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Abstract. This paper links the concepts of Kolmogorov complexity (in complex-
ity theory) and Hausdorff dimension (in fractal geometry) for a class of recursive
(computablej»-languages.

It is shown that the complexity of an infinite string contained Badefinable
set of strings is upper bounded by the Hausdorff dimension of this set and that
this upper bound is tight. Moreover, we show that there are computable gambling
strategies guaranteeing a uniform prediction quality arbitrarily close to the optimal
one estimated by Hausdorff dimension and Kolmogorov complexity provided the
gambler’s adversary plays according to a sequence chosen fErdafinable set
of strings.

We provide also examples which give evidence that our results do not extend
further in the arithmetical hierarchy.

Introduction

The Kolmogorov complexitgf a finite wordw, K (w), is, roughly speaking, the length
of a shortest input (progranm for which a universal algorithml printsw (see, e.g.,
[Ch] and [LV]).! For infinite words {-words) its (normalized) Kolmogorov complexity
might be thought of as
K
lim @ Q)

n—o0

where& /n denotes the prefix of lengthof &.

1 As in [S4] we require thaiv andz be words over the same finite (not necessarily binary) alphébet
of cardinality> 2.
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Although this limit need not exist, Cai and Hartmanis [CH] proved that the graph
of the functiont: &€ — [0, 1] is a fractal regardless with which intermediate value

(S/ ) (E/n)

k(&) = I|m |nf <t <«k(¢) = I|m sup

the possibly not existing limit in (1) is replaced.

Other evidence of the intimate relationship between fractals and Kolmogorov com-
plexity was given in [B], [R1]-[R3], [S1], and [S4] where a different approach was
pursued: Given a set of infinite words (a so-callethnguage)-, bound the maximum
possible Kolmogorov complexity(£) andx (¢) for & € F.

Here Ryabko [R1] showed that for arbitrasylanguage$§ the Hausdorff dimension,
dimF, is a lower bound t& (F) := sup«(§) : & € F}, but as Example 3.18 of [S4]
already shows for simple computahlelanguages the Hausdorff dimension is not an
upper bound toc(F) = sugk(§) : &€ € F}. Instead the results of [B], [S1], and
[S4] show that the upper Kolmogorov complexity @fwords in F is closely related
to (metric) entropy, an information size measure different from Hausdorff dimension
(see [F]).

In[S4], however, we showed that for restricted classes of computalaleguage
(that is,w-languages satisfying additionally certain combinatorial properties) its Haus-
dorff dimension is also an upper bound«¢F), thus giving a partial completion to
Ryabko’s lower bound.

After having introduced some notation and preliminaries in Section 1, we show in the
the second part that the Hausdorff dimension is an upper bound to lower Kolmogorov
complexity for arbitraryX,-definablew-languages. Moreover, we give evidence that,
unless other structural propertiessfanguages are involved, our upper bound does not
extend further in the arithmetical hierarchygfanguages. This result tightens Ryabko’s
lower bound in the range of computable (recursivdanguages.

Then the third section considers the following prediction problem for infinite
sequences (see [R2] and [R3]): A gambler plays a fair game against an adversary
who draws his outcomes according to the symbols of an arbitrarily chosen infinite
sequenc& € X®. The prediction quality of the gambler’s strategy is measured by
the exponent of the increase of the gambler’s capital. Utilizing Levin’s universal semi-
computable semimeasure it was shown in [R2] and [R3] that this exparigntis
bounded from above by-1 « (¢) provided the gambler plays according to a computable
strategy.

In this paper we investigate the case when the adversary is bound to draw his
outcomes from a sequengec F whereF C X is X,-definable. We show that then
there are computable strategies guaranteeing a prediction quajityrbitrarily close
to the value(1 — dim F) uniformly on F, that is, regardless from which € F the
adversary draws his outcomes. Moreover, if the Hausdorff dimensidn, dfmF, is
a semicomputable from the above real number, then there is a strategy guaranteeing
A(n) >1—dimF forne F.

Finally, Section 4 gives some connections to previous work, in particular, upper
bounds on Kolmogorov complexity via Hausdorff dimensiondelanguages satisfying
additional combinatorial properties are considered.
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1. Notation and Preliminary Results

By N = {0, 1, 2, ...} we denote the set of natural numbers. We consider the sfracé
infinite strings (sequences;words) on a finite alphabet of cardinality= card X > 2.
By X* we denote the set (monoid) of finite strings (words)Xnincluding theempty
worde. Forw € X*andb € X*U X letw -b be theirconcatenationThis concatenation
product extends in an obvious way to subd#ts X* andB € X* U X®. As usual we
denote subsets of* as languages and subsetsxf asw-languages.

Furthermorejw| is thelengthofthe wordw € X*, henceX" = {w : w € X*Alw| =
n}. Asintroduced above, Hy/ n we denote théength n prefivof a stringb € X*, |b| > n,
orb e X?,andA(b) :={b/n:neNAan < |bl}andA(B) := J,.g A(b) are the sets
of all finite prefixes ob € X* U X® andB C X* U X®, respectively.

As usual we definél;-definablew-languages EC X“ as

E ={£:vn(neN—£/n¢We), 2)

whereWg C X* is a recursive language, and we defiig-definablew-languages
F C X? as

F={t:3i(eNAVN(NeN — (i, £/n) € Mp)}, (3)

whereMg is a recursive subset of x X*,
DefineL; ;= {w: (i, w) € Mg}. Then (2) and (3) may be alternatively written as

E = X“\Wg - X (4)
and
k
F= U(X“’\Li - X?) = U (xw\ (ﬂ L - x*) : xw> . (5)
ieN keN i=0

In particular, everyx,-definablew-language is a countable union GOf -definablew-
languages.

From the definitions and (4) and (5) it is clear that we may thinkgfand Mg as
upward closed, that iz = Wg - X* and M satisfies the condition

(k,w) € Mf = Yv(v € X* — (k,w - v) € Mf)
and
(k,w) € Mg = Vi@ <k — (,w) € Mp),

thatis,Lj = L; - X*andL; 2 Lj,1.

In order to give a more detailed analysis we considéras a topological space
(Cantor space), where the open subsets are defingd aX® (W < X*). It should
be mentioned that this space is compact, hence for every closed suliseX® the
inclusionF € W - X“ implies that there is already a finite sub¥¢t C W for which
FCW . X
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It is known (e.g., [S2, Theorem 6.2] and [S5, Lemma 3.12]) that a sibsetX®
is I1;-definable iffF is closed andK*\ A(F) is recursively enumerable, consequently, a
3,-definable subsdE C X is a countable union of closed sets (a so-caHgese).

The Hausdorff dimension of am-languageF < X“ may be defined using the
entropy of languages. To this end we introduce shecture functionof a language
LC X*s:N—N,as

s (n) :=card LN X",
and we define itentropy

H = lim Supw.

n—oo n

In other words, we have the following equivalencesdct H, :

ZsL(n)-r""'n=Zr"’“|”|<oo<—>oz> HL, (6)
neN vel
ZsL(n).r—“'”:Zr_“'lvlzooeoz< H.. (7)
neN vel

In casex = H_ we may have}_,_, r " < coaswellasy’, ., r " = oo.
Moreover, letV? = (& : £ € X2 A A®) N V is infinite} be thes-limit of the
languagev C X*. Then according to (3.11) of [S4]
dimF :=inf{Hw : W C X* A F € W%} (8)
is theHausdorff dimensioof F € X. In particular, we have

dimV?® < Hy. ()]

Moreover, following Lemma 3.10 of [S4], we have, for> dimF,

V8<8>O—>EIW<W§X*/\F§W~X‘“/\Z(r_”)w|<8)>. (10)
weW

We mention some relations between lower Kolmogorov complexignd Haus-
dorff dimension or the entropy of languages. First we have a general lower boknd to
by Hausdorff dimension, and second we give an upper bound lmnthe entropy of
languages.

Theorem 1[R1, Theorem 2]. If F € X®, thendimF < «(F).

Lemma 2[S4,Proposition 2.14]. If L € X* and L or its complement XL is a re-
cursively enumerable languaghen

k(&) < HL forall &elL’.
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2. An Upper Bound for Kolmogorov Complexity

Inthis section we derive the upper boundddf ) by the Hausdorff dimension éf C X,
dimF, provided¢ € F andF is X,-definable. Our result will be an immediate conse-
guence of the following recursive analogue to the definition of the Hausdorff dimension
(see (8)).

To this end we need the definition of semicomputable real numbers. As in Section 3.8
of [W] we call a real numbes € R left- (right-)computable iff the set of all rational
numbers smaller (larger) thanis recursively enumerable. An equivalent definition is
the following one:

Definition 1. A real numberx € R is calledleft-computabléff there is a recursive
function f,: N — Q such that

1.ViieN— f,(i) < f,(i+1 <a),and
2. lim_ o fo(i) =a.

We also say thaf, approximatest from below

Right-computable real numbers are defined accordingly.

It should be noted that« is left-computable iftx is right-computable, and that the
commonly used monotone functions in analysis like- y, x - y, r*, log, x preserve
left-computable as well as right-computable real numbers.

Theorem 3. If F C X“ is a X,-definablew-languagethen
dimF = inf{Hy : F € V® AV C X*is recursive.

If, moreoverdim F is a right-computable real numhéhen there is a recursive language
V C X* such that FC V¢ anddimF = Hy.

Remark. It should be mentioned that arlanguagd- C X is X,-definable iff there
is a recursive languagd/ € X* such thatF = X®\W?. Accordingly, anw-language
E C X¢ is II,-definableiff there is a recursive languagé € X* such thatE = V*
(see [S2, Theorem 7.4] or [S5, Theorem 3.12]).

In view of (9) this leads to the following consequence of Theorem 3.
Corollary 4. If F € X“ is a X,-definablew-languagethen

dimF =inf{dimE : F C E A E is I1,-definablé.

As Corollary 4 is trivally true foll,-definablew-language$ < X<, it would be
interesting to know whether Theorem 3 holds alsolirdefinablew-languages. We

shall see below in Lemma 6 that our recursive analogue to the definition of the Hausdorff
dimension (Theorem 3) is not valid fot,-definablew-languages.
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Proof of Theoren8. For the first part it suffices to assign to every rational number
o > dimF arecursive languagé, € X* such thaf < V? and dimF < Hy,. In order
to cover both cases of the theorem we may assumedim F to be a right-computable
real number and describe an algorithm which constructs a recursive languageh
thatF C V! andHy, < a.

Since them @ is a left-computable real number, we may assgmeN — Q to be
a recursive function approximatimg® from below, thatisg, (i — 1) < ga(i)i—> r-e,

— 0

and since 0< @ < 1, we may assumg, (i) > r —2.

Furthermore, letU;);cy be an effective enumeration of all finite prefix codes in
X* such that sugv|: v € U;} < sug|v]: v € Uj;1}, and let the languagds, € X*
definingF be given according to (5) ds¢ := (ﬂik:() L; - X*). Define

testk, j, n): < ((uj U(LkN X)) X? =X A Z g (K < r‘k> )

UGUJ'

Observe thatest(k, j, n) is effectively computable and thattiést(k, j, n) is true, then
the following conditions fotJ; are satisfied:

F CU;- X, because Li- X NF =0, and

Yo(v e Uj > k<2 |v]), because g, (i) >r 2. (1)

Now the following algorithm, when giveMg, computes a finite prefix codg
satisfyingF € Ci- X” and)_,, ¢, Gu(K)™! <1 7:

Algorithm Cy
input Kk
n=0
repeatj = —1

repeatj = j +1
until  test(k, j, n) v (sug|v]: v € Uj} > n)
n=n+1
until test(k, j, n)
output Cy :=U;

Informally, for everyn > 0 our algorithm successively searches faf;satisfying
the conditiortest(k, j, n), more precisely, it searches until sucbjais found or else all
U; having suglv|: v € U;j} < n fail to satisfytest(k, j, n). In the latter case the value
of n is increased (thus allowing for a larger maximum codeword length and a larger
complementarw-languagg Lk N X") - X®) and the search starts anew. Consequently,
the algorithm terminates iff there is a finite prefix cddlsuch thad ", ., g, (K)"*! <%
andU - XU (LN XM . X® = X® for somen € N.

We still have to verify that our algorithm always terminates provided dim F.
To this end we observe that in view gf (k) < r~* according to (10) for every > 0
there is aW € X* such thatF € W - X? and)_, . 9 (K < &.

Since X\ L, - X“ is a closed subset df, for ¢ < r % we find a finite subset



A Tight Upper Bound on Kolmogorov Complexity and Uniformly Optimal Prediction 221

Wi € W such thatX®\ Ly - X® € W - X®. Consequently, there is also a finite prefix
codeU; satisfying(Uj U Ly) - X® = X® and thugU; U (L, N X™)) - X = X forn
large enough.

Now letV, := [Uycy Ck. Obviously,V, is recursively enumerable. Note thdf
is even recursive: Since € Cy implies 2- |w| > K (see (11)), we have € V, iff
Jkk < 2-Jw|Aw € Cy). The predicat& < 2-|w] is recursive and bounds the quantifier
3k from above.

Next we show thaF C V2. If £ € F there is & such that € X“\L; - X for
alli > k. Hence, for every > k thew-word & has a prefixv; € C;. As was observed
above, 2 |wi| > i. Consequently has infinitely many prefixes W, = | J; .y Ci.

Finally it remains to show thatly, < «. By virtue of (6) it suffices to verify the
inequalityy",, ., 7"l < oo for everyy > a.

If y > «, then there are only finitely manye N such thag, (i) < r~". Letig be
the largest such Consequently,

S rrdl < 303 o

weVy, keN weCy
< Z Z pvilwl Z Z ga(i)lw\
ko wety k=To weCx
§ZZFV"’”‘+ZF" < 0. O
ko weCy K=o

Utilizing Theorem 1 and Lemma 2 we obtain the announced upper bouadron
by dimF as a direct consequence of Theorem 3.

Theorem 5. If F C X® is a X,-definablew-languagethenk (F) = dim F.
Observe that, since the Hausdorff dimension is countably stable, that is,

dim UieN F = iudiim Fi,

this resultimmediately extends to arbitrary countable uniorisedefinable (or, equiv-
alently, to countable unions cﬁl-definable)w-languagesUj e Fi-

The bound of Theorem 5 cannot be tightened to ensure that there is infeeéra
such thak (¢§) = dim F, as the following example shows.

Example 1. Let E := {0}* U J, 0" - (1- XM®. ThenE and also thev-languages
{0} and @ - (1- XM are I1;-definable. Now, similar to Example 4.11 of [S4] one
calculates

n
i SLXM = —
dim 0" - ( ) o]

Consequently, dinE =1>n/(n+1) > k(&) forg e 0" (1- XM)®.
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Next, we show that the upper bound of Theorem 5 cannot be extended further to
higher classes of the arithmetical hierarchysefanguages. To this end we consider the
class

& :={E: E C X? A EisclosedA A(E) is recursively enumerable

which in some sense seems to be dual to the clagk afefinablew-languages. Since
E € & impliesE = A(E)’, everyE e G is IT,-definable, but as the remark following
Corollary 7.2 in [S2] shows, not evef¥,-definable and closeg-language belongs t8.

In [S2] a “nice” characterization of the clagswas asked for. In Example 1.15 of
[S4]it was already explained that there aréanguages ii® which are not,-definable.

Here we give a proof that an analogue of Theorem 5 cannot hold for the@lass
More precisely, we present a countabldanguageE € & which except for a single
limit point £ € E is X,-definable but does not satisi(E) < dimE. This does not
only prove that Theorem 5 and hence also Theorem 3 do not holfl fatefinable
w-languages but also gives further evidence of the fact that there seems to be no “nice”
characterization of the clags in terms of the arithmetical hierarchy.

Lemma 6. There is a countable-language Ec &\ 2, such that E is the closuign
Cantor spackof a X,-definablew-language Ewith x(§) = 1for & € E\E'.

Proof. P. Martin-Lof (see [LV] or [Ca]) proved that a random sequegce X has
k(¢) = 1 and that the set of all random sequent®g,qis Zo-definable. Hence)i ang
contains a nonemptyl;-definable subsef = X*\Wg - X®, whereWg C X* is a
recursive language.

Fixthe naturalorderoX = {0, 1, ..., r —1} and extend it to a quasi-lexicographical
order onX*. SinceF is closed in the Cantor topology &, it contains a leftmost
SequUEeNCeier.

We show that there is a countahlelanguageE € & such thatE contains the
leftmost sequencget; € F.

Define for everyn € Nthe wordv, as the lexicographically first word )™\ WE - X*.
Obviously, the languag® := {vs: n € N} is recursive, and, := vy - 0” is the leftmost
w-word in (XM\WE - X*) . X® D F.

Since(XM\WE - X*) - X D X" \We - X*, the family (X"\WE - X*) - X®)nen
of closed subsets converges fo = (),.y(X"\WE - X*) - X, and sinceg, is the
leftmost point in(X"\Wg - X*) - X® D F, we also have lif. « ¢n = et Whence
UnEN A(gn) 2 A(;Ieft)-

DefiningE’ := {¢,: n e N} =V - 0” andE := E’ U {1} Yields thatE is closed,
A(E) =A(V)UV .0% andE’ is X,-definable. O

SinceE is countable, dinit = 0, and, consequently, neither the analogue of Theo-
rem 5 nor the recursive version of the definition of the Hausdorff dimension (Theorem 3)

2 This corresponds to the obvious interpretatiomafords; € X asr -ary expansions of real numbers
1(¢) :=0-¢ € [0, 1]. The mapping: X — [0, 1]is continuous and is one-to-one ¥ft\ X*-{0”, (r —1)®} 2
NMrand-
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can hold for the clas&. One can only show the following upper bound«giie) related
to the structure functiosag,.

Theorem 7[S4, Proposition 2.11]. If E € X® is anw-language such thaf(E) or
the complement X A(E) is recursively enumerabléhen

k(&) < Iigninf forall & e E.

|Ogr SA(E)(n)
n
As a further consequence of the proof of Lemma 6 one obtains the following result
onw-languages in the arithmetical hierarchy.

Corollary 8. There is arw-language Ee & which is not representable as a countable
union of Z,-definablew-languages

3. Computable Martingales and Prediction

Quite recently Ryabko [R2], [R3] proved another kind of relationship between Hausdorff
dimension and Kolmogorov complexity. He considered a problem which is related to the
prediction problem of infinite sequences. This problem, addressed in the Introduction,
can be easily described using martingales, Ville’s formalism of the concept of gambling
strategy.

Here we consider martingales as functidghsX* — [0, oo) which satisfy

ZXEX V(u}X)
card X
and we denote byr,(w) := log, V(w) theexponent of the increagpay-off) of V.
More general is the notion glubmartingalevhere in (12) we have*" instead of
equality. Using Levin’s universal semicomputable (left-computable) me&soree can
show (see Theorem 4.10 of [LV]) that there is a universal left-computable submartingale
U which majorizes every left-computable submartingajehat is,

Ve >0 and V(w) = (12)

Acy(Cy > OAYw(w € X* — U(w) > cy - V(w))). (13)
Utilizing Theorem 3.4 of [ZL] one has
llog, U (w) + |w| — K(w)| = o(jw]). (14)

Let V be a computable martingale (or as in [R2] and [R3]: a Turing prediction
strategy). Then (13) and (14) imply

Ay (w)

A3 (é € XY = Ap(&) :=Ilimsup

w—§& | |

<1- g(é)) . (15)

It is mentioned in [R3] that there is no optimal prediction method, that is, there
is no computable martingalg,: such thatiy,, (§) > Ay (&) for all & € X and all
computable martingalég, and it is proved there that for

AE) :=sugAy(§): Vis a computable martingdle
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the set of alkw-words with prediction quality y has Hausdorff dimension
dim{g: &€ € X? AAE) 2y} =1—y.

Our aim is to prove a certain constructive converse of this general proposition: We show
that for everyX,-definablew-languageF and everyr > dim F there is a computable
martingaleV such that\,,(¢§) > 1 — « for all & € F, thus being nearly uniformly
optimal for thew-languageF. Similar to Theorem 3 we also achieve the inequality
Ap(§) = 1—dimF if dim F is a right-computable real number.

In order to achieve our goal we introduce families of covering codes as follows.

For a prefix codé€C € X* we define itaminimal complementary codes

C := (XUA(C) - X)\A(C).

If C = ¢ we haveC = X, and ifC # () the setC consists of all wordsy - X ¢ AC)
whergw e A(C) ander X. It is readily seen that U C is a maximal prefix code,
CNC=¢,andA(CUC) ={e}UA(C)UC.

We call¢ := (C,) yex- afgmily of covering codgsrovided eaclt,, is a finite prefix
code. Since then the s8¢, U C,, is a finite maximal prefix code, every wang§ X* has
a uniquely specified-factorizationu = u; - - - u, - U’ whereu; ;1 € Cy,...i; U Cy,..y, fOr
i=0,...,n—=1(u---uy =g ifi =0)andu’ € A(Cy,..,, U éul..‘un). Analogously,
everyé € X has a uniquely specifieé-factorizationf = uy---uj - -- whereui; €
Cupoty UC,,.y fOri=1,....

In what follows we use martingales derived from prefix codes in the following
manner.

Lemma9. LetO <« < landy # C C X* be a prefix code satisfying, .. r " <
0. Then there is a martingalg’”: X* — R, such that

r (=a)fwl ‘ c
or we
r —alvl ~r —lul ’
V((:a)(w) — ZveC ;_’ Zuec R (16)
for weC.

Zuec rekl + Zueari‘m

Proof.  Setl := Y, .cr M+ Y &r M, and define fou € ACCUC) andw €
CUC,v e X%,

r|U|
V(Ca)(u) — ? X ( Z r—alu»w\ + Z r—u-wl) i

u-weC u-weC
VE (w - v) = VE (w).

Then V& fulfills (16). We still have to show the property&’(u) =
(1/1) Y ex V& (ux). This identity is obvious iti ¢ A(C U C).
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Now, letu € A(CU 6). Then

R (2 e g

xeX xeX uxweC uxweC
rlul | |
§ : § : —ajux 2 : ux
— T . r aluxw + r —|uxw|
xeX \ uxweC uxweC

because fou € A(C Li(’f)\(C U 6) the setfw: w € CU CAu C w} partitions into
the setdw: w € CUC AuUX C w} (X € X), and the required equation follows. O

Remark. If C is a finite prefix code and™ is a rational number, them’("‘)
computable (recursive) martingale.

For a recursive functiog: N — Q let a family of covering codeg := (C,,),ex-
such that}", ... g(lw)""! < oo be given, and leVy := V™ be as defined above for
o, = —log, g(|w|) Then we define our martmgalQ as follows Fomu € X* consider
the &-factorizationuy - - - u, - U/, and put

Véw(u) = <HV o |+1)) ég)l COE

that is,Vég) is in some sense the concatenation of the martingaf‘f(gé. Observe that

Vég) is computable if onlyg is a recursive function and the function which assigns to
everyw the corresponding codg,, is computable.
We have the following.

Lemma 10. Letg N — Q be a recursive function and I€t= (C,),cx- be a family
of covering codes such that, . g(lw])™! < 1"l If for somex € [0, 1] thew-word
& € X” has a¢-factorizationt = u; - - - uj - - - such that for somegne Nand alli > n;
it holds that

1.r* <g(ug---ui|) and
2. all factors u 41 belong to G,...y, s

then there is a constant c- 0 not depending on i for which
Ve(Up---Up) > ¢ - rdeluuil

Proof.  SinceC, is a code, we havg_, ¢ r~""l < 1, and from the assumption we
obtain '

> guwh+ Y <y

veCy veC,
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Now |u;| > 1 implies|uy - --u;| > i, and (16) yields

1 v
m if i< Ng,
(]
Ve Uit Z ) L oy tul 17)
_— if 0> ne.
r-'+1
Put
oo 1 ne
C: = 1_[ — . r—(@=o)uival
i=0r '+1 i=0

Clearly,c: > 0, and using (17) by induction arthe assertion is easily verified. O

Now we prove the announced result.

Theorem 11. For everyX,-definablaw-language FC X® and every computable real
numbere > dim F there is a recursive martingalg such that

MwE)>1l—« forall & eF.

Proof. We use the same recursive approximation from below éf g,: N — Q, as
in the proof of Theorem 3.

By virtue of Lemma 10 it suffices to construct a computable family of covering
codest = (C,)uex+ Such that the function which assigns to everyhe corresponding
finite prefix codeC,, is computable. To this end we modify the predidatst introduced
in the proof of Theorem 5 as follows:

test(w, j,n): < ((w AUj U (L 0 XYY X2 D - X

A Gullw)" < r"”>.

vel;

In the same way we modify the algorithm presented there.

Algorithm C,,
input  w
n=0
repeatj = —1

repeatj = j+1
until  test’(w, j, n) v (sup|v]: v € Uj} > n)
n=n+1
until  test’'(w, j, n)
output C, :=U;
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Similarly to the proof of Theorem 3 this algorithm computes a prefix cdgevith
Y vee, G (lwh™ < r~™landw-C,- X* 2 w- X*\L, - X*, and it terminates, because
dim(F Nw - X*) <dimF < —log, g,(|lw]).

It remains to show that evetye F has a&-factorizationt = u; - - - u; - - - such that
almost all factorsy; 1 belong to the correspondir@,, ..., -

Let £ € F. Then there is & € N such thatt € X®\L; - X® for all i > k.
Consequentlyw € A(§) impliesw ¢ Ly = Lg - X*, and according to the definition of
¢ thereis au € C,, such thatw - u € A(¢) wheneverfw| > k. O

We cannot improve Theorem 11 much further, because on the one hand Theorem 5
and (15) show that it is not possible to construct a computable martiigsileh that
VE(E € F - Ap(€) > 1 — a) whena < dimF, and on the other hand again the
w-languageE defined in the proof of Lemma 6 shows that the result of Theorem 11
cannot be extended to further classes of the arithmetical hierarchy.

4. Relation to Previous Results

In the Introduction we mentioned that under certain additional structural constraints
the result of Theorem 5 extends beyond the rangg.eflefinablew-languages. In this
section we recall some of the results of [S4] giving evidence of this fact, but showing
also that the constraints involved are not recursion-theoretic ones.

The first two classes @f-languages satisfying properties analogous to Theorems 3
and 5 are the classes of recursivgoower languages and éflimits of recursive sub-
monoids.

An w-power languagés anw-language of the form

W= {§: § € X? A(wiien(wi e WA W #eAE=wo---wj---)},
whereW C X*, and thesubmonoidf X* generated by, W*, is the languag®V* :=
{wy---wn: Ne NAw € WL

Now (6.2) of [S4] is an analogue to Theorem 3 for submonditisC X*:

dimWe = dim(W*)* = Hyx-.

Then Theorem 1 and Lemma 2 show the following.

Proposition 12. If W* C X* or its complement X\W* are recursively enumerable
languagesthenk (W®) = k (W*)?) = dimwe 3

According to the discussion in Section 6 of [S4], the clfé&”: W C X* A
W is recursivg is incomparable with the class of alb-definable subsets {®.

3 It is interesting to note that one can easily derive from Theorem 6.1 of [S4] thaidins always a
left-computable real number provid&d* is recursively enumerable.
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A second class which exhibits a similar property is the class of so-called balanced
w-languages introduced in [S3]. We call a subBaif X balancedf and only if there
is a functionf: N — N such thatf (n) = o(2°") for arbitraryc > 0 and for which the
inequality

Sa (w4 n)

se(w, [w|+n) < f(wl) Sa (lw))

(18)

holds forw € X* andn € N. Heresg (w, -) is shorthand for the structure function of the
languageJ (F, w) := A(F) Nw - X*, sy(r,u)- Roughly speaking, our (18) means that
for arbitraryw € X* the functionsg (w, -) does not grow much faster than the average
taken over all functionse (v, -) such thafv| = |w| andv € A(F).

Then Theorem 4 of [S3] proves that for closed and balaicet X the following
identity holds true:

dimF = liminf

n—o0

log, sacr)(N)
——

Consequently, Theorem 7 implies an upper bound @a) for balancedv-languages
in G.

Lemma 13. If F € & is a balancedv-languagethenk(F) < dimF.

We conclude this section by mentioning Corollary 3.17 of [S4] which proves that
for closed and balancegdlanguage$- there is always & € F such thak () > dimF,
thus yielding, in contrast to Example 1 above, that for balanced dasedlefinable
w-language$ as well as for balanced-languages$ € G there is indeed & € F such
thatk (§) = «k(F) =dimF.

5. Concluding Remark

Our Theorems 3, 5, and 11 in connection with previous results of Ryabko [R1]-[R3] and
this author [S4] give evidence that there is a strong coincidence between the concepts
of Kolmogorov complexity (in complexity theory) and Hausdorff dimension (in fractal
geometry) for a class of recursive (computaldelanguages. The results of this paper
show a borderline in the arithmetical hierarchy up to which this coincidence holds true,
and our examples give evidence that it does not extend much further.
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