheet with orthotropic or
transverse isotropic microfibrils embedded in an isotropic matrix. To
apply Hooke’s Law of angle lamina (Jones 1975), a global coordinate system
(x1, x2,x3) is used for the cell and a local coordinate system (l, r, t) for the
microfibril, where (x1,x2,x3) and (l, r, t) stand for longitudinal, radial and
tangential directions in the cell and the microfibril coordinate system, respec-
tively. Microfibril angle is denoted by the angle h between l and x1 (Fig. 3).

Define {�f}
T={�l,�r,�t,crt,ctl,clr} and {rf}

T={rl,rr,rt,srt,stl,slr} as the strain
and stress tensors in the local coordinate system of the microfibril; and
{�c}

T={�1,�2,�3,c23,c31,c12} and {rc}
T={r1,r2,r3,s23,s31,s12} as the strain and

stress tensors in the global coordinate system of the wood cell, respectively. In
these vectors, the subscripts f and c indicate the microfibril and the cell corre-
spondingly. The transformation relationships of strain and stress are:

eff g ¼ R½ � T½ � R½ ��1 ecf g ð1Þ
and

rff g ¼ T½ � rcf g ð2Þ

Fig. 3 Coordinate systems
of the cell and the microfibril
(h is the microfibril angle)
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where [R] is the Reuter matrix, [T] is the transformation matrix, [R])1 is the
inverse of [R], [T]T is the transpose of [T] and

T½ � ¼

c2 s2 0 0 0 2sc
s2 c2 0 0 0 �2sc
0 0 1 0 0 0
0 0 0 c �s 0
0 0 0 s c 0
�sc sc 0 0 0 c2 � s2

2
6666664

3
7777775

c ¼ cos �hð Þ, s ¼ sin �hð Þ ð3Þ

R½ � ¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

2
6666666664

3
7777777775

ð4Þ

Denote [S]=[Sij] and �S½ �(i,j=1,2,...,6) as the compliance matrices of the
microfibril in the local and global coordinate systems, respectively; [C]=[S])1

and �C½ � ¼ �S½ ��1(i,j=1,2,...,6) as the corresponding stiffness matrices. For an
orthotropic material, there are twelve elastic constants (nine independent) in the
symmetric compliance matrix, and these are described as elastic moduli (El, Er,
Et), shear moduli (Grt,Gtl,Glr) and Poisson’s ratios (mtr,mrt,mtl,mlt,mrl,mlr). For an
orthotropic material,

Sij
� �

¼

1=El �mlr=El �mlt=El 0 0 0

�mrl=Er 1=Er �mrt=Er 0 0 0

�mtl=Et �mtr=Et 1=Et 0 0 0

0 0 0 1=Grt 0 0

0 0 0 0 1=Gtl 0

0 0 0 0 0 1=Glr

2
6666666664

3
7777777775

ð5Þ

Note that transverse isotropy is a specific case of orthotropy with
S11=S22,S13=S12,S44=2(S22–S23) and S66=S55 (Jones 1975).

The stress-strain relationships of the microfibril in the local system are

eff g ¼ S½ � rff g ð6Þ

and

rff g ¼ C½ � eff g ð7Þ
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Substituting Eqs. 1 and 2 into 6 and 7, the stress-strain relationships of the
microfibril in the global system are given by

ecf g ¼ R½ � T½ ��1 R½ ��1 S½ � T½ � rcf g ¼ T½ �T S½ � T½ � rcf g ¼ �S½ � rcf g ð8Þ

rcf g ¼ T½ ��1 C½ � R½ � T½ � R½ ��1 ecf g ¼ T½ ��1 C½ � T�1
� �T

ecf g ¼ �C½ � ecf g ð9Þ

Under uniaxial loading on the wood cell, we have the stress tensor

{rc1}={r1, 0, 0, 0, 0, 0}
T. Substituting this condition to Eq. 8 yields

�S½ � rc1f g ¼ r1
�S11; �S12; �S13; 0; 0; �S16

� �T
¼ ec1f g ¼ e1

�S11

�S11; �S12; �S13; 0; 0; �S16
� �T ð10Þ

e1 ¼ �S11r1 ð11Þ

Note that �S½ �and �C½ �are mutually inverse and
P

C1jSj1 ¼ 1: Eq. 11 can also
be obtained by multiplying Eq. 10 by �C½ �on both sides, which gives

�C½ � ec1f g ¼ �C½ � �S½ � rc1f g ¼ rc1 ð12Þ

r1 ¼
e1
�S11

X
C1jSj1 ¼

e1
�S11

ð13Þ

Therefore, the elastic modulus parallel to the cell axis in single microfibril (i.e.
the contribution of single microfibril to the longitudinal stiffness of the cell) can
be rigorously expressed as

Model 1

�Ef hð Þ ¼ �S11ð Þ�1 ¼ S11cos
4hþ 2S12 þ S66ð Þsin2hcos2hþ S22sin

4h
� ��1

¼ cos4 h
El
þ �2mlr

El
þ 1

Glr

� �
sin2 h cos2 hþ sin4 h

Er

h i�1
ð14Þ

where El is the longitudinal elastic modulus, Glr is the longitudinal-radial shear
modulus, Er is the transverse modulus of a single microfibril, mlr is the longi-
tudinal-radial Poisson’s ratio of the microfibril and h is the microfibril angle.

Simplified models based on Hooke’s Law
of angle lamina

A uniaxial loading on the cell wall results in longitudinal, transverse, and
longitudinal-transverse shear strains of microfibril in the global coordinate
system (Eq. 10). Ignoring the transverse and shear strains and forcing the true
strain tensor {�c1} in Eq. 10 to be {�c2}={�1, 0, 0, 0, 0, 0}

T, we have

�C½ � ec2f g ¼ rc2f g
¼ e1 �C11; �C12; �C13; 0; 0; �C16

� �T ð15Þ
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r1 ¼ e1 �C11 ð16Þ
Model 2

�Ef hð Þ � �C11

¼ C11cos
4hþ 2 C12 þ 2C66ð Þsin2h cos2hþ C22sin

4h
ð17Þ

Note that Eq. 17 is the same as the model proposed by Cave (1968, 1969;
Cave and Walker 1994) in terms of mechanics, but the subscripts ‘‘1, 3, 4’’ in
Cave’s publications are denoted by ‘‘2, 1, 6’’ in this study due to the use of a
different coordinate system. When assigning the mean microfibril angle to all
microfibrils and ignoring the effect of the matrix, Eq. 17 can be considered as
the cell wall stiffness, and the curve of the prediction is shaped the same as
Cave’s theoretical curve shown in Fig. 1.

Substituting {�c2}={�1, 0, 0, 0, 0, 0}T into Eq. 1, the global axial strain
{�c2} of the microfibril is transformed to {�f2}=�1{c

2,s2, 0, 0, 0, )2sc}T in the
local coordinate system. Ignoring the transverse and shear strains of the
microfibril in the local coordinate system returns {�f3}=�1{c

2, 0, 0, 0, 0, 0}T and
corresponding stress

rf3f g ¼ C½ � ef3f g ¼ e1 C11c2,C12c2,C13c2,0,0,0
� �T ð18Þ

Substituting Eq. 18 into Eq. 2, we have

Model 3

�Ef hð Þ ¼ C11c4 þ C12c2s2 ð19Þ

Since the ratio C11:C12 is between 60:1 and 355:1 (Mark 1967), Model 3 may
be further simplified to the form:

Model 4

�Ef hð Þ ¼ C11c4 ð20Þ

Simplified models on the basis of isotropic
material assumption

Allowing one turn of a microfibril on a plane would result in a right-angled
triangle. Suppose that l is the length of the microfibril, h is the height of the
corresponding cell portion and c is the circumference of the surface in which the
microfibril lies (Fig. 4).
Thus:

l2 ¼ h2 þ c2 ð21Þ
Differentiating Eq. 21 yields

ldl ¼ hdhþ cdc ð22Þ

369



Note that hdh ¼ hdh h
h ¼ h2 (dh/h) and cdc ¼ cdc c

c ¼ c2 (dc/c). Dividing
Eq. 22 by l2 gives

dl
l
¼ h2

l2
ðdh=hÞ þ c2

l2
ðdc=cÞ ð23Þ

With uniaxial force applied to the cell, the lamella has an axial strain �1=d h/h
and transverse strain dc/c for polygon-shaped cross-sections. From the defini-
tion of Poisson’s ratio, we have m12=)(dc/c)/(dh/h) in the global coordinate
system. In addition, h/l=cosh, c/l=sinh (Fig. 4). Hence the axial strain of
microfibril �l=d l/l can be expressed by

el ¼ e1 cos2 h� m12 sin
2 h

� �
ð24Þ

Denoting the cross-section area normal to the microfibril axis as Al and the
axial elastic modulus of microfibril as El, the force component parallel to the
cell axis is given by:

AfElelcosh ð25Þ
The cross-section of the microfibril perpendicular to the cell axis (Fig. 5) is:

Af=cosh ð26Þ

Dividing Eq. 25 by Eq. 26, the microfibril stress parallel to the cell axis be-
comes

Fig. 5 Illustration of
microfibril cross-section
perpendicular to the cell axis

Fig. 4 Geometrical relation
with a single turn of a
microfibril developed on the
plane (h: microfibril angle,
l: microfibril length in one
turn, c: circumference of the
cell wall in which the
microfibril lies, h: height of
one turn of a microfibril)
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Elelcos
2h ¼ Ele1 cos2 h� m12sin

2h
� �

cos2h ð27Þ

Note that �1 is the microfibril strain in the cell axis direction, assuming no
slippage between the microfibril and the embedding matrix. The microfibril
modulus parallel to the cell axis, as the quotient of the stress over the strain, has
the form

Model 5

�Ef h½ � ¼ El cos2h� m12sin
2h

� �
cos2h ð28Þ

The cell deformation under uniaxial loading causes not only the longitudinal
strain, but also the transverse and shear strain of the microfibril in the local
system. Eq. 28 ignores the local lateral and shear strains of the microfibrils for
two reasons: the transverse and shear moduli are negligible compared with El

(Mark 1965, 1967); and the local lateral and shear stresses offset each other in
the cell axis direction.

Further ignoring the global lateral contraction, a rough estimation of the
microfibril modulus parallel to cell axis is expressed by

Model 6

�Ef h½ � ¼ Elcos
4h ð29Þ

Simulations

The longitudinal elastic modulus of microfibril varies considerably from 56.5 to
246.4 GPa and the elastic to shear moduli ratios range from 6:1 to 1400:1, while
the longitudinal to transverse modulus ratios are on the order of about 10:1
(Mark 1965, 1967). A set of elastic constants of microfibrils quoted from Mark
(1965) by Cave (1969) are listed in Table 1.

The estimated S23 is negligible compared with other constants in the
microfibril compliance matrix (Mark 1965, 1967). Hence, following Cave (1968,

Table 1 Constants of compliance matrix of microfibrils (after Cave 1969)

Longitudinal elastic modulus El=137 GPa Mark (1965)
Transverse elastic modulus Er=15.7 GPa Mark (1965)
Longitudinal-transverse
Poisson’s ratio

mlr=0.1 Mark (1965)

Longitudinal-transverse rigidity Glr=3.8 GPa Mark (1965)
Longitudinal-transverse
Poisson’s ratio (of cell wall)

*m12=0.2 Estimate based
on Cave (1968, 1969)

*The longitudinal-transverse Poisson’s ratio of wood matrix was 0.3 and the longitudinal-
transverse Poisson’s ratio of the microfibrils was 0.1 (Cave 1969), while the volume ratio of the
cellulose-matrix was 50:50 (Cave 1968). Thus the longitudinal-transverse Poisson’s ratio of cell
wall should be the weighted-average of the constituents over their volume fractions, i.e.
m12=0.2.
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1969) by setting S23=0, the microfibril stiffness matrix thus can be computed
from Table 1 as:

C½ � ¼

137:315 1:574 1:574 0 0 0
1:574 15:718 0:018 0 0 0
1:574 0:018 15:718 0 0 0
0 0 0 7:85 0 0
0 0 0 0 3:8 0
0 0 0 0 0 3:8

2
6666664

3
7777775

ð30Þ

Note that the calculated constants of the stiffness matrix in Eq. 30 are slightly
different from Cave’s computation in which C11=137.3, C12 =1.572, C23=C32

=0.012 (Cave 1969). The increase of computing power in the last years has
allowed a more accurate calculation of inverse matrices using mathematical
software.

Summary and discussions

Applying a uniaxial load to the cell wall, Model 1 was directly derived on the
basis of Hooke’s Law of angle lamina from the compliance matrix in the global
(cell) coordinate system. The uniaxial load produces a strain tensor in the
microfibril, which comprises longitudinal tensile, transverse compression and
longitudinal-transverse shear strains in the cell coordinate system. By ignoring
the transverse and longitudinal-transverse shear strains, Model 2 was obtained
from multiplying the simplified strain tensor with the stiffness matrix of the
microfibril in the cell coordinate system. Further neglecting the local microfibril

Fig. 6 Simulation for the illustration of relative model predictions. Model 1 is the rigorous
model and the others are simplified models. The curves for Models 3, 4 and 6 coincide
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lateral and shear strain (i.e. the transverse strain and longitudinal-transverse
shear strains in the microfibril coordinate system) and the stiffness constant C12,
Model 3 and Model 4 were formulated. Model 5 was developed under the
assumption of material isotropy and ignoring the local microfibril lateral and
shear strains. The simplest of these, Model 6 was obtained by additional sim-
plification neglecting the cell lateral contraction from Model 5.

The bias of the frequently used Model 2 arises from ignoring the global
microfibril lateral and shear strains (i.e. the microfibril transverse and longi-
tudinal-transverse shear strains in the cell coordinate system). For example,
where the microfibril angle is 45�, the uniaxial loading {r1, 0, 0, 0, 0, 0}

T on the
wood cell results in a global microfibril strain tensor �1 {1, )0.578, )4.398·10)3,
0, 0, 0.867}T, which can be obtained from Eq. 10 and Table 1. Obviously, the
components two and six in the strain tensor cannot be neglected compared with
component one (i.e. longitudinal strain parallel to the cell axis).

Generally, model calibration allows the model user to justify the accuracy to
an acceptable level, when the prediction shows a similar trend to the experi-
mental curve. Assigning all microfibrils the same angle in S2 layer and ignoring
the contribution of the matrix, the plotting in Fig. 6 may be viewed as a rough
estimation of the cell wall stiffness. Obviously, Model 1 shows a similar concave
trend to the experimental results shown in Fig. 1 and the experimental curve
shown in Fig. 2, whereas the simplified models present sigmoidal shapes. This
means the errors arising from the simplified models cannot be eliminated using
calibration techniques. Hence, this paper first recommends the rigorous model
for succeeding studies concerning the prediction of cell wall stiffness.
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