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Abstract. The subject of this paper is the Independent Set problem for bounded
node degree graphs. It is shown that the problem remainsMAX SNP-complete even
when graphs are restricted to being of degree bounded by 3 or to being 3-regular.
Some related problems are also shown to beMAX SNP-complete at the lowest
possible degree bounds. We next study a better polynomial time approximation of the
problem for degree 3 graphs. The performance ratio is improved from the previous
best of 5

4 to arbitrarily close to6
5 for degree 3 graphs and to76 for cubic graphs.

When combined with existing techniques this result also leads to approximation
ratios,(B + 3)/5+ ε for the independent set problem and 2− 5/(B + 3) + ε for
the vertex cover problem on graphs of degreeB, improving previous bounds for
relatively small oddB.

1. Introduction

By virtue of recent remarkable developments in the theory of the polynomial time approx-
imability it is now possible to classify manyNP-hard optimization problemsqualitatively
by their approximation properties. The classMAX SNP, a subclass ofNP optimiza-
tion problems consisting solely of constant factor approximable problems, was intro-
duced by Papadimitriou and Yannakakis, and shown to contain many natural complete

∗ A preliminary version was presented at the 4th Workshop on Algorithms and Data Structures (Canada,
August 1995).
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problems [16]. Arora et al. then established the inapproximability ofMAX SNP-hard
problems by proving that none of them can have a polynomial time approximation
scheme (PTAS) unlessP = NP [1]. As a result a morequantitativeclassification of hard
problems according to their approximability has become a research issue of even greater
interest.

The main problem we treat in this paper is a well-studied one: thebounded degree
Independent Set problem. An independent set in a graph is a set of nodes in which no two
of them are adjacent, and in the independent set problem such a node set of maximum
cardinality is sought. The general Independent Set problem (denoted MAX IS), being
notorious for its apparent intractability, has been a source of many nontrivial lower bound
results. When its approximability is concerned in particular (i.e., the approximation ratio
which can be guaranteed in polynomial time), even the best known heuristic performs
only slightly better than trivial (approx. ratio ofO(n/log2 n) [5]), and a recent result
explains this phenomenon by providing a strong lower bound ofnε for anyε > 0, under a
reasonable complexity theoretic assumption [11]. On the other hand the bounded degree
Independent Set problem (denoted MAX IS-B when the maximum node degree of graphs
is bounded above byB) has an interesting history of its own. It is one of the originalMAX
SNP-complete problems given in [16], and its approximation ratio has been continuously
improved over the years by a number of new techniques and analysis. The first nontrivial
performance ratio ofB appeared implicitly in Lov´asz’s algorithmic proof [14] of Brooks’s
coloring theorem [6]. Hochbaum developed a heuristic with a ratioB/2 [12], which
applies to the case ofweightedgraphs as well, using this coloring technique coupled
with a method of Nemhauser and Trotter [15]. Halld´orsson and Radhakrishnan recently
showed that the greedy heuristic actually delivers a better ratio,(B + 2)/3 [9]. The
best results known today are summarized as follows. Berman and F¨urer designed new
heuristics of which performance ratios are arbitrarily close to(B + 3)/5 for evenB
and(B + 3.25)/5 for odd B [4]. Halldórsson and Radhakrishnan then obtained soon
afterward, via subgraph removal techniques, asymptotically better ratios,B/6+ o(1)
andO(B/log logB) [8].

In this paper we pay special attention to MAX IS-3. MAX IS-B isNP-complete even
when instance graphs are restricted to being cubic and planar [7]. It is also known that
MAX IS (unbounded degree) admits a PTAS when graphs are planar [2]. In Section 2
we show, however, that MAX IS-3 and MAX IS restricted to cubic graphs (i.e., 3-regular
graphs) are bothMAX SNP-complete. As by-products a few other problems (such as
MAX 3-SET PACKING-2 and MAX TRIANGLE PACKING-4) are shown to remain
MAX SNP-complete at the lowest possible degree bounds.

We next study a better approximation of MAX IS-3 in Sections 3–5. In Section 3
our approximation algorithm is presented, and its performance ratios for degree 3 graphs
and cubic graphs are derived in Section 4. The analysis proceeds centered around eight
inequalities and equations, relating the sizes of various node subsets of a given graph,
and their proofs are collectively given in Section 5. The previous best ratio for MAX
IS-3 is 5

4 [4], and we improve it to arbitrarily close to65 for degree 3 graphs and to76 for
cubic graphs. The best performance guarantee for MAX IS-B is currently achieved by
Berman–F¨urer’s algorithm whenB is relatively small (up to around 613 [8]). The new
ratio for MAX IS-3 provides a further improvement on their ratio for every odd degree
B, matching their performance guarantee formula for evenB. It is worth pointing out
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that with the method of Nemhauser and Trotter this result also leads to an approximation
factor of 2− 5/(B+ 3)+ ε for the Minimum Vertex Cover problem with degree bound
of B, improving previous bounds again for smallB.

The heart of our algorithm is a type of local search which, taking advantage of
degree boundedness, searches through better solutions in far distance. To accelerate its
performance even further, however, some general reduction methods and other tricks
are invented and incorporated. While it is our main concern to push the relative error
ratio attainable in polynomial time as far down as possible, contributions of the current
paper include demonstrating that the interplay of these techniques leads to a nontrivial
improvement in the quality of approximate solutions, especially in the domain of low
degree graphs (the related work of Halld´orsson and Yoshihara [10] also indicates that
some of our techniques are effective in improving the performance of simple greedy type
heuristics for MAX IS-3).

2. MAX SNP-Completeness at the Lowest Degree Bounds

In this section we show that MAX IS remainsMAX SNP-complete even for cubic graphs.
MAX 3SAT-B is a restriction of MAX 3SAT such that in any instance the number of
occurrences of any variable is bounded byB. We L-reduceMAX 3SAT-B to MAX
IS-3 using the “ring of trees” construction of Kann [13]. TheL-reduction [16] of an
optimization problem51 to another optimization problem52 is a pair of polynomial
time functions( f, g) such that

1. for every instancex of 51, f (x) is an instance of52 such that opt( f (x)) ≤
α opt(x) for some positive constantα, and

2. for every feasible solutions of f (x), g(s) is a feasible solution ofx such that
|opt(x)− c1(g(s))| ≤ β|opt( f (x))− c2(s)| for some positive constantβ,

where opt(x) is the optimum cost of an instancex, andci is the cost function of feasible
solutions of5i for i = 1,2.

Theorem 1. MAX IS-3 is MAX SNP-complete.

Proof (Sketch). Suppose a variableu occursd times in a given 3SAT-B instance. Let
K be a large enough power of two (it suffices to takeK = 2blog2((3/2)B+1)c). ConstructK
identical cycles of length 2d (called rings) and sequentially index the nodes of each cycle
from 1 to 2d. Also construct 2d complete binary trees withK leaves each. Join these
rings and trees by overlapping, in the identical fashion, leaves of each tree with nodes of
the same index from each ring. Label the roots of these trees asui andūi , i = 1, . . . ,d,
alternatively in the order of their indices. Construct a ring of trees this way for every
variable.

Each clausec is represented by a clique of size|c|. Suppose thei th occurrence of
a variableu is in a clausec. Connectūi or ui , depending on whetheru appears positive
or not, to the corresponding node in thec-clique. This way clause cliques and rings of
trees are connected together. Note that the degree of every node is bounded by 3.

Let A be the (disjoint) union of rings of trees corresponding to all variables. An
independent set is said to beconsistentif it includes all ui ’s and none of̄ui ’s, or vice
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versa, for every variableu. For a MAX IS-3 instance thus constructed it can be shown
that

1. an independent set maximum inA is consistent, and
2. an independent set maximum inA is larger than an independent set not maximum

in A.

We deduce that an optimal solution for MAX IS-3 consists of a maximum inde-
pendent set inA plus a collection of nodes, one each from a clique corresponding to
a satisfied clause in an optimal solution for MAX 3SAT-B. It follows that an optimal
value is scaled up only by some constant factor because the size ofA can be bounded
by K and

∑
d ≤ 3 · (number of clauses) and at least half of the clauses can be always

satisfied.
Secondly, from any MAX IS-3 solution we can find a consistent solution of no

smaller size, and hence, a solution for MAX 3SAT-B. The value of a solution thus
obtained is no further from the optimum than the original one for MAX IS-3.

A graph is calledbranchyif it has no node of degree less than 2 and if any two nodes
of degree 2 are not adjacent in it. The branchy reduction is one of the reduction methods
used in our algorithm (see Section 3.1), and for its effect Lemma 4 asserts that it reduces
an arbitrary graph to a branchy one without any loss of approximation quality.

Theorem 2. MAX IS is MAX SNP-complete for cubic graphs.

Proof. Apply first the branchy reduction to a degree 3 graph. We reduce MAX IS for
branchy degree 3 graphs to MAX IS for cubic graphs by anL-reduction( f, g). Given a
branchy degree 3 graphG with a setV2 of degree 2 nodes and a setV3 of degree 3 nodes,
f does the following local replacement of every degree 2 node inV2. Let u be a degree
2 node with degree 3 nodesv andw adjacent to it. Replaceu by a graphHu with the
node set{u1,u′1,u2,u′2}, where any two of these four nodes are adjacent except for the
pair ofu2 andu′2. ConnectHu to the rest ofG by two edges, one betweenu2 andv, and
the other betweenu′2 andw. It is easily seen that every node ofHu now has its degree 3,
and thus,f (G) is indeed a cubic graph.

Let I2 be an independent set inf (G). Then there exists an independent setI ′2 of no
smaller size inf (G) such that for each subgraphHu, introduced byf corresponding to
u ∈ V2, either (i){u2,u′2} ⊆ I ′2 or (ii) {u2,u′2} ∩ I ′2 = ∅ and{u1,u′1} ∩ I ′2 6= ∅. From
such an independent setI ′2 in f (G), g constructs an independent setI1 in G such that
(i) I1 ∩ V3 = I ′2 ∩ V3 and (ii) u ∈ I1 ∩ V2 iff {u2,u′2} ⊆ I ′2 for everyu corresponding
to Hu. Thus we have|g(S)| ≥ |S| − |V2| for any solutionSof f (G), and, in particular,
opt(G) ≥ opt( f (G)) − |V2|. Conversely, opt( f (G)) ≥ opt(G) + |V2| since, for any
independent setI1 in G, two nodes ofHu if u ∈ I1, or one node of it otherwise, can be
added to independentI1∩V3 in f (G) for eachu in V2. So, opt( f (G)) = opt(G)+|V2|,
and

opt(G)− |g(S)| ≤ opt(G)− |S| + |V2| = opt( f (G))− |S|
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for any solutionSof f (G). Notice also that|V2| ≤ opt(G) sinceV2 is a feasible solution
in G, and thus

opt( f (G)) = opt(G)+ |V2| ≤ 2 opt(G).

There are some otherMAX SNP-complete problems structurally closely related to
MAX IS-3 and MAX IS-B such as:

MAX 3-DIMENSIONAL MATCHING- B. Given three setsW, X,Y and a setM ⊆
W × X × Y such that the number of occurrences of any element ofW, X, or Y in M
is bounded byB, find the largest matching, i.e., a subsetM ′ ⊆ M such that no two
elements ofM ′ agree in any coordinate.

MAX 3-SET PACKING- B. Given a collectionC of subsets of a setS where every
c ∈ C contains at most three elements and every elements ∈ S is contained in at most
B of the subsets inC, find a largest collection of mutually disjoint subsets inC.

MAX TRIANGLE PACKING- B. Given a graph of maximum node degree bounded
by B find a largest collection of mutually (node) disjoint 3-cliques.

UsingMAXSNP-completenessof3-DIMENSIONALMATCHING-3,Kannshowed
that MAX IS-5, MAX 3-SET PACKING-3, and MAX TRIANGLE PACKING-6 are
MAX SNP-complete as well [13]. Reducing MAX IS-3 to these problems instead, we
can improve the degree bounds in these problems to the best possible ones.

Corollary 3. MAX 3-SET PACKING-2 and MAX TRIANGLE PACKING-4 are MAX
SNP-complete.

Definitions and Notation. For a graphG = (V, E) and a node setU ⊆ V , let G(U )
denote the subgraph ofG induced byU . Theneighborhood set N(U ) of U is the set of
nodes (ofV) adjacent to a node ofU , and thedegree d(v) of a nodev ∈ V is |N({v})|.
Either of these can also be given with restriction to an arbitrary node set (instead ofV),
and, forW ⊆ V , NW(U ) anddW(v) denoteN(U )∩W and|NW({v})|, respectively. An
acronymMIS is used for a maximum independent set. Theindependence number, α(G),
of G is the cardinality of an MIS inG.

Our local search method is based on augmentation of an independent setU by a node
setI called animprovement. Here,I is an improvement forU if G(I ) is connected and the
symmetric differenceU⊕ I is a larger independent set. Ans-improvementis the one that
addss and removess−1 fromU , and a solution iss-optimalif it has nos-improvement.
The quality of an approximation algorithm is measured by itsperformance ratio, which
is the worst case ratio of the optimal solution size to the size of an approximate solution
returned by the algorithm from the same instance.
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3. Approximation Algorithm

The mechanism of our algorithmMIS3k for building a large independent set is a local
search in two directions (as in Berman–F¨urer’s algorithm for MAX IS-B [4]). For some
constant parameterk, a solutionA is repeatedly augmented by applying improvements
of sizeO(k logn) for n = |V |, until such an augmentation is no longer possible. When
A becomes locally optimal its complement,G(V − A), is searched as well. WhenG is
a degree 3 graph andA is 1-optimal every node ofG(V − A) has degree of 2 or less,
and, thus, an MISA′ in this space can be easily found. IfA′ is larger thanA, the local
search is started again fromA′.

The resulting solution thus satisfies two properties: (i)A is O(k logn)-optimal and
(ii) α(G(V\A)) ≤ |A|. Properties (i) and (ii) together assure that( 5

4+1/k)|A| ≥ α(G),
and, moreover, this inequality is tight. To improve the performance, we assure that the
output satisfies several additional properties that enable us to prove a stronger inequality.
To be more specificMIS3k has the following additional features (see Figure 1 for a more
formal description):

1. A given graph is preprocessed by approximation preserving reductions before a
local search is initiated (by the firstRepeat-loop). As a result the graph satisfies
such properties that (1) there exists no node of degree< 2, (2) any two nodes
of degree 2 are nonadjacent, (3)α(G) ≤ 1

2|V |, and (4) every small (i.e., of size
≤ k) node setU is not an MIS inG(U ∪ N(U )).

2. An initial solution is constructed with preference given to degree 2 nodes over
degree 3 ones. All the degree 2 nodes are collected unconditionally into an initial
subsetA (possible because of property (2) above). Attached to it is a solution
recursively found fromG(V\(A∪N(A))), and this is the initial solution we start
with.

MIS3k

Input: A degree 3 graphG = (V, E).

Repeat
oldsize← |V |
Do Branchy reduction
Do Nemhauser–Trotter reduction
Do Small Commitment reduction

until |V | = oldsize /* until no more reduction is applicable */
A1← {v ∈ V : d(v) = 2}
A2← an independent set recursively computed inG(V\(A1 ∪ N(A1)))

A← A1 ∪ A2

Repeat
oldsize← |A|
Do Acyclic Complement procedure
Do all possible improvements of size max{3k logn,4k+ 2k logn} to A
Find an optimal solutionA3 in G(V\A)
If A3 is larger thanA then A← A3

until |A| = oldsize

Fig. 1. Algorithm MIS3k.
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3. Every time anO(k logn)-optimal solution is found, it is made sure that its com-
plement is acyclic by replacing it, if necessary, with another of no smaller size
(in the secondRepeat-loop).

Each of these procedures is described in more detail in the following subsections.

3.1. Branchy Reduction

A graphG is calledbranchyif every node has degree 2 or more, and any two nodes of
degree 2 are nonadjacent (the notion of branchy graphs and reduction was used before
in the context of the weighted feedback vertex set problem, see [3]). A branchy graph
G′ can be obtained from an arbitrary graphG as follows:

1. While there is a node of degree 0 or 1, remove it (along with its neighbor, if any)
from G and store it in a setS.

2. While there is a path〈v1, v2, v3, v4〉 where bothv2 andv3 are degree 2 nodes,
removev2 andv3 from G, insert an edge{v1, v4}, and store the path in a setP.

The next lemma states that branchy reduction is a lossless reduction.

Lemma 4. Let G′ = (V ′, E′) be the branchy reduction of G= (V, E), and let S and
P be the sets produced in the process. Then:

1. From any independent set A′ in G′, an independent set of size|A′| + |S| + |P|
in G can be constructed in linear time.

2. There is an MIS A in G such that A∩V ′ is an independent set of size|A|−|S|−|P|
in G′.

Proof. 1. Clearly,A′ is an independent set inG. Let 〈v1, v2, v3, v4〉 be a path found in
Step 2. Sincev1 andv4 are adjacent inG′, at most one of them is contained inA′. Thus,
one node for every path inP, and every node inScan be inductively added toA′ to form
an independent set inG.

2. It can be seen that there is an MISA in G containing all the nodes ofS, plus
exactly one ofv2 andv3 from every path〈v1, v2, v3, v4〉 found in Step 2. Removing all
of such nodes fromA results inA∩ V ′, which is independent inG′.

3.2. Nemhauser-Trotter Reduction

Nemhauser and Trotter studied solutions to a linear program relaxation of the MAX
IS problem in [15], and showed that, for an arbitrary graphG = (V, E), the partition
{V1,V2,V3} of V can be computed, with time complexity of the bipartite matching
problem, such that (i) there is an MIS containing all the nodes ofV1 but none ofV2, (ii)
N(V1) ⊆ V2 (i.e., there is no edge betweenV1 andV3), and (iii) α(G(V3)) ≤ 1

2|V3|.
Hochbaum was the first to use the preprocessing method, based on this theorem, in
approximation of the MAX IS problem [12]: computeV1,V2, andV3 as above from a
given graph, find an approximate solutionSin G(V3), and returnS∪V1 as an approximate
solution forG. In this way an arbitrary graphG is reduced to one (i.e.,G(V3)) in which
the independence number is at most half of the number of nodes.
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3.3. Small Commitment Reduction

This reduction repetitively looks for a substructure of the following kind inG: for some
node setAof size at mostk, A is an MIS inG(A∪N(A)). If found, we commit ourselves to
A, removeA∪N(A) from G, and repeat as long as such a small independent setA (small
commitment) remains inG. The effect of this reduction is again no loss in approximation
quality.

3.4. Acyclic Complement Procedure

Suppose thatI is a 2-optimal independent set in a connected degree 3 graphG = (V, E)
andG is not K4. This procedure finds an independent setI ′ of size no smaller thanI
in polynomial time such that its complement induces an acyclic subgraph. We note that
hereG must be assumed to be a degree 3 graph (unlike the other reduction methods
given earlier).

First a few easy observations. The subgraphG(V\I ) consists of disjoint cycles and
paths only, because its degree is at most 2 (otherwise, a 1-improvement). Also every node
in V\I must be adjacent to some node inI (otherwise, a 1-improvement). Assume that
there exists a cycle inG(V\I ) and letC denote its node set. We describe below how to
reduce the number of cycles inG(V\I ) by one, depending on the nodes inN(C)\C ⊆ I .

Case1. There is a nodev ∈ N(C)\C adjacent to three nodes,a,b, andc, of C. If
{a,b}, {b, c}, {c,a} ∈ E thenG is K4. Otherwise, if, say,{a,b} 6∈ E, then{a,b, v} is a
2-improvement.

Case2. There is a nodev ∈ N(C)\C adjacent to two nodes,a andb, of C (note{a,b}
must be inE). Letc 6= a be another node ofC adjacent tob. Break this cycle by bringing
b into I andv out of I . This will not create a new cycle in the complement because all
the nodes which could form a new component are connected toc andc now has degree
1 in the complement.

Case3. For each nodev ∈ N(C)\C there exists exactly one nodeu in C adjacent to
v. If d(v) = 1, then swapv andu. If d(v) = 2, then the other neighbor ofv must be an
endpoint of a maximal path inG(V\I ) (otherwise, a 2-improvement); swappingv and
u cannot create a new cycle. So assumed(v) = 3 and let the other two neighbors ofv be
w andx. Observe that eitherw or x must be an endpoint of a maximal path inG(V\I )
(otherwise, a 2-improvement), and ifw andx are of different paths, swappingu andv
does not introduce a new cycle. So assume that they are the endpoints of a maximal path
P in G(V\I ). DestroyC by swappingv andu, and this creates a new cycleC′ formed by
P andv. Apply the same procedure toC′, but never swapv andu again by considering
nodes other thanv in C′.

We continue as long as the current condition holds, and this way the procedure pro-
cesses a sequence of cycles. Notice, however, that no cycle can repeat in this sequence
since we always move onto a newly created cycle. So, the procedure must terminate,
upon which the number of cycles in the complement is decreased by one.
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4. Analysis of Performance Ratios

To estimate the quality of approximate solutions produced byMIS3k, we compare the
relative sizes of node subsets defined by our solution and one fixed optimal solution.
Given a graphG = (V, E), let A′ be an independent set found byMIS3k, and letB′ be
any MIS inG. PartitionV into four setsA, B,C, andD such that

• C
def= A′∩B′ (C for the “common” portion of approximate and optimal solutions),

• A
def= A′\C (A for “approximate”) andB

def= B′\C (B for “best”),

• D
def= V\(A∪ B ∪ C), i.e., the remaining portion ofV .

Based on this partition ofV , every node inD will be further classified according to its
neighboring subsets. If a node is of degree 3 (resp. 2) and its neighbors belong to node
setsX,Y, andZ (resp.X andY), we say the node is of type [XY Z] (resp. [XY]), where
X,Y, Z ∈ {A, B,C, D}.

An easy observation tells us that there are possibly 10 node types for degree 2 nodes
and 20 for degree 3 nodes, among which a total of 18 can be valid types for nodes inD.
Moreover,D-nodes of type [AB] do not occur in our graphs as will be explained later,
which leaves us the following 17 types forD-nodes:

degree 2 nodes:types of [AC], [ BC], [CC], and [C D].
degree 3 nodes:types of [AAB], [ AAC], [ AB B], [ ABC], [ AB D], [ ACC],
[ AC D], [ B BC] [ BCC], [ BC D], [CCC], [CC D], and [C DD].

Denote the cardinalities of sets,A, B,C, andD, by respective lower case letters, and set
i = b− a. Also denote the number of degree 2 nodes in setsA, B, andC by a2,b2, and
c2, respectively. The number ofD-nodes of type [XY Z] (resp. [XY]) is denoted by its
lower case counterpart, [xyz] (resp. [xy]). In Section 5 we prove the eight inequalities
and equations listed in Figure 2, each concerning a cardinality relation to be satisfied
by various node sets under our classification scheme. Assume for now that all these
inequalities and equations hold.

Theorem 5.

1. MIS3k approximates MAX IS-3 with a ratio 6
5 + 1/5k in time O(n2+3k log 3).

2. MIS3k approximates MAX IS for cubic graphs with a ratio76 + 1/6k in time
O(n2+3k log 3).

Proof. The time complexity ofMIS3k is dominated by that of its local neighborhood
search. A search space consists of all the connected subgraphs of node set size at most
max{3k logn,4k+ 2k logn}, and, hence, it takesO(n1+3k log 3) time to find a small im-
provement, as one can show that the number of such subgraphs of size at mosts in a
degree 3 graph ofn nodes is smaller thann3s. Since a solution is augmented at mostn
times,MIS3k runs in timeO(n2+3k log 3).
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k+ 1

k
c ≥ 3[bc] + 2[bbc] + [bcd] + [cdd] + [cd] + [bcc] + [cc] − (2[acc] + [aac] + [abc]

+ [acd] + [ac]) (1)
k+ 1

k
c ≥ [bbc] + [bc] + [bcc] + [cc] + 1

2([bcd] + [cdd] + [cd] + [ccd]) (2)

c ≥ i + [ccc] + [acc] + [aac] + [ac] + [cc] + 1
2([cdd] + [ccd] + [acd] + [cd]) (3)

k+ 1

k
a ≥ 3i + a2 + 2[aab] + 2[aac] + [abb] + [abd] + [acc] + [acd] + [abc] + [ac] (4)

d ≥ c+ i (5)

b2 = 3i + a2 + ([aab] + 2[aac] + [acc] + [acd] + [ac])− ([abb] + 2[bbc] + [bcc]

+ [bcd] + [bc]) (6)

3c− c2 = 3[ccc] + 2([acc] + [bcc] + [ccd] + [cc])+ [aac] + [abc] + [bbc]

+ [acd] + [bcd] + [cdd] + [ac] + [bc] + [cd] (7)

a2 + [bc] + [cc] ≥ 1
4(b2 + c2 + [ac] + [cd]) (8)

Fig. 2. List of inequalities relating node set sizes.

1. Sum up inequalities and equations (1)–(8) with respective multiplicative factors
of 7

13,
6
13,

12
13,1,

3
13,

4
13,− 3

13,and 16
13, which yields the inequality

k+ 1

k
(a+ c) ≥ 5 1

13i + 1
13(a2+ c2+ 27[aab] + 6[abb] + 10[abd] + 33[aac]

+ 6[acc] + 10[acd] + 13[cdd] + 6[bbc] + 20[ac]

+ [bc] + 14[cd]).

Since all the variables are of nonnegative value, we have((k + 1)/k)(a + c) ≥ 5 1
13i ,

and hence,

|B′|
|A′| =

b+ c

a+ c
= a+ c+ i

a+ c
≤ 1+ 1

(k/(k+ 1))5 1
13

<
6

5
+ 1

5k
.

2. Setting the number of degree 2 nodes of any type to zero, (1)+ (4)+ (6) yields

k+ 1

k
(a+ c) ≥ 6i + 3[aab] + 3[aac] + [abd] + [acd] + [cdd] ≥ 6i,

and, hence,

|B′|
|A′| =

a+ c+ i

a+ c
≤ 1+ 1

(k/(k+ 1))6
= 7

6
+ 1

6k
.

When combined withMIS3k to handle degree 3 graphs, Berman–F¨urer’s algorithm
for MAX IS- B [4] does better for every oddB, giving the same performance guarantee
formula as the one for evenB.
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Corollary 6. MAX IS-B can be approximated in polynomial time within a ratio arbi-
trarily close to(B+ 3)/5 for all B ≥ 2.

5. Proofs of (1)–(8)

The purpose of the preprocessing and the acyclic complement procedures presented in
Section 3 is to normalize a given graph and the final solution so that they possess some
nice properties.

Lemma 7. The node sets A, B,C, and D satisfy the following properties:

1. C is maximal(i.e., A′ and B′ have a maximum overlap).
2. The subgraph G(B ∪ D) induced by the complement of a solution A′ is acyclic.
3. The set of degree2 nodes is an independent set in G.
4. Every node of A has at least two neighbors in B.
5. There exists no node of type[ AB] in G.

Proof. 1. Clearly this can be assumed since the choice of an MISB ∪ C is up to us.
2. This is a direct consequence of the acyclic complement procedure.
3. This is a direct consequence of the branchy reduction.
4. Suppose there is anA-nodeu with less than two neighbors inB. If no neighbor,

thenB ∪ C ∪ {u} is a larger independent set andB ∪ C is not optimal. Ifu has only
one neighborw in B, then(B\{w})∪ (C ∪ {u}) is an independent set as large asB∪C,
yet it has a larger intersection withA∪ C, contradicting property 1.

5. Letu be a node of type [AB] and letw be its neighbor inB. SincedB∪C(u) = 1,
(B\{w} ∪ {u}) ∪ C remains independent. Note thatw is necessarily of degree 3 due to
property 3, meaning that it cannot become a node of type [AB]. Thus, we can choose
B′ so that there is no degree 2 node of type [AB] in D.

5.1. Proof of (1)

We make use of local accounting here as well as in proving (2) and (4). Denote the
set of D-nodes adjacent toC by D′ (= D ∩ N(C)). In a nutshell we assign potential
to every node inC ∪ D′ so that inequality (1) states that the total potential ofC ∪ D′

cannot be positive. We partitionC ∪ D′ into connected fragments to study each of them
one at a time. We show that a fragment with a positive potential either contains a small
improvement, or ak-commitment, or otherwise we will be able to “factor it out” and
reduce the problem to a smaller one. There are 14 different node types forD′-nodes, and
for the sake of the proof we name them as follows:

• Enforcersare
—solitaires: nodes of type [BC] or [B BC],
—half-solitaires: nodes of type [BC D], [C DD], or [C D], and
—pairs: nodes of type [BCC] or [CC].
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• Absorbers: nodes of type [ACC], [ AAC], [ ABC], [ AC D], or [AC].
• Neutrals: nodes of type [CCC] or [CC D].

Each enforceru is given a weightw(u), which is initially 1, and larger weights result
from reductions that factor out connected fragments (see below). Each nodeu of C∪ D′

is assigned with a potentialp(u) such that

p(u) =


cα − (w(u)− 1)/k
cα (< 0)
−(k+ 1)/k
0

 if u is


an enforcer of type [α],
an absorber of type [α],
aC-node,
a neutral node,

wherecα is the coefficient of a [α] term in inequality (1) forα ∈ {a,b, c}3 ∪ {a,b, c}2.
For a node setU let p(U ) (the potential ofU ) andw(U ) (the weight ofU ) stand for∑

u∈U p(u) and
∑

u∈U w(u), respectively. Now inequality (1) can be rewritten in the
form p(C ∪ D′) ≤ 0.

Consider the subgraphGC of G formed byC, the set of enforcers, and the set
of edges between them (ignoring those edges insideD). Then the set ofC-nodes and
enforcers is partitioned by the connected components ofGC, in which each pair node
plays the role of an “edge” connecting its neighbors inC. In what follows a connected
component is meant to be that ofGC defined this way. For the node setX of such a
component, letXC, XD, and ab(X) denoteX∩C, X∩D (i.e., the set of enforcers inX),
and the number of edges connecting a node ofXC with an absorber, respectively. Then

p(C ∪ D′) is the sum ofpX
def= p(X)− ab(X) over the componentsX of GC. If no pX

is positive we are done. Otherwise, we apply a case analysis toX with positive pX.

LetwX
def= w(XD) andx

def= |XC|. We measure the size ofX bywX. First the case
of a small component, that is, assumewX ≤ k. Certainly XD contains at leastx − 1
pairs. If XD containsx + 1 (or more) pairs, these pairs, together withXC, form ak-
improvement, a contradiction. We get a similar contradiction ifXD containsx pairs and
a (half-)solitaire, orx − 1 pairs and either of: three half-solitaires, one solitaire and one
half-solitaire, two solitaires, or two nonadjacent half-solitaires. IfXD consists of pairs
only and|XD| ≤ x, then pX < 0. So, we need to consider only the cases whenXD

consists ofx − 1 pairs, plus either one solitaire or two half-solitaires adjacent to each
other.

Case1: XD consistsof x − 1 pairs and a solitaire of type[BC] (so, 3− (w − 1)/k in
its coefficient). We removeX and all the adjacent edges from consideration, and at the
same time shift the potentialpX to nodes of type [CCC] or [CC D] that must be adjacent
to XC.

As a technical preliminary, observe that at least two edges go fromXC to nonen-
forcers. If XC = {u} for someu, thenu has three neighbors as a neighbor of a degree
2 node (Property 3), hence two nonenforcer neighbors.Otherwise, the node setXC and
the edge set of pairs form a tree with at least two leaves and each leaf has a nonenforcer
neighbor; in particular, a leaf adjacent to [BC] has three neighbors—one pair, one [BC],
and one nonenforcer.

Notice that currentlypX = 2− wX/k− ab(X), and so ab(X) ≤ 1 sincepX > 0.
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Case1.1: ab(X) = 1. An edge goes fromXC to a [CCC] or [CC D] node, say
u. If u is of type [CCC], then afterX is removed,u appears to be of type [CC], a pair
(this wayu is introduced as a “new pair” in the subsequent analysis). Suppose that after
removal ofX, some setI ⊆ C∪D becomes an improvement. Ifu 6∈ I , thenI itself, and
otherwiseI ∪ X, was an improvement even before the removal. Thus ans-improvement
containingu after the removal translates into an(s+wX)-improvement that is “genuine.”
Therefore, we can keep track of the improvement size correctly even after the removal
if u is given the weight of 1+ wX. We also redefinep(u) from 0 to pX = 1− wX/k.
This way the total potential is preserved, and the potential ofu agrees with the formula
for pairs.

We can handle identically the case whenu is of type [CC D]. This timeu becomes
a half-solitaire after the removal, and the formula for its potential is same as the one for
pairs. In either case we say thatu is promoted(from a neutral to a pair or a half-solitaire).

Case1.2: ab(X) = 0. ThenXC is adjacent to two neutral nodes and both can
be promoted. We do so by assigning potential to themnondeterministically; 1 = 1+
1/k−1/k to one and 1+1/k− (wX +1)/k to the other. Correspondingly, these newly
introduced pairs and/or half-solitaires are given weights of 1 and 1+ wX, respectively.
Here it is meant that if only one of them is later involved in any improvement, then that
one will have its weight= 1+wX in this promotion process while, if both are involved,
it does not matter which one gets which weight.

In addition we note here that in the current casepX could be positive even when
k ≤ wX if wX ≤ 2k. We simply handle this as above promoting two neutral nodes
although this time one of them is given a negative potential.

Case2: XD consists of x− 1 pairs and a solitaire of type[B BC]. This case is similar
to Case 1, only simpler. Now,pX = 1− wX/k− ab(X) and ab(X) = 0 sincepX > 0.
So, at least one edge goes fromX to a nonenforcer which must be a neutral node, and
we can perform a promotion as before.

Case3: XD consists of x− 1 pairs and two half-solitaires adjacent to each other.
This case is very similar to Case 2 (nowpX = 1+ 1/k−wX/k− ab(X)), but with one
additional subcase—when no edge joinsXC with a nonenforcer, i.e., whenXD = N(XC).
Let S be an MIS inX. If |S| > x, thenS⊕ XC is a k-improvement, a contradiction.
If |S| = x, thenXC is an MIS inXC ∪ N(XC). Since|XC| = x ≤ k, such a construct
must have been eliminated by the Small Commitment reduction, again a contradiction.
It should be noted here that this situation could not emerge as a result of performing
some removals; removing a component may change the classification of its neighbors
but not the neighbors themselves.

To prove (1) it remains to handle large components with a positive potential (i.e.,
the casewX > k and pX > 0). For an easier analysis we “remove” half-solitaires first.
Let H be a set of half-solitaires inX, and letI H be an MIS inG(H). Each nodeu of I H

is now given a new potential of 2− (w(u)− 1)/k and treated as a new solitaire. Then,
sincep(u)+ p(v) = (1− (w(u)− 1)/k)+ (1− (w(v)− 1)/k) ≤ 2− (w(u)− 1)/k
for any two adjacent half-solitairesu andv in H , the total potential of new solitaires is
no smaller than that of old half-solitaires, i.e.,p(I H ) ≥ p(H). We may thus take only
this setI H of solitaires into account and ignoreH ; XD is now an independent set.
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RepresentX by a graphGX consisting of the node setXC and the edge setE of
pairs inXD. We show below how to find a small improvement in it. (Note that we here
pay attention only to enforcers, among those nodes adjacent toXC, unlike the case of a
small X.) A node inXC is called asolitaire pointif it is adjacent to a solitaire.

1. Remove all the leaf nodes (i.e., degree 1 nodes) recursively fromGX as long
as they are not solitaire points. This pruning operation does not decrease the potential
of X. Meanwhile, if the total weight of enforcers drops belowk in the process, ak-
improvement is found. To see it letS1 andS2 denote the sets of solitaires of type [B BC]
and those of type [BC] in XD, respectively. An easy calculation shows that

p(X) =
(

k+ 1

k

)
|E| +

(
2k+ 1

k

)
|S1| +

(
3k+ 1

k

)
|S2|

− w(XD)

k
−
(

k+ 1

k

)
|XC|,

and, by the assumptions thatpX > 0 andwX > k,(
k+ 1

k

)
|E| +

(
2k+ 1

k

)
|S1| +

(
3k+ 1

k

)
|S2| > w(XD)

k
+
(

k+ 1

k

)
|XC|

> 1+
(

k+ 1

k

)
|XC|.

From this (and the fact that|E| ≥ |XC| − 1), one can show that|XD| > |XC|, or
otherwise,XD consists of|XC| − 1 pairs and one solitaire of type [BC]. In the latter
case, however,p(X) > 0 only if wX ≤ 2k, and this case was already eliminated (in
Case 1.2). Thus,XD is initially an independent set larger thanXC in G. Each pruning
of a leaf node removes one node each fromXC andXD. So, at any moment during this
pruning processXD provides an improvement of sizew(XD).

Now every leaf node inGX must be a solitaire point. A chain of degree 2 nodes in
GX is calledbare if none of its intermediate nodes is a solitaire point.

2. If a leaf nodev in GX is connected to a maximal (i.e., nonextensible) bare chain
Z of weight≥ 2k, then removev, the solitaire adjacent tov, andZ. Its potentialp′ is
nonpositive for, ifZ is of lengthl and weightw, p′ = 2+l (1+1/k)−w/k−l (1+1/k) =
2− w/k ≤ 0 whenw ≥ 2k. Meanwhile, if the total weight of enforcers drops below
k + 1, then consider the nodeu in the remaining component, contactingZ before the
removal.

Case1:d(u) ≥ 2before the removal of Z. Then eitheru is a solitaire point ord(u) = 3
before the removal ofZ. By the same argument given below in the analysis of 3,X now
has an improvement of weight≤ k after the removal ofZ.

Case2:d(u) = 1before the removal of Z. Thus,X is simply a bare chainZ connecting
two solitaire points (before the removal ofZ). Sincep(X) = 2+ 2+ l (1+ 1/k) −
w/k− (l +1)(1+1/k) = (3k−1−w)/k > 0 it follows thatw(XD) < 3k−1. Hence,
X is an improvement of weight< 3k− 1 before the removal ofZ.

3. Consider a maximal bare chainZ in GX not incident to a leaf node. It must be
connecting a degree 3 node (or a degree 2 solitaire point) and another degree 3 node (or
another degree 2 solitaire point). If the weight ofZ is≥ k+1, then remove it. Its potential
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p(Z) is nonpositive forp(Z) = l (1+1/k)−w/k−(l−1)(1+1/k) = (k+1−w)/k ≤ 0
whenw ≥ k+1. Note also that such a removal might create preconditions for operation 2.

Observe that while operations 1 or 2 never disconnectsGX, operation 3 could.
Suppose it actually breaksGX into two. If both are of weight≥ k + 1, we continue
with the one having a larger potential, which must be positive. Suppose such a removal
introduces a componentY of weight≤ k but with a positive potential. Letu be a node
of Y contactingZ. It can be verified that ifu is a degree 3 node before the removal of
Z, Y must contain either (i) two solitaires, (ii) one solitaire and one cycle, or (iii) two
cycles. Similarly, ifu is a solitaire point,Y must contain either (i) or (ii). However, then
either case leads to an improvement of weight≤ k. So, assuming that there exists no
improvement of weight≤ k, any disconnected component of weight≤ k must have a
nonpositive potential, and it can be safely discarded.

Replace every maximal bare chain by an edge of the corresponding weight inGX.
Then each internal edge (i.e., incident with nonleaves only) has weight≤ k while each
external edge (i.e., incident with a leaf) has weight≤ 2k− 1. Moreover, ifXC contains
no solitaire point, the minimum degree ofGX must be 3.

Lemma 8. In any graph with n nodes and minimum degree3, there is a subgraph F
with at most3 logn nodes such that F contains more edges than nodes.

Proof. Starting at any noder as a root, build a breadth first search (BFS) treeT with
the following modification. We still mark nodes whenever they are visited, but even if a
node is already marked, visit it again. We continue buildingT until some node, sayu,
is visited three times. The (cumulative) number of nodes appearing inT up to thekth
level is at least 3· 2k − 2 while T may contain at most 2n+ 1 nodes in it since any node
can occur at most twice except for one with three appearances. So, if the depth ofT is
d, 2n+ 1≥ 3 · 2d − 2, that is, 2d ≤ 2

3n+ 1≤ n for n ≥ 3, and, hence,d ≤ logn.

Case1. There is a nodev occurring at least twice on a path running fromr to some
leaf. This means thatv is contained in a simple cycleC1 of length at most logn. Collapse
C1 into a single node [C1], and every node in the modified graph will still have degree
at least 3. Now construct an ordinary BFS tree rooted at [C1]. It is easy to find another
cycle [C1] ∪C2 of length at most 2 logn in the modified graph. Thus,C1 ∪C2 contains
at most 3 logn nodes and more edges than nodes.

Case2. No node occurs more than once on any path running fromr down to a leaf.
Take the smallest subtreeT ′ of T containing all the three occurrences ofu. It can be
seen, by the assumption of the current case, that inT ′ there exist exactly three leaves,
only at each of whichu occurs, and exactly one nodew of degree 3, at the position of the
lowest common ancestor of two leaves. Assume that no parallel edges exist (the other
case is similar). Then all the neighbors ofw must be distinct, and this implies that there
are three distinct (but not necessarily disjoint) paths running fromw to u. However, then
the union of these paths has at most 3 logn nodes in it, and contains more edges than
nodes.

Therefore, if XC contains no solitaire point there is an improvement of weight
3k logn. Otherwise, pick any solitaire point inXC as a root and start a BFS until either
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another solitaire point is found or a cycle is formed. This will find an improvement of
weight 4k+ 2k logn.

5.2. Proof of (2)

The proof of (2) is quite similar to that of (1), but simpler as we do not use promotions.
Take the set of all theD-nodes with at most two neighbors inC, and select a maximum
independent subsetF in it. ThenF contains all the nodes of types [B BC], [ BC], [ BCC],
and [CC] (since none of them is adjacent to anotherD-node), and at least half of the
nodes of types [BC D], [C DD], [CC D], and [C D] (sinceG(D) contains no cycles, due
to Property 2).

Give a potentialp(u) = 1 to each nodeu ∈ F , and p(u) = −(1+ 1/k) to each
u ∈ C. It then suffices to show thatp(C ∪ F) ≤ 0. As before, we divideC ∪ F into
connected components defined by pairs. This time pairs are such nodes ofF , each having
two neighbors inC. Now it amounts to showing thatp(X) ≤ 0, for every componentX
of C ∪ F . Assume otherwise (i.e.,p(X) > 0). However, then, using the same reasoning
as in the previous subsection, we can show

1. if |X ∩ F | ≤ k, then, for someY ⊆ X ∩ F with |X ∩C| + 1 nodes,(X ∩C)∪Y
is a(|X ∩ C| + 1)-improvement, and

2. if |X∩F | > k, then thereexistsan improvementof sizeatmostmax{3k logn,4k+
2k logn},

reaching a contradiction in either case.

5.3. Proof of (4)

This inequality is proven in two stages. This time solitaires are such nodes ofB with only
one neighbor inA, and pairs those ofB with exactly two. Denote bya( j ), for 0≤ j ≤ 3,
the number ofA-nodes with exactlyj neighbors inB. Similarly, let b( j ) denote the
number ofB-nodes with exactlyj neighbors inA (sob(1) andb(2) are the numbers of
solitaires and pairs, respectively). First we prove an analogue of inequality (1) in the
context ofA versusB.

Lemma 9. If there is no improvement of sizemax{3k logn,4k+ 2k logn},

2b(1) + b(2) ≤ k+ 1

k
a. (9)

Proof. The proof is similar to that of (1), but simpler because we do not have half-
solitaires, solitaires with potential 3, nor absorbers, and we have only one type of neutral
nodes: [AAA]. The mechanism of promotions works as before, with one exception.
Given a componentX of A ∪ B with |X ∩ A| − 1 pairs and one solitaire in it, we
must argue thatX ∩ A is adjacent to at least one neutral node. When we dealt with
components ofC ∪ D, this was guaranteed by the Small Commitment reduction, but
here this argument is of no use asX ∩ A may have neighbors inD, which cannot be
promoted.
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Nevertheless, we can reach a contradiction. Assume thatX∩A is not adjacent to any
neutral node. Then we haveNB(X∩A) = X∩B, and, consequently,C∪(X∩A)∪(B\X)
is an independent set as large asC ∪ B, but with a larger overlap with our independent
setC ∪ A, contradicting the choice ofC ∪ B (Property 1).

Consider the setE(A, D) of all the edges betweenA andD. Any edge in it must be
incident to a nodeu in A such thatd(u) = 3 anddB(u) = 2 (by Property 4). Conversely,
any A-nodeu with d(u) = 3 anddB(u) = 2 must be incident to an edge ofE(A, D).
Thus we have|E(A, D)| = |{u ∈ A : d(u) = 3 anddB(u) = 2}| = a(2) − a2. On the
other hand,|E(A, D)| = 2|{u ∈ D : dA(u) = 2}| + |{u ∈ D : dA(u) = 1}| =
2([aab] + [aac]) + ([abb] + [abd] + [acc] + [acd] + [abc] + [ac]) (there exists no
D-nodeu with dA(u) ≥ 3), and, hence,

a(2) = a2+2([aab]+[aac])+([abb]+[abd]+[acc]+[acd]+[abc]+[ac]). (10)

Recall thata(0) = 0 (sinceB ∪C is an MIS) anda(1) = 0 (by Property 4), and consider
the set of all the edges betweenA andB. Since

∑
u∈A dB(u) = 2a(2)+3a(3) = 3a−a(2)

and
∑

u∈B dA(u) = b(1) + 2b(2) + 3b(3) = 3b− b(2) − 2b(1) = 3(a+ i )− b(2) − 2b(1),
by equating them,

3i + a(2) = 2b(1) + b(2). (11)

Combining (9), (10), and (11) yields

3i + a2+ 2[aab] + 2[aac] + [abb] + [abd] + [acc] + [acd] + [abc] + [ac]

= 2b(1) + b(2) ≤ k+ 1

k
a.

5.4. Proofs of the Remaining Inequalities

Inequality (3) follows from the fact that our solution,A∪C, is at least as large as the largest
independent subset ofB∪D. BecauseG(B∪D) contains no cycles the size of the latter
can be estimated by that of the set formed byB, plus all theD-nodes without neighbors in
B∪D (types [CCC], [ ACC], [ AAC], [ AC] and[CC]) plus half of theD-nodes without
neighbors inB but with some inD (types [CC D], [C DD], [ AC D], and[C D]).

Inequality (5) follows from the fact that we use the Nemhauser–Trotter reduction;
consequently, the size of an MIS,a+ i +c, does not exceed one-half of the total number
of nodes, 2a+ i + c+ d.

Because
∑

u∈A dB(u) =
∑

u∈B dA(u) andb = a+ i we have (6).
Similarly, (7) is theequationobtained from the relation

∑
u∈C d(u) =∑u∈C dD(u) =∑

u∈D dC(u).
Lastly, a degree 2 nodeu is calledgood if u ∪ N(u) contains only one node of

B ∪ C while, if two nodes are contained, call itbad. Let g andh denote the respective
numbers of good and bad degree 2 nodes inG. MIS3k constructs an initial solutionA
from A1, the set of all degree 2 nodes, andA2, the solution recursively found from
G(V\(A1∪ N(A1))). SinceG(V\(A1∪ N(A1))) contains an independent set of size at
least(b+ c)− (g+2h), if it is inductively assumed thatMIS3k finds an independent set
of size at least56 of the optimal one,|A2| is at least56(b+ c− g−2h), and, hence,|A| is
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at least as large as(g+ h)+ 5
6(b+ c− g− 2h) = 5

6(b+ c)+ 1
6(g− 4h), attaining the

desired ratio5
6 if g ≥ 4h. Assuming otherwise (and Property 5), we have inequality (8).
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