
Theory Comput. Systems31, 491–506 (1998) Theory of
Computing

Systems
© 1998 Springer-Verlag

New York Inc.

Competitive Analysis of On-Line Disk Scheduling∗

Tzuoo-Hawn Yeh, Cheng-Ming Kuo, Chin-Laung Lei, and Hsu-Chun Yen

Department of Electrical Engineering, National Taiwan University,
Taipei, Taiwan, Republic of China

Abstract. In this paper we study three popular on-line disk scheduling algorithms,
FCFS, SSTF, andLOOK, usingcompetitive analysis. Our results show that, in a
competitive sense, the performance ofLOOK is better than those ofSSTF and
FCFS. As a by-product, our analysis also reveals quantitatively the role played by
the size of thewindow, which in our model is a waiting buffer that holds a fixed
number of requests waiting to be serviced next. The window, in some sense, offers
the lookaheadability which is mentioned in several on-line problems.

1. Introduction

Disk schedulingis a problem that is of practical importance and theoretical interest in
the study of computer systems, in particular, in the areas of databases and operating sys-
tems. The goal of disk scheduling is to devise a policy for servicing disk requests in an
on-line fashion so as to minimize the total disk access time. Traditionally, measuring the
performance of a disk scheduling algorithm often resorts to eitherprobabilistic analysis
[4], [7], [14], [15] or simulation[6], [7], [14], [15]. In spite of their popularity, the above
approaches have their limitations. For example, coming up with an accurate probability
distribution for the disk access pattern is difficult, yet such a distribution is critical in
measuring the average-case performance of disk scheduling. In addition, neither of them
aims for reporting the worst-case performance of an on-line algorithm. In an attempt to
overcome the above shortcomings,amortized analysis, which is a technique known to
be useful for measuring the worst-case complexity of performing a sequence of oper-
ations, has recently been applied to analyzing a number of disk scheduling algorithms
[3]. It, however, provides no information regarding the relative performance of an algo-

∗ This work was supported in part by the National Science Council of the Republic of China under Grant
NSC-84-2213-E-002-002.

492 Tzuoo-Hawn Yeh, Cheng-Ming Kuo, Chin-Laung Lei, and Hsu-Chun Yen

rithm against another one such as, for example, an optimal off-line algorithm which has
complete knowledge of future disk requests.

As an alternative to the aforementioned analytical techniques, in this paper we study
various disk scheduling algorithms through the use of the so-calledcompetitive analysis
technique. Competitive analysis has its origin in a paper by Sleator and Tarjan [13]. In
this approach, the efficiency of an on-line algorithm is compared with that of an optimal
off-line algorithm. An on-line algorithm isα-competitiveif, for any request sequence,
its cost is withinα times that of the optimal off-line algorithm, up to a constant that
is independent of the request sequence. For more about competitive analysis on other
problems, see, e.g., [1], [2], [5], [9], and [11].

Given a sequence of requests on a disk equipped with a single read-write head and
a waiting bufferof a fixed size, the goal of disk scheduling is to design a strategy for
picking requests, in an on-line fashion, from the waiting buffer to service so that the
total cost of service is minimized. The waiting buffer, referred to as thewindowin this
paper, is capable of holding a fixed amount of requests from which the next request to
service is chosen. Once a request enters the window, it is entitled to be serviced next even
though the window might contain requests that arrived earlier. Conversely, a request can
be serviced only if it resides in the window. In our model, disk scheduling algorithms are
differentiated mainly by the order in which the next request to service is chosen. Notice
that there are no deadlines for servicing requests. In particular, it is possible that the first
request will be serviced last, no matter how long the sequence is. To a certain degree,
the window offers the lookahead capability, mentioned in several on-line problems [8],
[10]. As our results show, the window is beneficial to disk scheduling algorithms.

The time to satisfy a disk request is composed of theseektime, thelatencytime,
and thetransfertime [12]. The seek time is usually approximated ass+ d · t , wheres is
theseek startuptime,d is the seek distance, andt is the seek time per cylinder [6], [14],
[15]. In this paper we use a model in which the cost of servicing a request is measured
asd + T , whered is the seek distance, measured in terms of the number of cylinders,
andT is a constant that captures the seek startup time, the latency time, and the transfer
time.

We consider the following three on-line disk scheduling algorithms:FCFS, SSTF,
andLOOK. FCFS (first come first serviced) services requests according to their original
order.SSTF (shortest seek time first) chooses the request in the window that is closest to
its disk head to service.LOOK partitions the request sequence into blocks ofW requests
each. Requests in a block are serviced completely, with minimum cost, before the ones
in later blocks. That is, letl andr be the leftmost and rightmost requests, respectively,
in the block and assume thatl is closer to the disk head thanr is, LOOK moves the disk
head tol then tor to service the requests in the block. The case wherer is closer is
symmetrical. In this paper we prove that the lower bounds of the competitive ratios of
FCFS, SSTF, andLOOK are

T + D

T + D/(2W − 1)
,

T + b(D − 1)/2c
T + b(D − 1)/2c/(2W − 1)

, and

W T+ D

W T+ D/(2W − 1)
,

respectively, whereD is the number of cylinders in the disk less one,W is the size of the

Competitive Analysis of On-Line Disk Scheduling 493

window, andT is the constant mentioned in our cost model. We also give a competitive
ratio of LOOK that matches its lower bound. As our results show, the performance of
LOOK, in a competitive sense, is better than those ofFCFS andSSTF.

The paper is organized as follows. Section 2 gives the disk model, the cost measure,
the technique of competitive analysis, and the definitions ofFCFS, SSTF, andLOOK.
Sections 3 concerns itself with deriving the lower bounds of the competitive ratios of
FCFS, SSTF, andLOOK. In Sections 4 and 5 we derive the competitive ratio ofLOOK
using the potential technique. Sections 6 gives the discussions and concluding remarks.

2. Preliminaries

A diskconsists of a disk head, a window, andD + 1 cylinders numbered from 0 toD.
The disk headis a server that moves on the disk and services requests on cylinders.
The disk is usually regarded as a line segment where cylinders 0 andD are the leftmost
and rightmost cylinders, respectively, on the disk. The distance between cylindersr1

and r2 is |r1 − r2|. A requeston cylinderr is denoted as〈r 〉. A request sequenceis
a sequence of requests, waiting to be serviced by the disk head. A request sequence
σ = 〈r1, r2, . . . , rn〉 specifies a sequence ofn requests on cylindersr1, r2, . . . , andrn.
The window is a buffer of sizeW which is capable of holdingW requests. Requests
in σ enter the window one-by-one, and a request must be in the window before it is
serviced. Without loss of generality, we assume that the window is always full unless
there is no request in the remaining request sequence. That is, at each step of service, one
request is serviced and one is loaded into the window, if there are requests remaining in
the request sequence. Analgorithmcontrols the movement of the disk head and decides
which request in the window is to be serviced next. The algorithm moves the disk head
to cylinderr to service〈r 〉. (Usually, we use the phrase “the algorithm moves tor to
service〈r 〉” as a shorthand for the previous one.) Consider an algorithmA. Theschedule
of A on σ , denoted asπA(σ) = 〈〈x1, x2, . . . , xn〉〉, is the servicing sequence ofA on σ .
Notice thatπA(σ) is a permutation ofσ andxi , 1 ≤ i ≤ n, is thei th serviced request.
Let h = x0 be the initial disk head position ofA. Without loss of generality, we assume
thatA moves straight fromxi−1 to xi to service〈xi 〉, i ≤ 1≤ n. Thepathof A onσ is a
sequence of cylinders that records the traveling history ofA. Thecostof A onσ , denoted
as costA(σ), is defined to be

∑n
i=1 |xi − xi−1| + nT, whereT is a constant that captures

the seek startup time, the latency time, and the transfer time of servicing a request.
An algorithm ison-lineif the decision of which request to service next depends only

on its past history and the current window content. That is, the decision is independent
of the remaining requests that have not been brought into the window. Otherwise, the
algorithm isoff-line. That is, an off-line algorithm is aware of the whole request sequence
when it makes decisions. Theon-line disk scheduling problemis that of designing an
on-line algorithm to service request sequences with minimum cost.

An on-line algorithmA is α-competitiveif there exists a constantβ such that, for
any request sequenceσ and any algorithmADV,

costA(σ) ≤ α × costADV(σ)+ β.
The ratioα is called thecompetitive ratioof A. Notice that, since one of the algorithms

494 Tzuoo-Hawn Yeh, Cheng-Ming Kuo, Chin-Laung Lei, and Hsu-Chun Yen

represented byADV is an optimal algorithm onσ , the definition of competitiveness above
is comparingA to an optimal off-line algorithm. The definition given here can be viewed
as a game between the on-line algorithmA and the adversaryADV. ADV is responsible for
generating a worst-case sequence againstA, and servicing the sequence with minimum
cost. Notice that, whenW = 1, the competitive ratio of any algorithm is 1, since there is
exactly one request in the window to chose from, and the behavior of any algorithm, no
matter whether it isA or ADV, is exactly the same. As a result, we assume thatW ≥ 2
in the remainder of this paper.

In this paper we consider the following three on-line algorithms:

FCFS: Given a request sequenceσ , FCFS servicesσ using the schedule〈〈σ 〉〉.
SSTF: SSTF chooses the request in the window that is nearest to the disk head to

service. Break tie arbitrarily.
LOOK: The request sequence is partitioned into blocks, each of which, except per-

haps the last one, containsW requests. The requests in a block are serviced
before the requests in the next block. LetV be the block of requests under
consideration. Assume that〈l 〉 and 〈r 〉 are the smallest and largest requests,
respectively, inV , that is,l ≤ q ≤ r for any 〈q〉 ∈ V . Let h be the disk head
position before the current block is being serviced. If|l − h| < |r − h|, then the
disk head moves tol and sweeps tor , services all requests inV . Symmetrically,
if |r − h| > |l − h|, then the disk head moves tor and sweeps tol , services all
requests inV . Break tie arbitrarily.

3. Lower Bounds

In this section the lower bounds of the competitive ratios forFCFS, SSTF, andLOOK are
derived. Initially, the disk head is assumed to be on cylinder 0. For ease of expression,
let σ k representσ repeatedk times, whereσ is a request or a sequence of requests. To
show thatαLB is a lower bound of the competitive ratio of an on-line algorithmA, we
proceed as follows. For any constantβ, construct a request sequenceσ , according to the
behavior ofA, such that

costA(σ)− β
costADV(σ)

≥ αLB .

In the following derivation, letn be a large integer.

Theorem 1. The competitive ratio ofFCFS is no less than

T + D

T + D/(2W − 1)
.

Proof. Consider the request sequence:

σ = 〈(D0)(2W−1)n〉.

Competitive Analysis of On-Line Disk Scheduling 495

FCFS servicesσ using the schedule〈〈σ 〉〉, so costFCFS(σ) = 2n(2W − 1)(T + D). We
can serviceσ more efficiently as follows. First we stay on cylinder 0, service as many
requests on cylinder 0 as possible, delay the service of the requests on cylinderD by
accumulating them in the window, until the window is full of requests on cylinderD.
Then we move to cylinderD and service theW requests on cylinderD in the window.
We can repeat symmetrically the process described above on cylinderD, and finally go
back to cylinder 0. The process can be repeated until all the requests inσ are processed.
That is, we can serviceσ using the schedule

〈〈(0W−1D2W−10W)n〉〉,

so costADV(σ) ≤ 2n(2W − 1)T + 2nD. Thus,

costFCFS(σ)− β
costADV(σ)

≥ 2n(2W − 1)(T + D)− β
2n(2W − 1)T + 2nD

,

which approaches

T + D

T + D/(2W − 1)

whenn is large.

Theorem 2. The competitive ratio ofSSTF is no less than

T + b(D − 1)/2c
T + b(D − 1)/2c/(2W − 1)

.

Proof. Consider the following request sequence:

σ =
〈
DW−1

(⌊
D − 1

2

⌋
0

)n(2W−1)+W〉
.

SSTF servicesσ using the schedule

〈〈(⌊
D − 1

2

⌋
0

)n(2W−1)+W

DW−1

〉〉
,

so costSSTF(σ) = (2n(2W − 1)+ 3W − 1)T + 2(n(2W − 1)+W)b(D − 1)/2c + D.
We can serviceσ more efficiently as follows. First we move to cylinderD and service
DW−1. Then we service the remaining requests inσ using technique similar to the process
carried out in the previous theorem. That is, we can serviceσ using the schedule〈〈

DW−1

⌊
D − 1

2

⌋W

0W

(
0W−1

⌊
D − 1

2

⌋2W−1

0W

)n〉〉
,

496 Tzuoo-Hawn Yeh, Cheng-Ming Kuo, Chin-Laung Lei, and Hsu-Chun Yen

so costADV(σ) ≤ (2n(2W − 1)+ 3W − 1)T + 2D + 2nb(D − 1)/2c. Whenn is large,
we have

costSSTF(σ)− β
costADV(σ)

≥ T + b(D − 1)/2c
T + b(D − 1)/2c/(2W − 1)

.

Theorem 3. The competitive ratio ofLOOK is no less than

W T+ D

W T+ D/(2W − 1)
.

Proof. Consider the request sequence:

σ = 〈((0W−1D0W)W−1DW · (DW−10DW)W−10W)n〉.

LOOK servicesσ using the schedule〈〈σ 〉〉, so costLOOK(σ) = 2nW(2W−1)T+2n(2W−
1)D. We can serviceσ more efficiently as follows. First we stay on cylinder 0 and service
all the requests on cylinder 0 in the subsequence〈(0W−1D0W)W−1)〉. TheW−1 requests
on cylinderD in the subsequence is delayed in the window. Then we move to cylinder
D, service theW − 1 requests on cylinderD left in the window, and service all the
requests on cylinderD in the subsequence〈(DW−10DW)W−1)〉. TheW− 1 requests on
cylinder 0 in the subsequence is delayed in the window. Then we go back to cylinder 0
and service theW − 1 requests on cylinder 0 delayed in the window. The process can
be repeated forn times. That is, we can serviceσ using the schedule

〈〈(0(W−1)(2W−1)D2W−1 · D(W−1)(2W−1)02W−1)n〉〉,

so costADV(σ) ≤ 2nW(2W − 1)T + 2nD. Whenn is large, we have

costLOOK(σ)− β
costADV(σ)

≥ W T+ D

W T+ D/(2W − 1)
.

4. The Behavior ofLOOK and ADV

In this and the next sections we prove the competitiveness ofLOOK that matches its
lower bound. In this section we give the concept of a “phase,” which corresponds to the
period of time thatLOOK services a block ofW requests. To analyzeLOOK, we run
LOOK andADV phase by phase in parallel. We show that the behavior ofLOOK andADV
in any phase can be transformed into a simpler form and give some properties about it.
In the next section we analyze the simpler form using the potential function technique.

Let σ = 〈r1, r2, . . . , rn〉 be a request sequence of lengthn and p = dn/We.
The i th phase of requests, denoted asδi , 1 ≤ i ≤ p − 1, is the sequenceδi =
〈r(i−1)W+1, r(i−1)W+2, . . . , riW〉. The last phase of requests, i.e., thepth phase of requests,
is δp = 〈r(p−1)W+1, . . . , rn〉. Intuitively, σ is partitioned intop phases of requests, each
of which, except perhaps the last one, contains exactlyW requests. Thei th phase of

Competitive Analysis of On-Line Disk Scheduling 497

LOOK, 1 ≤ i ≤ p, is the time period whereLOOK services thei th phase of requests.
SinceADV is an arbitrary algorithm and is allowed to delay the service of some requests
indefinitely until the end of its schedule, the notion of a phase ofADV is different. Let
πADV(σ) = 〈〈x1, x2, . . . , xn〉〉. The first phase ofADV is defined to be the time period
whereADV services〈x1〉. From the second phase on,ADV servicesW requests in each
phase. In the last phase,ADV services less than or equal toW requests. Notice that the
number of phases forADV may bep or p+ 1. More precisely, ifn = (p− 1)W + 1,
thenADV hasp phases, and in thepth phaseADV servicesW requests. Otherwise, that
is, (p− 1)W + 2 ≤ n ≤ pW, ADV hasp+ 1 phases, and in the(p+ 1)th phaseADV
servicesn− (p− 1)W− 1 requests. Notice thatLOOK services the requests inδi in the
i th phase andADV services the requests inδi in the i th or later phases.

Define thedelayed setof ADV at the end of phasei , 1 ≤ i ≤ p − 1, to be the
W−1 requests in〈δ1, δ2, . . . , δi 〉 that have not yet been serviced byADV. Intuitively, the
delayed set equals the window content minus the request that is brought into the window
last. Define theconfigurationof the disk at the end of phasei , 1≤ i ≤ p− 1, to be the
three-tuple(A, L ,B), whereA andL are the disk head positions ofADV andLOOK, and
B is the delayed set ofADV.

Consider the behavior ofLOOK andADV in the i th phase, 2≤ i ≤ p− 1, and call
this phase the “current phase.” The first, thepth, and the(p+ 1)th, if it exists, phases
are excluded from the following analysis becauseLOOK and/or ADV may service less
thanW requests in these phases. It will be clear in the next section where the competitive
analysis is carried out that the exclusion of these phases does not change the desired
result. Letδ = 〈s1, s2, . . . , sW〉 be the current phase of requests, let(A, L ,B) be the
configuration of the disk at the beginning of the phase, that is, the initial configuration,
and let(A′, L ′,B′) be the configuration of the disk at the end of the phase, that is, the
final configuration. Notice that in the current phaseLOOK services all theW requests
in δ, ADV servicesW of the 2W − 1 requests inB ∪ δ, andB′ equals the set of the
W − 1 requests inB ∪ δ that are not serviced byADV. Table 1 lists all possible cases
whereL ≤ L ′ that describe the behavior ofLOOK andADV during the current phase.
(The cases whereL > L ′ are symmetrical.) A general case can be viewed as a transition

Table 1. The general cases.

Case Description

GC1
A < L ≤ L ′

GC2 L ≤ si ≤ L ′ for all i and there exists an integerj such thatsj = L ′. LOOK
L ≤ A ≤ L ′ moves toL ′ and servicesδ.

GC3
L ≤ L ′ < A

GC4
A ≤ l

GC5 l ≤ si ≤ L ′ for all i andsj1 = l andsj2 = L ′ for two integersj1 and
l < A < L ′ j2. LOOK moves tol < L then toL ′ > L and servicesδ. Notice that

GC6 (L ′ − L) ≥ (L − l).
L ′ ≤ A

498 Tzuoo-Hawn Yeh, Cheng-Ming Kuo, Chin-Laung Lei, and Hsu-Chun Yen

Table 2. The primitive cases and the virtual move of the adversary.

Case Description

PC1 A = L andδ = 〈AW−1L ′〉 for someL ′ ≥ L. LOOK moves toL ′ and servicesδ. ADV
services〈AW−1〉, moves arbitrarily on the disk, settles on cylinderA′, and services
〈A′〉. Assume that〈A′〉 is the first request inB∪{〈L ′〉} thatADV encounters during
its move.

PC2 A ≥ L andδ = 〈AW〉. LOOK moves toAand servicesδ. ADV stays onAand services
δ.

PC3 δ = 〈AW−2l L ′〉 for somel andL ′ such thatl < A < L ′, l < L < L ′, and(L ′ − L) ≥
(L − l). LOOK moves tol then toL ′ and servicesδ. Assume that there exist two
requests〈q1〉, 〈q2〉 ∈ B such thatq1 = q2 = A. ADV stays onA and services
〈AW〉.

PC4 A > L andδ = 〈AW−1l 〉 for somel < L such that(A− L) ≥ (L − l). LOOK moves
to l then toA and servicesδ. ADV services〈AW−1〉, moves arbitrarily on the disk,
settles on cylinderA′, and services〈A′〉. Assume that〈A′〉 is the first request
in B ∪ {〈l 〉} thatADV encounters during its move.

VM ADV moves arbitrarily on the disk, and replaces each request in the delayed set that is
visited during the move with an arbitrary request.LOOK stays on its original
position.

from the initial configuration to the final configuration. Since it is difficult to analyze
the general cases directly, we simulate the transition of configurations in a general case
with a sequence of simple cases listed in Table 2. The first four simple cases in the table
are calledprimitive cases. They are cases extracted from general cases that are easier to
handle. The last case in the table is thevirtual move of the adversary. It is an artificial case
and is not an ordinary operation found in a phase like the general cases and the primitive
cases. In a virtual move,LOOK does not move in the transition of configurations. In the
following, we try tosimulatethe transition from one configuration to another in a general
case with a sequence of primitive cases and/or virtual moves.

Lemma 1. Given any general case G, there is a sequence P= P1P2 · · · Pv of v ≥ 1
steps, where Pi , 1≤ i ≤ v, is a primitive case or a virtual move such that(1) the initial
configuration of G equals the initial configuration of P1; (2) the final configuration of
Pi equals the initial configuration of Pi+1, for 1≤ i ≤ v− 1; (3) the final configuration
of G equals the final configuration of Pv; (4) the path ofLOOK in G equals that in P;
and(5) the path of the adversary in G equals that in P.

The lemma implies that, whenT = 0, the cost ofLOOK (resp. the adversary) inG
equals the cost ofLOOK (resp. the adversary) inP.

Proof. Let (A(i), L(i),B(i)) be the configuration of the disk after StepPi . Imagine that
an adversaryADVB is responsible for the construction ofP. First we assume thatG
fits Case GC1 and analyze the behavior ofLOOK andADV in Case GC1.LOOK moves
from L to L ′ and servicesδ. ADV moves arbitrarily on the disk. All we know is that,

Competitive Analysis of On-Line Disk Scheduling 499

sinceADV servicesW requests inB ∪ δ, ADV services at least one request inδ. As
a result,ADV must visit cylinderL. The construction ofP for Case GC1 consists of
three steps,P1, P2, andP3, each of which is a primitive case or a virtual move, as in the
following.

Case GC1

StepP1. ADVB simulates the path ofADV until it reaches cylinderL, and replaces
each request in its delayed set visited during the move with a request on
cylinderL. This step fits Case VM.

StepP2. ADVB gives the request sequence〈LW−1L ′〉. LOOK moves toL ′ and ser-
vices 〈LW−1L ′〉. ADVB services〈LW−1〉, then simulates the remaining
path ofADV until it reaches a cylinderq such that〈q〉 ∈ B(1) ∪ {〈L ′〉},
and then services〈q〉. This step fits Case PC1. Notice that ifADV services
all the requests inδ in G, thenL ′ is in its path; ifADVB replaced at least
one request in StepP1, then〈L〉 ∈ B(1); otherwise,ADV services at least
one request〈x〉 ∈ B after visiting cylinderL, that is,〈x〉 ∈ B(1). As a
result, the existence of the request〈q〉 ∈ B(1) ∪ {〈L ′〉} is clear. Notice that
if q = L, thenADVB stays on cylinderL and services〈LW−1q〉, which
equals〈LW〉.

StepP3. ADVB simulates the remaining path ofADV, and replaces the requests in
its delayed set visited during the move with appropriate requests such
that the delayed set ofADVB, i.e.,B(3), matchesB′. Notice that the set of
requests inB(2) that are not visited during the move ofADVB is a subset
of B′, thus the construction in this step is feasible. This step fits Case
VM.

The derivations of other general cases are similar to that in Case GC1. We list briefly
their simulation steps in the following.

Case GC2

StepP1. ADVB gives the request sequence〈AW〉. LOOK moves toA and services
〈AW〉. ADV stays onA and services〈AW〉. (This step fits Case PC2.)

StepP2. ADVB gives〈AW−1L ′〉. LOOK moves toL ′ and service〈AW−1L ′〉. ADVB
services〈AW−1〉, then simulates the path ofADV until it reaches a cylinder
q such that〈q〉 ∈ B(1) ∪ {〈L ′〉} = B ∪ {〈L ′〉}, and then services〈q〉. (Case
PC1)

StepP3. Identical to StepP3 in Case GC1. (Case VM)

Case GC3

StepP1. Similar to StepP1 in Case GC1.ADVB simulates the path ofADV until it
reachesL ′, and replaces each request in its delayed set visited during the
move with a request on cylinderL ′. (Case VM)

StepP2. ADVB gives〈(L ′)W〉. (PC2)
StepP3. Identical to StepP3 in Case GC1. (VM)

500 Tzuoo-Hawn Yeh, Cheng-Ming Kuo, Chin-Laung Lei, and Hsu-Chun Yen

Case GC4

StepP1. Similar to StepP1 in Case GC1.ADVB simulates the path ofADV until it
reachesl , and replaces each request in its delayed set visited during the
move with a request on cylinderl . (VM)

StepP2. ADVB gives〈l W〉. (PC2)
StepP3. ADVB gives〈l W−1L ′〉. (PC1)
StepP4. Identical to StepP3 in Case GC1. (VM)

Case GC5. Let 〈x1〉 (resp.〈x2〉) be the first (resp. second) request on the path ofADV
that is inB ∪ {〈l 〉} ∪ {〈L ′〉}. We consider the following three subcases:

Subcase1: x1 = l or 〈x1〉 ∈ B and x2 = l .

StepP1. Identical to StepP1 in Case GC4. (VM)
StepP2. ADVB gives〈l W〉. (PC2)
StepP3. ADVB gives〈l W−1L ′〉. (PC1)
StepP4. Identical to StepP3 in Case GC1. (VM)

Subcase2: x1 = L ′ or 〈x1〉 ∈ B and x2 = L ′.

StepP1. Identical to StepP1 in Case GC3. (VM)
StepP2. ADVB gives〈(L ′)W−1l 〉. (PC4)
StepP3. Identical to StepP3 in Case GC1. (VM)

Subcase3: 〈x1〉, 〈x2〉 ∈ B.

StepP1. Similar to StepP1 in Case GC1.ADVB simulates the path ofADV until it
reachesx2, and replaces each request in its delayed set visited during the
move with a request on cylinderx2. (VM)

StepP2. ADVB gives〈(x2)
W−2l L ′〉. (PC3)

StepP3. Identical to StepP3 in Case GC1. (VM)

Case GC6

StepP1. Identical to StepP1 in Case GC3. (VM)
StepP2. ADVB gives〈(L ′)W−1l 〉. (PC4)
StepP3. Identical to StepP3 in Case GC1. (VM)

5. Competitive Analysis ofLOOK

In the following competitive analysis ofLOOK, we use the technique of potential function,
which has been employed in amortized analysis and competitive analysis. Let the request
sequence under consideration beσ = 〈r1, r2, . . . , rn〉 = 〈δ1δ2 · · · δp〉, whereδi , 1≤ i ≤
p = dn/We, is thei th phase of requests. Using the potential technique, we runLOOK
and ADV phase by phase onσ , and compare the costs ofLOOK and ADV phase by
phase. The potential function maps a configuration of the disk at some time to a real
number. Let8i−1 and8i be the potentials at the beginning and at the end, respectively,
of phasei , 2 ≤ i ≤ p − 1. (Notice that8i is the potential at the end of phasei , and

Competitive Analysis of On-Line Disk Scheduling 501

is also the potential at the beginning of phasei + 1.) We prove later in this section that
costLOOK(δi)+8i −8i−1 ≤ α×costADV(δi), for someα. If the potential is bounded from
below and above, and the cost ofLOOK in every phase is bounded, it is easy to derive
that costLOOK(σ) ≤ α × costADV(σ)+ β, for someβ. The cost ofLOOK in the first and
the last phase and(81−8p−1) can be grouped intoβ. That is,LOOK is α-competitive.

Let (A, L ,B) be the configuration of the disk. The potential8 is defined asM ×
(ϕ1+ ϕ2+ ϕ3+ ϕ4), where

M = W T+ D

(2W − 1)W T+ D
,

ϕ1 = |A− L|,

ϕ2 = −2×
∑
〈q〉∈B
|A− q|,

ϕ3 =
{

2|A− L|, if (q − L)× (L − A) > 0 for all 〈q〉 ∈ B,
0, otherwise,

ϕ4 = K

(
1

M
− 1

)
, where K = min(L , D − L).

Intuitively, ϕ1 is the distance betweenA andL. ϕ2 is the potential charged onADV when
there are requests in the delayed set that are far fromA. ϕ3 is the potential charged on the
special case whereA < L < q, for all q ∈ B, or q < L < A, for all q ∈ B, to amortize
the cost in the next phase whereA moves closer to the requests in its delayed set.ϕ4 is
the potential that measures the distance fromL to the near end of the disk. Notice that
−2M(W− 1)D ≤ 8 ≤ 3M D + bD/2c(1− M), that is, the potential is bounded from
below and above.

In the remainder of this section, we focus on thei th phase of operations ofADV and
LOOK, 2 ≤ i ≤ p − 1, and, as in the previous section, we call this phase the current
phase. LetCA andCL be the costs ofADV andLOOK, respectively, in the current phase.
Let (A, L ,B),8, andϕi , 1≤ i ≤ 4, be the configuration of the disk, the potential, and its
four components, respectively, at the beginning of the current phase, and let(A′, L ′,B′),
8′, andϕ′i be the corresponding items at the end of the current phase. Let the potential
difference in the current phase be18 = 8′ −8 and let1ϕi = ϕ′i − ϕi , 1≤ i ≤ 4. We
prove the following theorem about the competitiveness ofLOOK.

Theorem 4. LOOK is M(2W − 1)-competitive. In particular, we have

CL +18 ≤ M(2W − 1)CA.

We first prove the theorem whenT = 0 in Lemma 2 and then extend the result to the
situation whereT ≥ 0 in Lemma 3. Notice that whenT = 0, we haveM = 1, ϕ4 = 0,
and18 = 1ϕ1+1ϕ2+1ϕ3.

502 Tzuoo-Hawn Yeh, Cheng-Ming Kuo, Chin-Laung Lei, and Hsu-Chun Yen

Lemma 2. LOOK is (2W − 1)-competitive when T= 0. In particular, we have

CL +18 ≤ (2W − 1)CA. (1)

Proof. First we show that (1) holds in the primitive cases and in the virtual moves of
the adversary. At the end of the proof we show how to establish (1) for the current phase.

Case PC1. Notice thatA′ ≤ L ′. Thus,CA ≥ |A′ − A|, CL = L ′ − A, and1ϕ1 =
(L ′ − A′)− 0. If 〈L ′〉 is serviced byADV, thenA′ = L ′ and1ϕ2 ≤ 2(W − 1)|A′ − A|
andϕ′3 = 0; otherwise, one of the requests inB is serviced andA′ < L ′, then〈L ′〉 ∈ B′
and1ϕ2 ≤ 2(W − 1)|A′ − A| − 2(L ′ − A′) andϕ′3 = 0. In both situations we have
1ϕ2 ≤ 2(W − 1)|A′ − A| − 2(L ′ − A′) and1ϕ3 ≤ 0. Therefore,CL + 18 ≤
(2W − 2)|A′ − A| + (A′ − A) ≤ (2W − 1)|A′ − A| ≤ (2W − 1)CA.

Case PC2. Notice thatL ′ = A′ = A in this case. ThusCA = 0, CL = (A − L),
1ϕ1 = 0− (A− L), and1ϕ2 = 0. SinceA′ = L ′, we haveϕ′3 = 0 and1ϕ3 ≤ 0.
Therefore,CL +18 ≤ 0= (2W − 1)CA.

Case PC3. In this case,CA = 0, CL = L ′ + L − 2l , 1ϕ1 = (L ′ − A) − |L − A|,
and1ϕ2 = −2(L ′ − A) − 2(A− l). Since〈L ′〉 ∈ B′, we haveϕ′3 = 0 and1ϕ3 ≤ 0.
Therefore,CL +18 ≤ (L − A)− |L − A| ≤ 0= (2W − 1)CA.

Case PC4. Notice thatA′ ≥ l . Let x(+) be the number of requests〈q〉 ∈ B such
that(A′ − A)× (q − A) ≥ 0, and letx(−) be the number of requests〈q〉 ∈ B such that
(A′−A)×(q−A) < 0. Notice thatx(+)+x(−) = |B| = W−1. In this case,CA ≥ |A′−A|,
CL = A+ L − 2l ,1ϕ1 = |A′ − A| − (A− L), and1ϕ2 = 2x(+)|A′ − A| − 2x(−)|A′ −
A|−2(A′−l). Therefore,CL+18 = (2x(+)−2x(−)+1)|A′−A|+2(L−A′)+ϕ′3−ϕ3.
The discussion continues in the following four subcases:

Subcase1: x(−) ≥ 1. It is easy to check that(L − A′) ≤ |A′ − A|, ϕ′3 ≤ 2|A′ − A|,
andϕ3 ≥ 0. SoCL +18 ≤ (2W − 1)|A′ − A| ≤ (2W − 1)CA.

Subcase2: x(−) = 0 and L≤ A′ ≤ A. Since〈l 〉 ∈ B′ andl < A′ ≤ L ′, ϕ′3 = 0. It is
clear thatϕ3 ≥ 0 and(L − A′) ≤ 0. SoCL +18 ≤ (2W− 1)|A′ − A| ≤ (2W− 1)CA.

Subcase3: x(−) = 0 and A′ > A. It is clear thatϕ′3 ≤ 2(A′ − A) andϕ3 ≥ 0. So
CL+18 ≤ (2W−1)|A′−A|+2(L−A′)+2(A′−A) ≤ (2W−1)|A′−A| ≤ (2W−1)CA.

Subcase4: x(−) = 0 and A′ < L. Sinceq ≤ A′ < L for all 〈q〉 ∈ B, we have
ϕ3 = 2(A−L) andϕ′3 = 0. SoCL+18 = (2W−1)|A′ −A|+2(L−A′)−2(A−L) ≤
(2W − 1)|A′ − A| + 2(L − l)− 2(A− L) ≤ (2W − 1)|A′ − A| ≤ (2W − 1)CA.

In the following we show that18 ≤ (2W − 1)CA in the virtual move. Notice that
LOOK does not move during the virtual move, soCL = 0.

Case VM. In this case,1ϕ1 ≤ |A′ − A|. Letk be the number of requests in the delayed
set that are visited byADV. Consider the following three subcases according to the values
of 1ϕ3 andk:

Competitive Analysis of On-Line Disk Scheduling 503

Subcase1:1ϕ3 ≤ 0. In this subcase,1ϕ2 ≤ 2(W − 1)|A′ − A| and18 ≤ (2W −
1)|A′ − A| ≤ (2W − 1)CA.

Subcase2:1ϕ3 > 0and k= 0. In this subcase,ADV moves away from all the requests
in B. Thus,1ϕ2 = −2(W− 1)|A′ − A|. It is clear thatϕ′3 ≤ 2|A′ − A| andϕ3 ≥ 0. So,
18 ≤ (−2W + 5)|A′ − A| ≤ (2W − 1)CA.

Subcase3: 1ϕ3 > 0 and k > 0. Assume that1ϕ3 = 2d > 0. Since the distance
from the newly added requests toA′ is at leastd (otherwise,ϕ′3 will be 0), 1ϕ2 ≤
2(W − 1)|A′ − A| − 2kd. Therefore,18 ≤ (2W − 1)|A′ − A| ≤ (2W − 1)CA.

Let the cost ofLOOK, the costADV, and the potential difference in stepPi in Lemma 1
beCL(i), CA(i), and18(i), respectively. By Lemma 1 and the fact that (1) holds in the
primitive cases and in the virtual moves of the adversary proved above, it is clear that
CL +18 =

∑v
i=1(CL(i) +18(i)) ≤ (2W − 1)

∑v
i=1 CA(i) = (2W − 1)CA.

In the following we show how to extend the result of Lemma 2 toT = t ≥ 0.
For ease of expression, letCT=t

A , CT=t
L , and18T=t be the values ofCA, CL , and18,

respectively, whenT = t .

Lemma 3. If CT=0
L + 18T=0 ≤ (2W − 1)CT=0

A , then CT=t
L + 18T=t ≤ m(2W −

1)CT=t
A , where t≥ 0 and m is the value of M when T= t .

Proof. Let1K be the difference ofK in ϕ4 after and before the current phase. We show
in the following that1K + CT=0

L ≤ D in the current phase. Notice that we consider
only cases whereL ≤ L ′. Those cases whereL ′ ≤ L are symmetrical. Letu = bD/2c
denote the middle cylinder of the disk. We assume in the following cases thatLOOK
moves leftx ≥ 0 cylinders and then sweeps toL ′.

L ≤ L ′ ≤ u: Notice thatx + L ′ − L ≤ bD/2c. In this case,1K = L ′ − L and
CT=0

L = 2x + L ′ − L. Thus,1K + CT=0
L = 2(x + L ′ − L) ≤ D.

L ≤ u < L ′: Notice thatx ≤ (L ′ − L) andx ≤ L. In this case,1K = (D− L ′)− L
andCT=0

L = 2x + L ′ − L. Thus,1K + CT=0
L = D + 2x − 2L ≤ D.

u < L < L ′: Notice thatLOOK may move to the left half of the disk after moving
left x cylinders, and thatx ≤ (L ′ − L) ≤ bD/2c. In this case,1K = L − L ′ and
CT=0

L = 2x + L ′ − L. Thus,1K + CT=0
L = 2x ≤ D.

As a result,

CT=t
L +18T=t = CT=0

L +Wt+m

(
18T=0+1K

(
1

m
− 1

))
= m(CT=0

L +18T=0)+m(2W − 1)Wt+ (1−m)CT=0
L

+1K (1−m)+Wt(1−m(2W − 1))

≤ m(2W − 1)CT=0
A +m(2W − 1)Wt+ (1−m)CT=0

L

+1K (1−m)+Wt(1−m(2W − 1))

504 Tzuoo-Hawn Yeh, Cheng-Ming Kuo, Chin-Laung Lei, and Hsu-Chun Yen

Fig. 1. Comparison ofFCFS, SSTF, andLOOK.

Competitive Analysis of On-Line Disk Scheduling 505

= m(2W − 1)CT=t
A + 2(W − 1)Wt

(2W − 1)Wt+ D
× (1K + CT=0

L − D)

≤ m(2W − 1)CT=t
A .

Clearly, Theorem 4 follows immediately from Lemmas 2 and 3.

6. Discussions and Conclusions

In this paper we have studied three disk scheduling algorithmsFCFS, SSTF, andLOOK
using competitive analysis. The cost measure in our model takes the seek startup time,
the latency time, and the transfer time into consideration and groups them into a constant
T . We showed thatLOOK is (W T+ D)/(W T+ D/(2W − 1))-competitive, whereD
is the number of cylinders in the disk less one, andW is the size of the window, which
represents the waiting buffer of the disk. We also provided the lower bounds of the
competitive ratios ofFCFS, SSTF, andLOOK. The competitive ratio ofLOOK matches
its lower bound.

Different disk drives may have different numbers of cylinders and different values
of T . TheD/T ratios of the disk drives discussed in [6], [14], and [15] range from 1 to
4. We plot the competitive ratio versus the window size forD/T = 1 and 4 in Figure 1.
One can see from the figure that the competitive ratio ofLOOK is lower than the lower
bounds of the competitive ratios ofSSTF andFCFS. That is, in a competitive sense, the
performance ofLOOK is better than those ofSSTF andFCFS. Since the window size in
our analysis reflects the work load of a disk system, the results strongly suggest that a
system programmer should consider in favor ofLOOK thanSSTF andFCFS as the disk
scheduling policy when the work load of the disk system is heavy. Though we are not
able to provide the problem lower bound for disk scheduling, it is clear from Figure 1
that the competitive ratio ofLOOK is very low, and we expect that the problem lower
bound is close to the competitive ratio ofLOOK.

Acknowledgments

The authors thank the anonymous referee for comments and suggestions which improved the correctness as
well as the presentation of this paper.

References

[1] Y. Azar, A. Broder, and A. Karlin. On-line load balancing.Theoret. Comput. Sci., 130:73–84, 1994.
[2] Y. Azar, J. Naor, and R. Rom. The competitiveness of on-line assignments.J. Algorithms, 18:221–237,

1995.
[3] T. Chen, W. Yang, and R. Lee. Amortized analysis of some disk scheduling algorithms: SSTF, SCAN,

andn-step SCAN.BIT, 32:546–558, 1992.
[4] E. Coffman, Jr., and M. Hofri. On the expected performance of scanning disks.SIAM J. Comput.,

11:60–70, 1982.

506 Tzuoo-Hawn Yeh, Cheng-Ming Kuo, Chin-Laung Lei, and Hsu-Chun Yen

[5] A. Fiat, R. Karp, M. Luby, L. McGeoch, D. Sleator, and N. Young. Competitive paging algorithms.
J. Algorithms, 12:685–699, 1991.

[6] R. Geist and S. Daniel. A continuum of disk scheduling algorithms.ACM Trans. Comput. Systems,
5:77–92, 1987.

[7] M. Hofri. Disk scheduling: FCFS vs. SSTF revisited.Comm. ACM, 23:645–653, 1980.
[8] S. Irani. Coloring inductive graphs on-line.Algorithmica, 11:53–72, 1994.
[9] B. Kalyanasundaram and K. Pruhs. Online weighted matching.J. Algorithms, 14:478–488, 1993.

[10] R. Shimha and A. Majumdar. On lookahead in the list update problem.Inform. Process. Lett., 50:105–
110, 1994.

[11] D. Shmoys, J. Wein, and D. Williamson. Scheduling parallel machines on-line.SIAM J. Comput.,
24:1313–1331, 1995.

[12] A. Silberschatz, J. Peterson, and P. Galvin.Operating System Concepts, 3rd edn. Addison-Wesley,
Reading, MA, 1991.

[13] D. Sleator and R. Tarjan. Amortized efficiency of list update and paging rules.Comm.ACM, 28:202–208,
1985.

[14] T. Teorey and T. Pinkerton. A comparative analysis of disk scheduling policies.Comm. ACM, 15:177–
184, 1972.

[15] N. Wilhelm. An anomaly in disk scheduling: a comparison of FCFS and SSTF seek scheduling using
an empirical model for disk accesses.Comm. ACM, 19:13–17, 1976.

Received February1997,and in revised form November1997,and in final form February1998.

