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Abstract. The subject of this paper is the Independent Set problem for bounded
node degree graphs. Itis shown that the problem rend#fds SNRcomplete even
when graphs are restricted to being of degree bounded by 3 or to being 3-regular.
Some related problems are also shown toM&X SNRcomplete at the lowest
possible degree bounds. We next study a better polynomial time approximation of the
problem for degree 3 graphs. The performance ratio is improved from the previous
best of?1 to arbitrarily close tog for degree 3 graphs and gofor cubic graphs.
When combined with existing techniques this result also leads to approximation
ratios, (B + 3)/5 + ¢ for the independent set problem and-5/(B + 3) + ¢ for

the vertex cover problem on graphs of degBemproving previous bounds for
relatively small oddB.

1. Introduction

By virtue of recent remarkable developments in the theory of the polynomial time approx-
imability itis now possible to classify mamyP-hard optimization problentualitatively

by their approximation properties. The cldg®\X SNR a subclass oNP optimiza-

tion problems consisting solely of constant factor approximable problems, was intro-
duced by Papadimitriou and Yannakakis, and shown to contain many natural complete

* A preliminary version was presented at the 4th Workshop on Algorithms and Data Structures (Canada,
August 1995).
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problems [16]. Arora et al. then established the inapproximabilitiMéiX SNRhard
problems by proving that none of them can have a polynomial time approximation
scheme (PTAS) unle$3= NP [1]. As a result a morguantitativeclassification of hard
problems according to their approximability has become a research issue of even greater
interest.

The main problem we treat in this paper is a well-studied onebthumded degree
Independent Set problerin independent setin a graph is a set of nodes in which no two
of them are adjacent, and in the independent set problem such a node set of maximum
cardinality is sought. The general Independent Set problem (denoted MAX 1S), being
notorious for its apparent intractability, has been a source of many nontrivial lower bound
results. When its approximability is concerned in particular (i.e., the approximation ratio
which can be guaranteed in polynomial time), even the best known heuristic performs
only slightly better than trivial (approx. ratio @(n/log?n) [5]), and a recent result
explains this phenomenon by providing a strong lower boumd fidfr anys > 0, under a
reasonable complexity theoretic assumption [11]. On the other hand the bounded degree
Independent Set problem (denoted MAXBS~hen the maximum node degree of graphs
is bounded above bB) has an interesting history of its own. It is one of the origh&(X
SNRcomplete problems given in [16], and its approximation ratio has been continuously
improved over the years by a number of new techniques and analysis. The first nontrivial
performance ratio dB appeared implicitly in Loasz'’s algorithmic proof [14] of Brooks’s
coloring theorem [6]. Hochbaum developed a heuristic with a rBti@ [12], which
applies to the case afeightedgraphs as well, using this coloring technique coupled
with a method of Nemhauser and Trotter [15]. HalisSon and Radhakrishnan recently
showed that the greedy heuristic actually delivers a better rélioy 2)/3 [9]. The
best results known today are summarized as follows. Berman ared &&signed new
heuristics of which performance ratios are arbitrarily clos€Bo+ 3)/5 for evenB
and (B + 3.25)/5 for odd B [4]. Halldérsson and Radhakrishnan then obtained soon
afterward, via subgraph removal techniques, asymptotically better r&j@s; o(1)
andO(B/loglogB) [8].

In this paper we pay special attention to MAX IS-3. MAX EBis NP-complete even
when instance graphs are restricted to being cubic and planar [7]. It is also known that
MAX IS (unbounded degree) admits a PTAS when graphs are planar [2]. In Section 2
we show, however, that MAX I1S-3 and MAX IS restricted to cubic graphs (i.e., 3-regular
graphs) are bottMAX SNRcomplete. As by-products a few other problems (such as
MAX 3-SET PACKING-2 and MAX TRIANGLE PACKING-4) are shown to remain
MAX SNRcomplete at the lowest possible degree bounds.

We next study a better approximation of MAX 1S-3 in Sections 3-5. In Section 3
our approximation algorithm is presented, and its performance ratios for degree 3 graphs
and cubic graphs are derived in Section 4. The analysis proceeds centered around eight
inequalities and equations, relating the sizes of various node subsets of a given graph,
and their proofs are collectively given in Section 5. The previous best ratio for MAX
IS-3 is% [4], and we improve it to arbitrarily close tg)for degree 3 graphs and gofor
cubic graphs. The best performance guarantee for MABIiS-currently achieved by
Berman-—kiter’s algorithm wherB is relatively small (up to around 613 [8]). The new
ratio for MAX 1S-3 provides a further improvement on their ratio for every odd degree
B, matching their performance guarantee formula for eBeift is worth pointing out
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that with the method of Nemhauser and Trotter this result also leads to an approximation
factor of 2— 5/(B + 3) + ¢ for the Minimum Vertex Cover problem with degree bound
of B, improving previous bounds again for small

The heart of our algorithm is a type of local search which, taking advantage of
degree boundedness, searches through better solutions in far distance. To accelerate its
performance even further, however, some general reduction methods and other tricks
are invented and incorporated. While it is our main concern to push the relative error
ratio attainable in polynomial time as far down as possible, contributions of the current
paper include demonstrating that the interplay of these techniques leads to a nontrivial
improvement in the quality of approximate solutions, especially in the domain of low
degree graphs (the related work of HalldSon and Yoshihara [10] also indicates that
some of our techniques are effective in improving the performance of simple greedy type
heuristics for MAX IS-3).

2. MAX SNP-Completeness at the Lowest Degree Bounds

In this section we show that MAX IS remailAX SNRcomplete even for cubic graphs.
MAX 3SAT-B is a restriction of MAX 3SAT such that in any instance the number of
occurrences of any variable is bounded ByWe L-reduceMAX 3SAT-B to MAX
IS-3 using the “ring of trees” construction of Kann [13]. Thereduction [16] of an
optimization problenTl; to another optimization probleri, is a pair of polynomial
time functions( f, g) such that

1. for every instance of I3, f(x) is an instance ofl, such that optf (x)) <
a opt(x) for some positive constant, and

2. for every feasible solutios of f (x), g(s) is a feasible solution ot such that
lopt(x) — c1(g(s))| < Blopt(f (X)) — cx(s)| for some positive constarst,

where optx) is the optimum cost of an instangeandg; is the cost function of feasible
solutions ofI1; fori =1, 2.

Theorem 1. MAX 1S3 is MAX SNP-complete

Proof (Sketch. Suppose a variable occursd times in a given 3SATB instance. Let
K be a large enough power of two (it suffices to téke= 2°%(3/28+D]) Constructk
identical cycles of length@(called rings) and sequentially index the nodes of each cycle
from 1 to A. Also construct @ complete binary trees witK leaves each. Join these
rings and trees by overlapping, in the identical fashion, leaves of each tree with nodes of
the same index from each ring. Label the roots of these tregsaaslt,i = 1,...,d,
alternatively in the order of their indices. Construct a ring of trees this way for every
variable.
Each clause is represented by a clique of sifm@. Suppose théth occurrence of
a variableu is in a clausee. Connectl; or u;, depending on whetherappears positive
or not, to the corresponding node in thxelique. This way clause cliques and rings of
trees are connected together. Note that the degree of every node is bounded by 3.
Let A be the (disjoint) union of rings of trees corresponding to all variables. An
independent set is said to bensistenif it includes allu;’s and none ofj;’s, or vice
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versa, for every variable. For a MAX 1S-3 instance thus constructed it can be shown
that

1. an independent set maximumAnis consistent, and
2. anindependent set maximuméis larger than an independent set not maximum
in A

We deduce that an optimal solution for MAX 1S-3 consists of a maximum inde-
pendent set irA plus a collection of nodes, one each from a clique corresponding to
a satisfied clause in an optimal solution for MAX 3SET-It follows that an optimal
value is scaled up only by some constant factor because the sikeaf be bounded
by K and)_d < 3- (number of clausgsand at least half of the clauses can be always
satisfied.

Secondly, from any MAX IS-3 solution we can find a consistent solution of no
smaller size, and hence, a solution for MAX 3SBT-The value of a solution thus
obtained is no further from the optimum than the original one for MAX IS-3. O

A graph is calledranchyif it has no node of degree less than 2 and if any two nodes
of degree 2 are not adjacent in it. The branchy reduction is one of the reduction methods
used in our algorithm (see Section 3.1), and for its effect Lemma 4 asserts that it reduces
an arbitrary graph to a branchy one without any loss of approximation quality.

Theorem 2. MAX IS is MAX SNP-complete for cubic graphs

Proof. Apply first the branchy reduction to a degree 3 graph. We reduce MAX IS for
branchy degree 3 graphs to MAX IS for cubic graphs by areduction( f, g). Given a
branchy degree 3 graghwith a setV, of degree 2 nodes and a 3&tof degree 3 nodes,
f does the following local replacement of every degree 2 nodé.ihet u be a degree
2 node with degree 3 nodesandw adjacent to it. Replace by a graphH, with the
node sefus, U7, Uy, U5}, where any two of these four nodes are adjacent except for the
pair of u; andu;,. ConnectH, to the rest ofG by two edges, one between andv, and
the other between, andw. It is easily seen that every nodeldf now has its degree 3,
and thus,f (G) is indeed a cubic graph.

Let I, be an independent set iNG). Then there exists an independentigaif no
smaller size inf (G) such that for each subgraph,, introduced byf corresponding to
u € Vs, either (i) {uz, uy} < 15 or (ii) {up, U} N 15 = @ and{ug, uj} N 15 # @. From
such an independent sktin f (G), g constructs an independent s$etn G such that
(i) I1NVa=1;NnVzand (i)u € 11N Vs iff {uy, Uy} C 1, for everyu corresponding
to Hy. Thus we haveg(S)| > |S| — | V| for any solutionS of f (G), and, in particular,
opt(G) > opt(f(G)) — |V,|. Conversely, oftf (G)) > opt(G) + |V;| since, for any
independent sdt in G, two nodes oH, if u € 13, or one node of it otherwise, can be
added to independeitN Vs in f (G) for eachu in V,. So, opt f (G)) = opt(G) + | V2|,
and

opt(G) — |9(S)| = opt(G) — || + [V2| = opt((G)) — |§|
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for any solutionSof f (G). Notice also thatV,| < opt(G) sinceV; is a feasible solution
in G, and thus

opt(f(G)) = opt(G) + V2| < 20pt(G). O

There are some oth&AX SNRcomplete problems structurally closely related to
MAX IS-3 and MAX IS-B such as:

MAX 3-DIMENSIONAL MATCHING- B. Giventhree setg/, X,Y and aseiM C
W x X x Y such that the number of occurrences of any elemeiVoK, orY in M
is bounded byB, find the largest matching, i.e., a sub8t C M such that no two
elements oMM’ agree in any coordinate.

MAX 3-SET PACKING- B. Given a collectiorC of subsets of a seb where every
¢ € C contains at most three elements and every elemen§ is contained in at most
B of the subsets i, find a largest collection of mutually disjoint subset<in

MAX TRIANGLE PACKING- B. Given a graph of maximum node degree bounded
by B find a largest collection of mutually (node) disjoint 3-cliques.

UsingMAX SNRcompleteness of 3-DIMENSIONAL MATCHING-3, Kann showed
that MAX IS-5, MAX 3-SET PACKING-3, and MAX TRIANGLE PACKING-6 are
MAX SNRcomplete as well [13]. Reducing MAX IS-3 to these problems instead, we
can improve the degree bounds in these problems to the best possible ones.

Corollary 3. MAX 3-SET PACKING2 and MAX TRIANGLE PACKIN@-are MAX
SNP-complete

Definitions and Notation For a graphc = (V, E) and a node s&f C V, letG(U)
denote the subgraph & induced byJ. Theneighborhood set KU) of U is the set of
nodes (ofV) adjacent to a node &f, and thedegree dv) of a nodev € V is [N({v})|.
Either of these can also be given with restriction to an arbitrary node set (inst¥gd of
and, forW C V, Nw(U) anddy (v) denoteN (U) N W and|Nw ({v})|, respectively. An
acronymMISis used for a maximum independent set. Tiidependence numher(G),

of G is the cardinality of an MIS irG.

Our local search method is based on augmentation of an independériiysatnode
setl called arimprovementHere,| is animprovementfdd if G(l) is connected and the
symmetric differenc®) & | is a larger independent set. AAimprovemernis the one that
addss and removes — 1 fromU, and a solution is-optimalif it has nos-improvement.
The quality of an approximation algorithm is measured bp#formance ratipwhich
is the worst case ratio of the optimal solution size to the size of an approximate solution
returned by the algorithm from the same instance.
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3. Approximation Algorithm

The mechanism of our algorithmiS3y for building a large independent set is a local
search in two directions (as in BermamEi’s algorithm for MAX ISB [4]). For some
constant parametér, a solutionA is repeatedly augmented by applying improvements
of sizeO(klogn) for n = V|, until such an augmentation is no longer possible. When
A becomes locally optimal its compleme@®(V — A), is searched as well. Wheh is
a degree 3 graph anfl is 1-optimal every node o&(V — A) has degree of 2 or less,
and, thus, an MISX' in this space can be easily found.Af is larger thanA, the local
search is started again froAd.

The resulting solution thus satisfies two properties/A(i¥ O (k logn)-optimal and
(i) (G(V\A)) < |Al. Properties (i) and (ii) together assure tt‘%& 1/K) Al > a(G),
and, moreover, this inequality is tight. To improve the performance, we assure that the
output satisfies several additional properties that enable us to prove a stronger inequality.
To be more specifimMIS3i has the following additional features (see Figure 1 for a more
formal description):

1. Agiven graph is preprocessed by approximation preserving reductions before a
local search is initiated (by the firBepeatloop). As a result the graph satisfies
such properties that (1) there exists no node of degrek (2) any two nodes
of degree 2 are nonadjacent, ()G) < %|V|, and (4) every small (i.e., of size
< k) node seU isnotan MIS inG(U U N(U)).

2. An initial solution is constructed with preference given to degree 2 nodes over
degree 3 ones. All the degree 2 nodes are collected unconditionally into an initial
subsetA (possible because of property (2) above). Attached to it is a solution
recursively found fronG (V\ (AU N (A))), and this is the initial solution we start
with.

MIS3i
Input: A degree 3 grapls = (V, E).

Repeat
oldsize<« |V|
Do Branchy reduction
Do Nemhauser-Trotter reduction
Do Small Commitment reduction
until V| = oldsize /* until no more reduction is applicable */
A< {veV :dw) =2}
Az < an independent set recursively computeitV \ (A1 U N(A1)))
A<~ AUA
Repeat
oldsize< |A|
Do Acyclic Complement procedure
Do all possible improvements of size nj8k logn, 4k + 2klogn} to A
Find an optimal solutiorAz in G(V\ A)
If Azis largerthanAthen A < A
until |A| = oldsize

Fig. 1. Algorithm MIS3y.
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3. Every time arD(k log n)-optimal solution is found, it is made sure that its com-
plement is acyclic by replacing it, if necessary, with another of no smaller size
(in the secondRepeatloop).

Each of these procedures is described in more detail in the following subsections.

3.1. Branchy Reduction

A graphG is calledbranchyif every node has degree 2 or more, and any two nodes of
degree 2 are nonadjacent (the notion of branchy graphs and reduction was used before
in the context of the weighted feedback vertex set problem, see [3]). A branchy graph
G’ can be obtained from an arbitrary gra@hes follows:

1. While there is a node of degree 0 or 1, remove it (along with its neighbor, if any)
from G and store it in a ses.

2. While there is a patkwy, vy, v3, v4) Where bothv, andvs are degree 2 nodes,
removev, andvz from G, insert an edgév1, v4}, and store the path in a st

The next lemma states that branchy reduction is a lossless reduction.

Lemmad4. LetG = (V’, E') be the branchy reduction of & (V, E), and let S and
P be the sets produced in the proceBsen

1. From any independent set i G’, an independent set of siz&'| + || + |P|
in G can be constructed in linear time

2. Thereisan MIS Ain G suchthatn/’ is anindependent set of siZs —| S| — | P|
inG'.

Proof. 1. Clearly,A’ is an independent set 8. Let (v1, v, vs, v4) be a path found in
Step 2. Since; andv, are adjacent is’, at most one of them is containedAd. Thus,
one node for every path iR, and every node i§ can be inductively added #&' to form
an independent set @.

2. It can be seen that there is an MSin G containing all the nodes d§, plus
exactly one ofv, andvs from every pathivy, vy, vs, v4) found in Step 2. Removing all
of such nodes fronf\ results inA N V’, which is independent i’ O

3.2. Nemhauser-Trotter Reduction

Nemhauser and Trotter studied solutions to a linear program relaxation of the MAX
IS problem in [15], and showed that, for an arbitrary gr&h= (V, E), the partition

{V1, V2, V3} of V can be computed, with time complexity of the bipartite matching
problem, such that (i) there is an MIS containing all the nodeg, dfut none ofV,, (ii)

N(V1) € V; (i.e., there is no edge betwe&h and Vs), and (iii) a(G(V3)) < %|V3|.
Hochbaum was the first to use the preprocessing method, based on this theorem, in
approximation of the MAX IS problem [12]: compu4, V,, andV3 as above from a

given graph, find an approximate solutiim G(V3), and returrBUV; as an approximate
solution forG. In this way an arbitrary grap® is reduced to one (i.eG(V3)) in which

the independence number is at most half of the number of nodes.
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3.3. Small Commitment Reduction

This reduction repetitively looks for a substructure of the following kinirfor some
node sei of size atmosk, Aisan MISIinG(AUN (A)). Iffound, we commit ourselves to
A, removeAU N (A) from G, and repeat as long as such a small independeAt(senall
commitmentremains inG. The effect of this reduction is again no loss in approximation
quality.

3.4. Acyclic Complement Procedure

Suppose thakt is a 2-optimal independent set in a connected degree 3 @aphV, E)

andG is notK4. This procedure finds an independent kebf size no smaller thah

in polynomial time such that its complement induces an acyclic subgraph. We note that
hereG must be assumed to be a degree 3 graph (unlike the other reduction methods
given earlier).

First a few easy observations. The subgré&h \ | ) consists of disjoint cycles and
paths only, because its degree is at most 2 (otherwise, a 1-improvement). Also every node
in V\I must be adjacent to some nodd ifotherwise, a 1-improvement). Assume that
there exists a cycle i (V\I) and letC denote its node set. We describe below how to
reduce the number of cycles@(V\ ) by one, depending on the nodeNiC)\C C I.

Casel. There is a node € N(C)\C adjacent to three nodes, b, andc, of C. If
{a, b}, {b, ¢}, {c, a} € E thenG is K4. Otherwise, if, say{a, b} ¢ E, then{a, b, v} is a
2-improvement.

Case2. Thereisanode € N(C)\C adjacent to two nodes,andb, of C (note{a, b}
must be inE). Letc # a be another node @ adjacent td. Break this cycle by bringing
binto | andv out of . This will not create a new cycle in the complement because all
the nodes which could form a new component are connectednoc now has degree
1in the complement.

Case3. For each node € N(C)\C there exists exactly one noden C adjacent to

v. If d(v) = 1, then swap andu. If d(v) = 2, then the other neighbor ofmust be an
endpoint of a maximal path i&(V\1I) (otherwise, a 2-improvement); swappingnd

u cannot create a new cycle. So assutq® = 3 and let the other two neighborswbe

w andx. Observe that eithar or x must be an endpoint of a maximal pathGigV\ 1)
(otherwise, a 2-improvement), ancuf andx are of different paths, swappingandv

does not introduce a new cycle. So assume that they are the endpoints of a maximal path
Pin G(V\I). DestroyC by swapping andu, and this creates a new cy¢léformed by

P andv. Apply the same procedure @, but never swap andu again by considering
nodes other thanin C'.

We continue as long as the current condition holds, and this way the procedure pro-
cesses a sequence of cycles. Notice, however, that no cycle can repeat in this sequence
since we always move onto a newly created cycle. So, the procedure must terminate,
upon which the number of cycles in the complement is decreased by one.
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4. Analysis of Performance Ratios

To estimate the quality of approximate solutions producetssy, we compare the
relative sizes of node subsets defined by our solution and one fixed optimal solution.
Given a graplG = (V, E), let A’ be an independent set found kiyS3y, and letB’ be

any MIS inG. PartitionV into four setsA, B, C, andD such that

e CEANB (C forthe “common” portion of approximate and optimal solutions),
o« AY A\C (A for “approximate”) andB oef B"\C (B for “best”),
def

e D =V\(AUBUQCQC),i.e., the remaining portion of .

Based on this partition d¥, every node irD will be further classified according to its
neighboring subsets. If a node is of degree 3 (resp. 2) and its neighbors belong to node
setsX, Y, andZ (resp.X andY), we say the node is of typ&X[Y Z] (resp. [XY]), where

X,Y,Z € {A, B,C, D}.

An easy observation tells us that there are possibly 10 node types for degree 2 nodes
and 20 for degree 3 nodes, among which a total of 18 can be valid types for nddes in
Moreover,D-nodes of type AB] do not occur in our graphs as will be explained later,
which leaves us the following 17 types fornodes:

degree 2 nodestypes of [AC], [BC], [CC], and [C D].
degree 3 nodestypes of [AAB], [AAC], [ABB], [ABC], [ABD], [ACC],
[ACD], [BBC][BCC], [BCD], [CC(C], [CCD], and [CDD].

Denote the cardinalities of setg, B, C, andD, by respective lower case letters, and set

i = b —a. Also denote the number of degree 2 nodes in 8et8, andC by a,, b,, and

Co, respectively. The number d-nodes of type XY Z] (resp. [XY]) is denoted by its

lower case counterpartxy 7 (resp. iky]). In Section 5 we prove the eight inequalities
and equations listed in Figure 2, each concerning a cardinality relation to be satisfied
by various node sets under our classification scheme. Assume for now that all these
inequalities and equations hold.

Theorem 5.

1. MIS3, approximates MAX IS-with a ratio £ + 1/5k in time Q(n2+31°83),

2. MIS3y approximates MAX IS for cubic graphs with a rat%o+ 1/6k in time
O(n2+3klog 3)_

Proof. The time complexity oMIS3y is dominated by that of its local neighborhood
search. A search space consists of all the connected subgraphs of node set size at most
max{(3k logn, 4k + 2k logn}, and, hence, it take® (n'+31°93) time to find a small im-
provement, as one can show that the number of such subgraphs of size atimast
degree 3 graph af nodes is smaller tham3®. Since a solution is augmented at most
times,MIS3y runs in timeO (n2+3klog3)
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k+1

— € = 3[bq + 2[bbd + [bed) + [cdd] + [cd] + [bed +[cd] — (2[acd +[aad + [abd
+[acd] + [ac]) @
kLklc > [bbd + [bc] + [bcd + [cc] + %([bcd] + [cdd] + [cd] + [ccd]) 2)
c > i+ [ccd + [acq + [aad + [ac] + [cc] + %([cdd] + [ccd] + [acd] + [cd]) ?3)
k%la > 3i + ap + 2[aal] + 2[aad + [abb] + [abd] + [acd + [acd] + [abd + [ac] (4)
d>c+i (5)
by = 3i + ax + ([aab] + 2[aad + [acd + [acd] + [ac]) — ([abb] + 2[bbd + [bcd
+ [bed] + [be)) (6)
3¢ — ¢ = 3[ced + 2(Jacd + [bed + [ced] + [cc]) + [aad + [abd + [bbd
+[acd] + [bed] + [cdd] + [ac] + [bc] + [cd] (@)
a +[bd +[cq] > 3 (b + ¢+ [ad + [cd]) (8)

Fig. 2. List of inequalities relating node set sizes.

1. Sum up inequalities and equations (1)—(8) with respective multiplicative factors

of &, 2,221, 2, &, -2, and 1, which yields the inequality
k+l 5Li 4 L 27[aal] + 6[abl] + 10[abd] + 33
i (@10 = 55 + g3(a2 + 2+ 27[aab + 6[ablj + 10[abd] + 33[aad

+ 6[acd + 10[acd] + 13[cdd] + 6[bbd + 20[ac]
+ [bc] + 14[cd)).

Since all the variables are of nonnegative value, we héve- 1)/k)(a + ¢) > S%i,
and hence,

IBl b+c a+c+i 1 6 1
— — <1

= = - _+ .
A  a+c a+c ~ (k/(k+1))51i3<5 5k

2. Setting the number of degree 2 nodes of any type to zere; (4) + (6) yields

k%l(aJr c) > 6i + 3[aab] + 3[aad + [abd] + [acd] + [cdd] > 6i,

and, hence,
|B’|_a+c+i< n 1 _7+1 .
A a+c (k/(k+1)6 6 6k

When combined wittMIS3y to handle degree 3 graphs, Bermauard¥’s algorithm
for MAX IS- B [4] does better for every odB, giving the same performance guarantee
formula as the one for eveB.
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Corollary 6. MAX I1S-B can be approximated in polynomial time within a ratio arbi-
trarily close to(B + 3)/5forall B > 2.

5. Proofs of (1)—(8)

The purpose of the preprocessing and the acyclic complement procedures presented in
Section 3 is to normalize a given graph and the final solution so that they possess some
nice properties.

Lemma 7. The node sets A, C, and D satisfy the following properties

. Cis maximali.e.,, A’ and B have a maximum overlap

. The subgraph @B U D) induced by the complement of a solutiohisfacyclic
. The set of degre2 nodes is an independent set in G

. Every node of A has at least two neighbors in B

. There exists no node of typAB] in G.

GO wWNPEF

Proof. 1. Clearly this can be assumed since the choice of anBALSC is up to us.

2. This is a direct consequence of the acyclic complement procedure.

3. This is a direct consequence of the branchy reduction.

4. Suppose there is alr-nodeu with less than two neighbors iB. If no neighbor,
thenB U C U {u} is a larger independent set aBdJ C is not optimal. Ifu has only
one neighboww in B, then(B\{w}) U (C U {u}) is an independent set as largeBas C,
yet it has a larger intersection withU C, contradicting property 1.

5. Letu be a node of typeA B] and letw be its neighbor irB. Sincedg c (u) = 1,
(B\{w} U {u}) U C remains independent. Note thatis necessarily of degree 3 due to
property 3, meaning that it cannot become a node of tyB][ Thus, we can choose
B’ so that there is no degree 2 node of typed] in D. O

5.1. Proof of (1)

We make use of local accounting here as well as in proving (2) and (4). Denote the
set of D-nodes adjacent t€ by D’ (= D N N(C)). In a nutshell we assign potential

to every node irC U D’ so that inequality (1) states that the total potentiaCaff D’
cannot be positive. We partitidd U D’ into connected fragments to study each of them
one at a time. We show that a fragment with a positive potential either contains a small
improvement, or &-commitment, or otherwise we will be able to “factor it out” and
reduce the problem to a smaller one. There are 14 different node types fardes, and

for the sake of the proof we name them as follows:

e Enforcersare
—solitaires nodes of type BC] or [BB(],
—half-solitaires nodes of type BC D], [CDD], or [C D], and
—ypairs: nodes of type BCC] or [CC].



126 P. Berman and T. Fujito

e Absorbersnodes of type ACC], [AAC], [ABC], [ACD], or [AC].
e Neutrals nodes of typeCCC] or [CCD].

Each enforceu is given a weightw(u), which is initially 1, and larger weights result
from reductions that factor out connected fragments (see below). Eacluddzu D’
is assigned with a potentigi(u) such that

C, — (wu) —1/k an enforcer of typed],
e (<0 . .| anabsorber of typey],
p(u) = —(k+1/k it uis aC-node
0 a neutral nodge

wherec, is the coefficient of ad] term in inequality (1) forx € {a, b, c}* U {a, b, ¢}2.
For a node set) let p(U) (the potential oU) andw(U) (the weight ofU) stand for

Y ueu PW) andy" ., w(u), respectively. Now inequality (1) can be rewritten in the
form p(Cu D’) < 0.

Consider the subgrapBc of G formed byC, the set of enforcers, and the set
of edges between them (ignoring those edges inBiieThen the set o€-nodes and
enforcers is partitioned by the connected componentsgfin which each pair node
plays the role of an “edge” connecting its neighbor€inn what follows a connected
component is meant to be that 8¢ defined this way. For the node s¥tof such a
component, leXc, Xp, and algX) denoteX NC, XN D (i.e., the set of enforcers ),
and the number of edges connecting a nod¥@fwith an absorber, respectively. Then

p(C U D) is the sum ofpy def p(X) — ab(X) over the componentX of G¢. If no px
is positive we are done. Otherwise, we apply a case analy3isaith positive px.

Let wy def w(Xp) andx def | Xc|. We measure the size &f by wy. First the case
of a small component, that is, assumg < k. Certainly Xp contains at least — 1
pairs. If Xp containsx 4+ 1 (or more) pairs, these pairs, together wih, form ak-
improvement, a contradiction. We get a similar contradictiodgfcontainsx pairs and
a (half-)solitaire, o — 1 pairs and either of: three half-solitaires, one solitaire and one
half-solitaire, two solitaires, or two nonadjacent half-solitaires #f consists of pairs
only and|Xp| < X, thenpx < 0. So, we need to consider only the cases wKegn
consists ofx — 1 pairs, plus either one solitaire or two half-solitaires adjacent to each
other.

Casel: Xp consistof x — 1 pairs and a solitaire of typéBC] (so, 3— (w — 1)/k in

its coefficient. We removeX and all the adjacent edges from consideration, and at the
same time shift the potentigl to nodes of type€ C C] or [C C D] that must be adjacent

to Xc.

As a technical preliminary, observe that at least two edges go ¥erto nonen-
forcers. If Xc = {u} for someu, thenu has three neighbors as a neighbor of a degree
2 node (Property 3), hence two nonenforcer neighbors.Otherwise, the noxe aetl
the edge set of pairs form a tree with at least two leaves and each leaf has a nonenforcer
neighbor; in particular, a leaf adjacent ®C] has three neighbors—one pair, ofi&{],
and one nonenforcer.

Notice that currentlypx = 2 — wx/k — ab(X), and so abX) < 1 sincepx > 0.
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Casel.l: aX) = 1. An edge goes fronXc to a [CCC] or [CC D] node, say
u. If uis of type [CCC], then afterX is removedyu appears to be of type&[C], a pair
(this wayu is introduced as a “new pair” in the subsequent analysis). Suppose that after
removal ofX, some set € CU D becomes an improvementuf¢ |, thenl itself, and
otherwisel U X, was an improvement even before the removal. Thusiarprovement
containingu after the removal translates into @+ wx )-improvement that is “genuine.”
Therefore, we can keep track of the improvement size correctly even after the removal
if uis given the weight of 1 wx. We also redefing(u) from 0 to px = 1 — wx/k.
This way the total potential is preserved, and the potentialagrees with the formula
for pairs.

We can handle identically the case whers of type [CC D]. This timeu becomes
a half-solitaire after the removal, and the formula for its potential is same as the one for
pairs. In either case we say thais promotedfrom a neutral to a pair or a half-solitaire).

Casel.2: aiiX) = 0. ThenXc is adjacent to two neutral nodes and both can
be promoted. We do so by assigning potential to thmemdeterministicallyl = 1 +
1/k—1/kto one and ¥ 1/k — (wx + 1)/ k to the other. Correspondingly, these newly
introduced pairs an@r half-solitaires are given weights of 1 and-lwy, respectively.
Here it is meant that if only one of them is later involved in any improvement, then that
one will have its weigh 1+ wx in this promotion process while, if both are involved,
it does not matter which one gets which weight.

In addition we note here that in the current casecould be positive even when
k < wyx if wxy < 2k. We simply handle this as above promoting two neutral nodes
although this time one of them is given a negative potential.

Case2: Xp consists of x- 1 pairs and a solitaire of typgBBC]. This case is similar

to Case 1, only simpler. Nowpx = 1 — wx/k — ab(X) and al§X) = 0 sincepx > O.

So, at least one edge goes frofrto a nonenforcer which must be a neutral node, and
we can perform a promotion as before.

Case3: Xp consists of x— 1 pairs and two half-solitaires adjacent to each other
This case is very similar to Case 2 (n@y = 1+ 1/k — wx/k — ab(X)), but with one
additional subcase—when no edge joifaswith anonenforcer, i.e., whexp = N(Xc¢).

Let Sbe an MIS inX. If |§ > X, thenS® X¢ is ak-improvement, a contradiction.

If | = X, thenXc is an MIS inXc U N(X¢). Since|Xc| = x < k, such a construct
must have been eliminated by the Small Commitment reduction, again a contradiction.
It should be noted here that this situation could not emerge as a result of performing
some removals; removing a component may change the classification of its neighbors
but not the neighbors themselves.

To prove (1) it remains to handle large components with a positive potential (i.e.,
the casavy > k and px > 0). For an easier analysis we “remove” half-solitaires first.
Let H be a set of half-solitaires iK, and letly be an MIS inG(H). Each node of I
is now given a new potential of 2 (w(u) — 1)/k and treated as a new solitaire. Then,
sincep(u) + pv) = (1 — (w(u) — 1/k) + 1 — W) — 1/k) < 2— (w(u) — /K
for any two adjacent half-solitairesandv in H, the total potential of new solitaires is
no smaller than that of old half-solitaires, i.@(ly) > p(H). We may thus take only
this setly of solitaires into account and ignoke; Xp is now an independent set.
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RepresenX by a graphGyx consisting of the node s&c and the edge sdE of
pairs in Xp. We show below how to find a small improvement in it. (Note that we here
pay attention only to enforcers, among those nodes adjacefy, tanlike the case of a
small X.) A node inXc is called asolitaire pointif it is adjacent to a solitaire.

1. Remove all the leaf nodes (i.e., degree 1 nodes) recursively &Ggras long
as they are not solitaire points. This pruning operation does not decrease the potential
of X. Meanwhile, if the total weight of enforcers drops bel&vin the process, &-
improvement is found. To see it I& andS, denote the sets of solitaires of tyd@B C]
and those of typeBC] in Xp, respectively. An easy calculation shows that

k+1 2k +1 3k+1
p(X)=<%>|E|+<T+)|sl|+< k+>|sz|

w(Xp) k+1

and, by the assumptions thag > 0 andwy > K,

k+1 2k+1 3k+1 w(Xp) k+1
(T>|E|+(T)|S_L|+<T>|Sz|> K +( K >|XC|

k+1
>14 (T) [ Xcl.

From this (and the fact thdE| > |Xc| — 1), one can show thgdXp| > |Xc|, or
otherwise,Xp consists off Xc| — 1 pairs and one solitaire of typ&8[]. In the latter
case, howevemp(X) > 0 only if wyx < 2k, and this case was already eliminated (in
Case 1.2). ThusXp is initially an independent set larger thait in G. Each pruning
of a leaf node removes one node each fidgmand Xp. So, at any moment during this
pruning procesXp provides an improvement of size(Xp).

Now every leaf node ifisx must be a solitaire point. A chain of degree 2 nodes in
Gy is calledbareif none of its intermediate nodes is a solitaire point.

2. If aleaf nodev in Gy is connected to a maximal (i.e., nonextensible) bare chain
Z of weight> 2k, then remove, the solitaire adjacent to, andZ. Its potentialp’ is
nonpositive for, ifZ is of lengthl and weighw, p’ = 2+1(1+1/k)—w/k—1(14+1/k) =
2 —w/k < 0 whenw > 2k. Meanwhile, if the total weight of enforcers drops below
k + 1, then consider the nodein the remaining component, contactidgbefore the
removal.

Casel:d(u) > 2before the removal of Z Then eitheu is a solitaire pointod(u) = 3
before the removal aZ. By the same argument given below in the analysis of Bpw
has an improvement of weight k after the removal o¥ .

Case2:d(u) = 1before theremoval of Z Thus,X is simply a bare chaid connecting
two solitaire points (before the removal &f). Sincep(X) = 2+ 2+ 1(1 + 1/k) —
w/k—(1+21)(1+1/k) = (3k—1—w)/k > 0itfollows thatw(Xp) < 3k — 1. Hence,
X is an improvement of weight 3k — 1 before the removal of.

3. Consider a maximal bare chathin Gx not incident to a leaf node. It must be
connecting a degree 3 node (or a degree 2 solitaire point) and another degree 3 node (or
another degree 2 solitaire point). If the weighzoks > k+ 1, then remove it. Its potential
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p(2) is nonpositive fop(Z) = 1 (1+1/k)—w/k—(1—-1)(1+1/k) = (k+1-w)/k <0
whenw > k+1. Note also that such a removal might create preconditions for operation 2.
Observe that while operations 1 or 2 never disconn€gts operation 3 could.

Suppose it actually breakGy into two. If both are of weight- k + 1, we continue

with the one having a larger potential, which must be positive. Suppose such a removal
introduces a componeit of weight < k but with a positive potential. Lat be a node

of Y contactingZ. It can be verified that ifi is a degree 3 node before the removal of

Z, Y must contain either (i) two solitaires, (ii) one solitaire and one cycle, or (iii) two
cycles. Similarly, ifu is a solitaire pointy must contain either (i) or (ii). However, then
either case leads to an improvement of weighk. So, assuming that there exists no
improvement of weighk Kk, any disconnected component of weightk must have a
nonpositive potential, and it can be safely discarded.

Replace every maximal bare chain by an edge of the corresponding weigkt in
Then each internal edge (i.e., incident with nonleaves only) has weighivhile each
external edge (i.e., incident with a leaf) has weigh?k — 1. Moreover, ifX¢c contains
no solitaire point, the minimum degree G must be 3.

Lemma 8. In any graph with n nodes and minimum deg8¢here is a subgraph F
with at most3 logn nodes such that F contains more edges than nodes

Proof. Starting at any node as a root, build a breadth first search (BFS) {feith

the following modification. We still mark nodes whenever they are visited, but even if a
node is already marked, visit it again. We continue buildingntil some node, say,

is visited three times. The (cumulative) number of nodes appeariiigup to thekth

level is at least 32K — 2 while T may contain at mostr2+ 1 nodes in it since any node
can occur at most twice except for one with three appearances. So, if the ddpth of
d,2n+1>3-2¢-2 thatis, 2 < 2n+ 1 < nforn > 3, and, hencej < logn.

Casel. There is a node occurring at least twice on a path running fronto some
leaf. This means thatis contained in a simple cyct@; of length at most log. Collapse

C, into a single node(;], and every node in the modified graph will still have degree
at least 3. Now construct an ordinary BFS tree rootegk [It is easy to find another
cycle [C41] U C; of length at most 2 log in the modified graph. Thu€; U C, contains

at most 3 logh nodes and more edges than nodes.

Case2. No node occurs more than once on any path running fralown to a leaf.

Take the smallest subtré€ of T containing all the three occurrencesoflt can be

seen, by the assumption of the current case, that ithere exist exactly three leaves,
only at each of whiclu occurs, and exactly one nodeof degree 3, at the position of the
lowest common ancestor of two leaves. Assume that no parallel edges exist (the other
case is similar). Then all the neighborswwiust be distinct, and this implies that there

are three distinct (but not necessarily disjoint) paths running fraimu. However, then

the union of these paths has at most 3rdagpdes in it, and contains more edges than
nodes. O

Therefore, if Xc contains no solitaire point there is an improvement of weight
3klogn. Otherwise, pick any solitaire point ic as a root and start a BFS until either



130 P. Berman and T. Fujito

another solitaire point is found or a cycle is formed. This will find an improvement of
weight & + 2klogn.

5.2. Proof of (2)

The proof of (2) is quite similar to that of (1), but simpler as we do not use promotions.
Take the set of all th®-nodes with at most two neighbors@ and select a maximum
independent subségtin it. ThenF contains all the nodes of typeB BC], [ BC], [BCC],
and [CC] (since none of them is adjacent to anotiieinode), and at least half of the
nodes of typesBC D], [C DD], [CC D], and [C D] (sinceG(D) contains no cycles, due
to Property 2).

Give a potentialp(u) = 1 to each node € F, andp(u) = —(1 + 1/k) to each
u € C. It then suffices to show thgi(C U F) < 0. As before, we divid& U F into
connected components defined by pairs. This time pairs are such ndéesamh having
two neighbors irC. Now it amounts to showing that(X) < 0, for every componenX
of C U F. Assume otherwise (i.ep(X) > 0). However, then, using the same reasoning
as in the previous subsection, we can show

1. if XN F| <k, then, forsom& € XN F with [ XNC|+1nodes(XNC)uY
isa(|X NC|+ 1)-improvement, and

2. if [ XNF| > k,thenthere exists animprovement of size at most{@iabog n, 4k+
2k logn},

reaching a contradiction in either case.

5.3. Proof of (4)

This inequality is proven in two stages. This time solitaires are such nodiewih only

one neighbor irA, and pairs those d with exactly two. Denote by, for0 < j < 3,

the number ofA-nodes with exactlyj neighbors inB. Similarly, let b, denote the
number ofB-nodes with exactlyj neighbors inA (sobg, andb, are the numbers of
solitaires and pairs, respectively). First we prove an analogue of inequality (1) in the
context of A versusB.

Lemma 9. If there is no improvement of sineax{3k logn, 4k + 2k logn},

k+1
Zb(l) + b(z) < Ta. 9)

Proof. The proof is similar to that of (1), but simpler because we do not have half-
solitaires, solitaires with potential 3, nor absorbers, and we have only one type of neutral
nodes: PAA]. The mechanism of promotions works as before, with one exception.
Given a componenX of AU B with | X N Al — 1 pairs and one solitaire in it, we
must argue thaX N A is adjacent to at least one neutral node. When we dealt with
components o U D, this was guaranteed by the Small Commitment reduction, but
here this argument is of no use AN A may have neighbors iD, which cannot be
promoted.
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Nevertheless, we can reach a contradiction. Assumexthai is not adjacent to any
neutral node. Then we hats (XN A) = XN B, and, consequentlE U (XN A)U(B\ X)
is an independent set as largeGas B, but with a larger overlap with our independent
setC U A, contradicting the choice @& U B (Property 1). O

Consider the set (A, D) of all the edges betweehhandD. Any edge in it must be
incident to a node in Asuch thatl(u) = 3 anddg(u) = 2 (by Property 4). Conversely,
any A-nodeu with d(u) = 3 anddg(u) = 2 must be incident to an edge B A, D).
Thus we haveE(A, D)| = [{u € A : d(u) =3 anddg(u) = 2}| = a — az. On the
other hand|E(A,D)| = 2|[{u € D : da(u) = 2}| + |{u € D : da(u) = 1}| =
2(Jaab + [aad) + (Jabb] + [abd] + [acq + [acd] + [abd + [ac]) (there exists no
D-nodeu with da(u) > 3), and, hence,

ap = ap+2([aab+[aad)+ ([abl +[abd]+[acd +[acd]+[abd +[ac]). (10)

Recall thatag, = 0 (sinceB U C is an MIS) andx ;) = 0 (by Property 4), and consider
the set of all the edges betweArandB. Since) ,_, ds(U) = 23 +3ai3) = 3a—a)
andZueB da(u) = b(l) + 2b(2) + 3b(3) =3b— b(z) — Zb(]_) =3@+i) — b(z) - Zb(l),
by equating them,

3i + ap) = 2bg) + by). (1D
Combining (9), (10), and (11) yields

3i + a, + 2[aab] + 2[aad + [abl] + [abd] + [acd + [acd] + [abd + [ac]

k+1
= 2b(1) + b(z) < Ta.

5.4. Proofs of the Remaining Inequalities

Inequality (3) follows from the fact that our solutioAUC, is atleast as large as the largest
independent subset &U D. Becausds (B U D) contains no cycles the size of the latter
can be estimated by that of the set formedplus all theD-nodes without neighbors in
BUD (types CCC], [ACC], [AAC], [AC] and[CC]) plus half of theD-nodes without
neighbors inB but with some inD (types [CC D], [CDD], [AC D], and[C D]).

Inequality (5) follows from the fact that we use the Nemhauser—Trotter reduction;
consequently, the size of an MI&;+i + ¢, does not exceed one-half of the total number
of nodes, 2+i +c+d.

Because) ., ds(u) =),z da(u) andb = a +i we have (6).

Similarly, (7) isthe equation obtained fromthe relatfop . d(u) =}, .c dpo(u) =
ZueD de (U).

Lastly, a degree 2 node is calledgoodif u U N(u) contains only one node of
B U C while, if two nodes are contained, calldad Let g andh denote the respective
numbers of good and bad degree 2 node& iMIS3y constructs an initial solutio
from A;, the set of all degree 2 nodes, aAd, the solution recursively found from
G(V\(A1UN(A1))). SinceG(V\ (AL U N(A;))) contains an independent set of size at
least(b+ c) — (g + 2h), ifitis inductively assumed thatiS3, finds an independent set
of size at Ieasg of the optimal one}A;| is at Ieaslg (b+c—g—2h),and, hencg Al is
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atleastas large ag +h) + 2(b+c— g — 2h) = 2(b+¢) + (g — 4h), attaining the
desired ratiog if g > 4h. Assuming otherwise (and Property 5), we have inequality (8).
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