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Abstract. We study the problem of packet routing in synchronous networks.
We put forward a notion ofgreedy hot-potato routing algorithmsand devise tech-
niques for analyzing such algorithms. A greedy hot-potato routing algorithm is
one where:

• The processors have no buffer space for storing delayed packets. Therefore, each
packet must leave any intermediate processor at the step following its arrival.
• Packets always advance toward their destination if they can. Namely, a packet

must leave its current intermediate node via a link which takes it closer to its
destination, unless all these links are taken by other packets. Moreover, in this
case all these other packets must advance toward their destinations.

We use potential function analysis to obtain an upper bound ofO(n
√

k) on the
running time of a wide class of algorithms in the two-dimensionaln× n mesh, for
routing problems with a total ofk packets. The same techniques can be generalized
to obtain an upper bound ofO(exp(d)nd−1k1/d) on the running time of a wide class
of algorithms in thed-dimensionalnd mesh, for routing problems with a total ofk
packets.

∗ A preliminary version was presented at the 13th ACM Symposium on Principles of Distributed Com-
puting, August 1994. The work of the second author was done while at the Computer Science Department,
Technion, Israel.
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1. Introduction

In this work we study the problem of batch packet routing in synchronous networks in
which at most one packet can traverse any directed link in each time step. We consider
a class of algorithms known ashot-potatoor deflectionrouting algorithms [AS], [GG],
[GH], [Haj], [LP], [Ma], [Sz], [ZA], [NS1]. The important characteristic of these algo-
rithms is that they use no buffer space for storing delayed packets. Each packet, unless
it has already reached its destination, must leave the processor at the step following its
arrival. This may cause some packets to be “deflected” away from their preferred direc-
tion. Such unfortunate situations cannot happen in the traditional “store-and-forward”
routing in which a packet is stored at a processor until it can be transmitted to its preferred
direction.

Variants of hot-potato routing are used by parallel machines such as the HEP mul-
tiprocessor [Sm] and the Connection Machine [Hil] and by high-speed communication
networks [Ma]. In particular, hot-potato routing is very important in fine-grained mas-
sively parallel computers, such as the Caltech Mosaic C [Se], where the addition of even
a small-sized storage buffer at each processor may cause a substantial increase in cost.
Another domain in which deflection-type routing is highly desirable is optical networks
[AS], [GG], [Sz], [ZA]. In such networks, storage must take the electronic form, thus
packets that should be stored must be converted from (and back to) the optical form.
In the current state of technology, this conversion is very slow compared with optical
transmission rates. It is more feasible to deflect the blocked messages, even if one pays
with longer routes.

Most of the recent work on hot-potato routing is focused onstructuredrouting.
In structured routing “good behavior” is enforced on the packets in the network by
sending them in prespecified directions. Although this method was found to guarantee
some asymptotically optimal results [NS2] many of the structured algorithms suffer
from “overstructuring”: Consider for example a packet that originates very close to its
destination, then obviously we expect it to reach its destination very fast. This, however,
may not be achieved in structured routing: A packet initially very close to its destination
might find itself moved to a distant region of the network, due to some obstinate policy
that determines a fixed, prespecified route. Moreover, long unnecessary routes may be
taken even when the actual number of packets is much smaller than the number of nodes,
because the algorithms may not be sensitive to the total load.

Another common problem with structured algorithms is their complexity. These are
often designed inphases, where the algorithm changes at each phase. Moreover, the
routing choices are sometimes complex, and may differ for different processors during
the same phase. Thus those structured algorithms rely on complex routing mechanisms
which require additional hardware in the processors.

In an attempt to avoid these problem, this paper puts forward the concept ofgreedy
hot-potato algorithms. A greedy algorithm is one where packets always advance toward
their destination if they can. In other words, whenever some packet is deflected away
from its preferred direction, it is because some other packet is currently using that out-
link to advance toward its own destination. In this way, unless some global congestion
forbids it, packets go in the shortest path to their destinations.

We restrict ourselves further to consider only “simple” greedy algorithms. That is,
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in the algorithms we consider, all nodes perform the same (simple) routing policy at each
step of the algorithm, from the very first step to termination.1

Although greediness might cause congestion in certain regions of the network,
deflection is hoped to “spread the load” so that the total routing time is decreased. Indeed,
simulations of greedy hot potato routing algorithms present superb performance (see,
e.g., [AS] and [Ma]). Unfortunately, the analysis of greedy hot-potato routing algorithms
is considerably more difficult than that of structured ones. The difficulty stems from the
adaptive nature of the algorithms, as the route that is taken by a packet is changed in an
unpredictable manner due to packets it encounters on its way. A packet may find itself in
a distant, remote region of the network due to an unexpected sequence of deflections. In
fact, certain chains of deflections may eventually result back in the original configuration,
thus raising the question whether the algorithm ever terminates. Such infinite loops are
calledlivelock.

1.1. Related Work

The first greedy hot-potato algorithm was proposed by Baran [Ba]. Borodin and Hopcroft,
in a landmark paper [BH], suggested a greedy hot-potato algorithm for the hypercube.
Although they did not give a complete analysis of its behavior they observed that “ex-
perimentally the algorithm appears promising.” During the years, this phenomenon was
observed over and over again:although fairly simple greedy hot-potato algorithms per-
form very well in simulations, they resist formal analysis attacks. Numerous experimental
results on hot-potato routing have been published [AS], [GG], [GH], [LP], [Ma], [Pr].

Prager [Pr] showed that the Borodin–Hopcroft algorithm terminates inn steps on the
2n-node hypercube for a special class of permutations. Hajek [Haj] presented a simple
greedy algorithm for the same network that runs in 2k+ n steps, wherek is the number
of packets in the system. The work of Hajek was simplified and generalized in a work by
Brassil and Cruz [BC]. For any regular network with undirected edges (such as the mesh
and the hypercube) the algorithm of Brassil and Cruz assumes some prespecified order
on the destinations, and packets are given priority according to the rank of their destina-
tion in that order. They show a bound ofdiam+P+2(k−1), wherek is as above,diam
is the diameter of the network, andP is the length of a walk connecting all destinations.

Some recent results concern (nongreedy) hot-potato algorithms for permutation
routing: Feige and Raghavan [FR] presented an algorithm for the two-dimensional torus,
that routes most of the routing problems in no more than 2n+O(logn)steps. Newman and
Schuster [NS2] presented an asymptotically optimal algorithm for permutation routing in
the two-dimensional mesh. Their algorithm routes every permutation in 7n+o(n) steps.
This was improved in [KLS] to 3.5n + o(n) steps. Bar-Noyet al. [BRST] presented a
fairly simple algorithm for the two-dimensional mesh and torus, that routes every routing
problem inO(n

√
m) steps, wherem is the maximum number of packets destined to a

single column. In addition, they presented a much more complex algorithm that routes
every permutation in the two-dimensional mesh and torus withinO(n1+ε) steps (for
everyε > 0). Kaklamaniset al. [KKR] presented an algorithm for permutation routing

1 This is by no means the only possible way to define what a “simple” algorithm is. Other notions were
suggested e.g., in [BRS].
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in thed-dimensional torus that routes most of the permutations within1
2dn+O(log2 n)

steps, and an algorithm for permutation routing in the two-dimensional mesh that routes
most of the permutations within 2n+ O(log2 n) steps.

1.2. This Work

In this work we concentrate on many-to-many routing problems in thed-dimensional
mesh connected network. Our goal is to develop general methodologies for the analysis
of greedy hot-potato algorithms. In this spirit, we try to refrain from enforcing further
constraints on the algorithm, except for greediness. Unfortunately, it is rather easy to
come up with a livelock situation whenever greediness is the only routing policy [NS1],
[Haj]. Hence, simple restrictions must be added to the routing mechanisms in order to
ensure termination.

We present upper bounds on the running time of a wide class of greedy algorithms.
Some of these bounds are tight for some special cases, in the sense that there exist
configurations in whichno routing algorithmcan work faster than our bound. The bounds
are given in the form of a general method for using potential function analysis, and
presenting algorithms and potential functions for meshes.

The method we develop is generic in the sense that once algorithms with better
corresponding potential functions are found, the respective bound immediately improves.
Indeed, it may very well be possible to find such algorithms for more specific routing
problems, or when the network parameters (diameter, degree) improve. Moreover, the
general result consists of a worst-case evaluation of some isoperimetric inequality. For
specific routing problems this isoperimetric inequality can be shown to improve rapidly,
yielding an improved bound.

The rest of this work is organized as follows: in Section 2 we describe our model
and give basic definitions. Section 3 describes a general method for potential function
analysis of greedy hot-potato routing in meshes. We present an upper bound on the
running time of any algorithm for which there exists a potential function that obeys
some simple conditions. Section 4 uses this technique to obtain an upper bound of
O(n
√

k) on the running time of a wide class of algorithms in the two-dimensionaln×n
mesh, for routing problems that contain a total ofk packets. In Section 5 we describe
how the same method can be generalized to apply for thed-dimensional mesh ford > 2.
This generalization yields an upper bound ofO(exp(d)nd−1k1/d) on the running time of
some class of algorithms in thed-dimensionalnd-nodes mesh. Finally, in Section 6 we
give some concluding remarks and open problems.

Following the notion ofgreedy hot-potato routing algorithmsthat was presented in
a preliminary version of this work, there were several related results. In Section 6.1 we
give a brief overview of these results.

2. Model, Terminology, and Definitions

We consider a network of processors as a graph. The nodes in the graph represent
processors and the arcs represent communication links. Since the communication links
in the network are bidirectional, every arc in the graph has an antiparallel arc.
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In this work we deal with the problem ofmany-to-many batch packet routingin a
synchronous network. In this problem there is a set of packets which originate at time
t = 0 in some nodes of the network. Every packet has a destination node in the network.
No node can be the origin of more packets than its out-degree. Note that the many-to-
many paradigm neither requires that every node sends a packet, nor that every node is
the destination of a packet. Note also that a node may be the destination of many packets.

The networks we consider are synchronous, which means that packets are sent in
discrete time steps. The time it takes for a routing algorithm to solve a routing problem
is the number of steps that elapse until the last packet reaches its destination.

In thehot-potatorouting style, a packet cannot stay in a node (other than its desti-
nation node), so it must leave every intermediate node in the step that follows its arrival.
Hence, every node in the network performs the following scheme in every step:

1. Get the packets that were sent to you in the previous step from your incoming
arcs.

2. Make a local computation, which may depend on the sources and destinations
of the packets that arrived at the beginning of this step, and on the arcs through
which they have entered. In the algorithms we consider in this work, we never
use the source of packets in this local computation.

3. According to the results of the local computation, assign outgoing arcs for all
these packets.

A hot-potato routing algorithmis a collection of such schemes (one for every node in the
network) guiding the local computations in these nodes. We are interested in “uniform”
algorithms consisting of a single decision rule, that is applied in each step at every node.

2.1. The d-Dimensional Mesh

The network we are dealing with is thed-dimensional mesh.

Definition 1. Thed-dimensional meshis a graph with a set ofnd nodes that correspond
to all d-dimensional vectors over{1, . . . ,n}. There is an arc between the nodesā =
〈a1, . . . ,ad〉 and b̄ = 〈b1, . . . ,bd〉 if and only if the L1 distance between these two
vectors is one.

In our discussion the nodes represent processors and we consider each arc as a bidirec-
tional link between two processors. Some obvious properties of the mesh that we use are:

• The diameter of thed-dimensional mesh isd(n−1), and the degree of the nodes
in the network is between 2d (for interior nodes) andd (for nodes in the corners
of the mesh).
• Let ā = 〈a1, . . . ,ad〉 andb̄ = 〈b1, . . . ,bd〉 be two nodes in thed-dimensional

mesh, then the distance betweenā and b̄ (i.e., the length of the shortest path
between them) is

∑d
i=1 |ai − bi |.

In this paper we are interested in the routing of packets in the mesh, where each packet
has an origin node and a destination node. An important notion for our discussion is the
distance between a packet and its destination.
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Fig. 1. Direction “−” in the second coordinate in a two-dimensional mesh. The squares in the picture represent
nodes, and their faces represent arcs.

Definition 2. Let p be a packet in the mesh. The distance betweenp and its destination
at timet , is the distance between the node that containsp in the beginning of stept and
the destination node ofp.

Other useful notions aredirectionsin the mesh and the 2-neighbors relation: since
every arc in the mesh connects two nodes with id’s that are different in exactly one
location, we can divide the arcs into 2d distinct directions (e.g., arcs that increase the
first coordinate, arcs that decrease the fourth coordinate, etc.)

Definition 3. Direction “+” in the i th coordinate is the set of all arcs in the mesh of
the form

〈a1, . . . ,ai−1, ai , ai+1, . . . ,ad〉 → 〈a1, . . . ,ai−1, ai + 1, ai+1, . . . ,ad〉.

Similarly, direction “−” in the i th coordinate is the set of all arcs in the mesh of the form

〈a1, . . . ,ai−1, ai , ai+1, . . . ,ad〉 → 〈a1, . . . ,ai−1, ai − 1, ai+1, . . . ,ad〉.

(See Figure 1.)

We sometime say that an arc that goes out from some node is “going in direction
X,” if that arc belongs to direction X.

Definition 4. We say that a nodēb is a 2-neighborof the nodēa in the directionX, if
there is a path of length 2 from̄a to b̄ that contains only arcs in the directionX. We say
thatb̄ is a2-neighbor ofā if there is a directionX such that̄b is a 2-neighbor of̄a in the
directionX (see Figure 2).

For example, in a two-dimensional mesh, the node〈1, 2〉 is a 2-neighbor of the node
〈3, 2〉 (in the direction “−” in the first coordinate), but the node〈2, 3〉 is not a 2-neighbor
of the node〈3, 2〉: although there are paths of length 2 between these nodes, none of
these paths contains two arcs in the same direction.
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Fig. 2. 2-neighbors in the two-dimensional mesh. Nodes that are connected by dashed lines are 2-neighbors.

From the last definition, it follows that 2-neighbors is a symmetric relation. There-
fore, the transitive closure of this relation is an equivalence relation. It is easy to see
that it divides the mesh into 2d equivalence classes, each of which is isomorphic to a
d-dimensional mesh with( 1

2n)d nodes (assumingn is even).

2.2. Greedy Hot-Potato Routing Algorithms

Definition 5. Let Sbe a node in the mesh, and letp be a packet inS. We say that an arc
that goes out ofS is agood arcfor p if it enters a node that is closer top’s destination.
Similarly, we say that an arc that goes out ofS is abad arcfor p if it enters a node that
is farther fromp’s destination.

We say that a certain direction is agood directionfor p if there is a good arc forp
that goes out ofS in that direction. Otherwise, we say that it is abad direction. That is, a
bad direction forp either contains a bad arc forp or does not contain any arc that goes
out of S (if S is a node on an edge of the mesh).

For example, a packetp in the five-dimensional mesh that is currently in node
〈1, 3, 2, 6, 1〉 and its destination is node〈4, 3, 8, 2, 1〉 has three good directions: “+” in
the first coordinate, “+” in the third coordinate, and “−” in the fourth coordinate. All
the other directions are bad forp.

We say that a packetp advancesin stept if it gets closer to its destination in that step.
Otherwise, we say thatp is being deflected. Whenp andq are two packets that are in the
same node at the beginning of stept , we say thatp is deflected byq (or q is deflecting
p) in stept if

(a) p is deflected in stept , and
(b) q is advancing in that step via an arc that is good forp.

In this work we considergreedyhot-potato routing algorithms in which a packet
always attempts to advance. We make this formal in the following definition.

Definition 6. A hot-potato routing algorithm is said to begreedyif, whenever a packet
p is being deflected, all its good arcs are used by other advancing packets.
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From the definition it follows that in a greedy algorithm, in order to deflect a packet
that hasi good directions, at leasti other packets must advance from the same node.

3. Potential Function Analysis

In the rest of the paper we use potential function analysis to obtain upper bounds on the
running time of greedy algorithms in meshes. In this section we present a general method
of using potential function analysis to obtain upper bounds. In Sections 4 we use this
method to obtain upper bounds for routing algorithms in the two-dimensional mesh, and
in Section 5 we describe how this approach can be generalized to thed-dimensional mesh.

3.1. Potential Function

For the rest of this section, letA be a greedy routing algorithm, and suppose that we
have a potential functionϕp(t) for every packetp, such that 0≤ ϕp(t) ≤ M in every
stept (whereM is some positive constant), and thatϕp(t) = 0 only if packetp reached
its destination by stept . Consider the “global” potential function8(t) that is defined

by 8(t)
def= ∑

p ϕp(t). We give a general scheme which yields an upper bound on the
running time ofA. This scheme uses some local property of the potential function, which
we define next. In order to define this property, we first define the notion of a node that
loses potential.

Definition 7. We say that a nodeS in the meshloses potentialin stept if the sum of
potential of the packets that enteredSat timet is greater than the sum of potential of the
same packets at timet + 1. We denote the difference between the two sums by18S.

The local property of8 that we need can be stated as follows:

Property 8. Let S be a node in the d-dimensional mesh that contains` packets in
step t.

• If ` ≤ d, then S loses at least` potential units at step t(that is,18S ≥ `).
• If ` > d, then S loses at least2d−`potential units at step t(that is,18S ≥ 2d−`).

We stress that this property must be satisfied in every node of the mesh (even for nodes
near the edge of the mesh) in every step.

In the rest of this section we assume that the potential function8 satisfies the above
property with respect to the algorithmA, and show how we can use it to derive an
upper bound on the running time ofA. In following sections we define specific potential
functions which satisfy this property with respect to some classes of algorithms.

3.2. Analysis

Let A be a greedy routing algorithm, and let8 be a potential function which satisfies
Property 8. For the sake of analysis, we divide the nodes in the mesh into “good” nodes
and “bad” nodes.
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Fig. 3. An area of bad nodes in the two-dimensional mesh.

Definition 9. We say that a node in the mesh is abad nodeat a certain step if it contains
more thand packets at the beginning of that step. Otherwise it is agood node. We use
B(t) to denote the total number of packets in bad nodes at timet , andG(t) to denote the
total number of packets in good nodes at timet .

We can interpret Property 8 as follows: IfS is a good node, it loses at least one
potential unit for every packet in it. IfS is a bad node, it loses at least one potential unit
for every “missing” packet. As an immediate corollary we get

Corollary 10. For every step t,8(t + 1) ≤ 8(t)− G(t).

In particular, from Corollary 10 it follows that the potential function is a monotonic
nonincreasing function. The main difficulty we face is that we do not have anya priori
lower bound onG(t), as almost all the packets can be in bad nodes at any given time. In
order to deal with situations whereG(t) is almost zero, we consider thed-dimensional
“volume” of bad nodes (see Figure 3), and prove that in every two successive steps, there
is a loss of at least one potential unit for every arc on the surface of that volume.

Definition 11. We say that an arce that goes out of a nodeS is asurface arcif:

• The nodeS is a bad node.
• Either the 2-neighbor ofS in the direction ofe is a good node, orSdoes not have

a 2-neighbor in this direction (i.e., if it is on an edge of the mesh).

We also consider an arc that leads “out of the mesh” (in a bad node on the edge of the
mesh) as a surface arc (see Figure 4). We denote the number of surface arcs at timet
by F(t).

Lemma 12. For every step t,8(t + 2) ≤ 8(t)− F(t).
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Fig. 4. Surface arcs in the two-dimensional mesh.

Proof. We show that for every surface arc we can account a loss of at least one potential
unit either at stept or at stept + 1. Let Sbe a bad node, and consider some surface arc
that goes out ofS. Denote the node in the other side of the surface arc (if exists) byC,
and the node in the other side ofC in the same direction (if exists) byN:

N is a good node N

The arc fromS to C is a surface arc C

S is a bad node S

If no packet is leavingS towardC, thenS contains less than 2d packets, and thus, by
Property 8,S loses at least one potential unit for every “missing” packet at stept . One
unit of that loss can be accounted to the arc fromS to C. Notice that this case holds even
if the nodeC is “out of the mesh” (i.e.,C does not exist).

If there is a packet that leavesS towardC, then we consider two cases:

1. A packet enteredC from N at stept . SinceN is a good node in stept , it loses
one potential unit for every packet in it. Thus, we can account the loss of the
packet that enteredC to the arc fromS to C.

2. No packet enteredC from N at stept . In this case,C contains less than 2d
packets. IfC is a good node at timet + 1, then it loses one potential unit for
every packet in it. Thus, we can account the loss of potential caused by the packet
that enteredC from S, to the surface arc fromS to C.

If C is a bad node, then it loses one potential unit for every “missing” packet.
Thus we can account the loss due to the “missing” packet fromN to the arc from
S to C. Notice that this case holds even if the nodeN is “out of the mesh” (i.e.,
N does not exist).

We now present a geometric interpretation of ad-dimensional mesh: Each node is
represented by ad-dimensional unit cube (1d). The 2d faces of each cube correspond to
the arcs that go out of the node. Two nodes in thed-dimensional mesh are adjacent if
and only if their cubes share a common face.
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Let e be a surface arc that goes out of a bad nodeS, and consider the equivalence
class of the nodeS under the transitive closure of the 2-neighbor relation. Sincee is a
surface arc, the 2-neighbor ofS (in the original mesh) in the direction ofe is either a
good node, or does not exist at all. Thus, the face that corresponds to the arce in the
equivalence class ofShas a bad node in one side (S itself) and a good node (or no node
at all) on the other side.

Therefore, if we consider thed-dimensional volume that is composed of the bad
nodes in every equivalence class, then every face in the surface of that volume corresponds
to a surface arc in the mesh. In other words, the surface of the “bad volume” of a certain
equivalence class is equal to the number of surface arcs that go out of nodes in this class.

We show that the surface of anyd-dimensional volumeV that is composed of
d-dimensional unit cubes is at least 2dV(d−1)/d.

Claim 13. Any d-dimensional volume V that is composed of d-dimensional unit cubes
has a surface of size at least2dV(d−1)/d.

Proof. For every subset of the dimensions,I ⊆ {1, . . . ,d}, we denote byπI (V) the
projection ofV on the dimensions inI . That is,πI (V) is the image ofV in a |I |-
dimensional plane. For example, in the three-dimensional grid (d = 3) π{1,2}(V) is the
projection ofV on the XY-plane, andπ{2,3}(V) is the projection ofV on the YZ-plane.

Each point in the projection ofV on any(d − 1)-dimensional plane contributes
at least two to the surface, as follows: Assume without loss of generality thatI =
{1, 2, . . . ,d − 1}, and consider a point̄x in the projectionπI (V). Let xmin andxmax be
the minimal and the maximal values, correspondingly, so that(x̄, xmin) and(x̄, xmax) are
in V . Hence,(x̄, xmin− 1) and(x̄, xmax+ 1) are not inV . The two(d− 1)-dimensional
faces between the two points inV and the two points outsideV , contribute a unit each
to the surface. Thus, we get

surface(V) ≥ 2 ·
∑
|I |=d−1

|πI (V)|. (1)

Consider now the random vector̄X = (X1, X2, . . . , Xd) that is defined overV with
uniform distribution, i.e.,

Pr(X̄ = x̄) =


1

|V | , x̄ ∈ V,

0, x̄ 6∈ V.

For every I ⊆ {1, . . . ,d} let X̄I denote the random vector(Xi : i ∈ I ). From the
definitions of X̄I andπI (V) it is clear that|πI (V)| is exactly the number of different
values the vector̄XI can get. Therefore,

H(X̄I ) ≤ log|πI (V)|, (2)

whereH is the entropy function. On the other hand, sinceX̄ is distributed uniformly
overV , then

H(X̄) = log|V |. (3)
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Using an entropy inequality that was proven in [CGFS], we get that (for anyd-
dimensional random vector)

(d − 1)H(X̄) ≤
∑
|I |=d−1

H(X̄I ). (4)

Combining this with (2) and (3), we get

(d − 1) log|V | ≤
∑
|I |=d−1

log|πI (V)| ⇒ |V |d−1 ≤
∏
|I |=d−1

|πI (V)|. (5)

From (1) and the arithmetic-geometric mean inequality, we have

surface(V) ≥ 2 ·
∑
|I |=d−1

|πI (V)| ≥ 2d

( ∏
|I |=d−1

|πI (V)|
)1/d

.

Now from (5) we conclude that surface(V) ≥ 2d · |V |(d−1)/d.

Using Claim 13 and our geometric interpretation of the mesh, we now show that if
there are many bad nodes, then there must also be many surface arcs.

Lemma 14. If there are B(t) packets in bad nodes at the beginning of step t, then the
number of surface arcs in that step is at least(2d)1/d · B(t)(d−1)/d.

Proof. Recall that thend mesh can be divided into 2d equivalence classes of the 2-
neighborhood relation. Each equivalence class is isomorphic to an(n/2)d d-dimensional
mesh (assumingn is even). Two nodes in such an equivalence class are adjacent iff they
are 2-neighbors in the original mesh.

Since there are at most 2d packets in every bad node, the number of bad nodes is
at leastB(t)/2d. Therefore we have 2d d-dimensional volumes of bad nodes (one for
every equivalence class) of total volumeV = B(t)/2d. Every face in the surface of each
of these volumes corresponds to a different surface arc in the mesh. From Claim 13 it
follows that the number of surface arcs is at least

2d ·
(

B(t)

2d

)(d−1)/d

= (2d)1/d · B(t)(d−1)/d.

Lemma 15. If the potential at the beginning of step t is8(t), then in the following two
steps the potential is decreased by at least(2d)1/d(8(t)/2M)(d−1)/d (where M is the a
priori bound on the potential of every packet).

Proof. From Corollary 10 we get that

8(t + 2) ≤ 8(t + 1) ≤ 8(t)− G(t).

From Lemmas 12 and 14 we also get that

8(t + 2) ≤ 8(t)− (2d)1/d · B(t)(d−1)/d.
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We denote the number of packets in the mesh at timet by L(t), thenL(t) = B(t)+G(t).
Therefore, we have that

8(t)−8(t + 2) ≥ max{L(t)− B(t), (2d)1/d · B(t)(d−1)/d}.

This bound is minimal when

L(t)− B(t) = (2d)1/d · B(t)(d−1)/d. (6)

Denote byB0(t) the value ofB(t) for which (6) holds.

Claim 16. B0(t) ≥ 1
2 L(t).

Proof. Notice that the left-hand side of (6) decreases as a function ofB(t), and the
right-hand side of this equation increases as a function ofB(t). Therefore, in order to
show that12 L(t) is a lower bound forB(t), it suffice to show that under the assignment
B(t) = 1

2 L(t), the left-hand side of (6) is no less than its right-hand side. We consider
two cases:

1. L(t) ≥ 4d. In this case, using some algebra, we get

1
2 L(t) ≥ (2d)1/d( 1

2 L(t))(d−1)/d

and thereforeL(t)− B(t) ≥ (2d)1/d · B(t)(d−1)/d.
2. Otherwise,L(t) < 4d. Since there are less than 4d packets, then the number of

bad nodes is at most three. An easy (though tedious) case analysis (for 0, 1, 2,
and 3 bad nodes) shows that the claim hold for this case too.

From Claim 16 it follows that

max{L(t)− B(t), (2d)1/d · B(t)(d−1)/d} ≥ (2d)1/d · B0(t)
(d−1)/d

≥ (2d)1/d · ( 1
2 L(t))(d−1)/d. (7)

Thus we have

8(t)−8(t + 2) ≥ (2d)1/d( 1
2 L(t))(d−1)/d.

Since a packet in the mesh can have at mostM units of potential, we get that8(t) ≤
M · L(t), or L(t) ≥ 8(t)/M . Therefore,

8(t)−8(t + 2) ≥ (2d)1/d
(
8(t)

2M

)(d−1)/d

.

Theorem 17. If A is a routing algorithm and8 is a potential function which satisfies
Property8, thenA solves every routing problem with k packets in the d-dimensional
mesh within at most(4d)1−1/d · k1/d · M steps.
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Proof. Our potential function satisfies the following conditions:

1. At the beginning of the algorithm,8(0) = 80 ≤ k ·M , since there arek packets
and each packet has at mostM units of potential.

2. By Lemma 15,8(t + 2) ≤ 8(t)− (2d)1/d · (8(t)/2M)(d−1)/d.

We ask how long it will take8 to reach zero. We divide the reduction of8 into phases.
During thei th phase,8 decreases from80/(1+ ε)i to80/(1+ ε)i+1 (whereε is some
small positive constant). At the end of the last phase, the potential is decreased to zero.
The total decrease in the potential during thei th phase is

80

(1+ ε)i −
80

(1+ ε)i+1
= ε 80

(1+ ε)i+1
. (8)

During thei th phase, the potential is at least80/(1+ ε)i+1. From Lemma 15, we know
that the potential decreases in every two steps by at least

(2d)1/d
[

80

(1+ ε)i+1 · 2M

](d−1)/d

. (9)

Thus, an upper bound for the length of thei th phase can be obtained by dividing (8) by
(9). Hence, the number of steps we need during thei th phase is at most

2
ε(80/(1+ ε)i+1)

(2d)1/d[80/2M(1+ ε)i+1](d−1)/d

= 2

(2d)1/d
·81/d

0 · (2M)(d−1)/d · ε(1+ ε)−(i+1)/d

(the factor of two is because (9) describes the potential drop in two steps). We denote
C

def= (2/(2d)1/d) ·81/d
0 · (2M)(d−1)/d, then the total number of steps until the potential

reaches zero is at most

C · ε
∞∑

i=0

(1+ ε)−(i+1)/d

= C · ε
∞∑

j=0

[(1+ ε)−( j+1/d) + (1+ ε)−( j+2/d) + · · · + (1+ ε)−( j+(d−1)/d)

+ (1+ ε)−( j+1)]

≤ C · ε
∞∑

j=0

d(1+ ε)−( j+1/d) = C · ε(1+ ε)−1/d · d
∞∑

j=0

(1+ ε)− j

= C · d · (1+ ε)(d−1)/d ε→0−→ C · d = (2d)(d−1)/d ·81/d
0 · (2M)(d−1)/d.

Since80 ≤ k ·M , then81/d
0 ≤ k1/d ·M1/d, and, thus, the total number of steps required

before the potential is decreased to zero is at most(4d)1−1/d · k1/d · M .

4. Potential Function in the Two-Dimensional Mesh

In this section we show a potential function in the two-dimensional mesh which satisfies
Property 8, and use Theorem 17 to obtain an upper bound on the running time of a
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Fig. 5. Restricted packets:b, c, andd are of type B, anda is of type A.

large class of greedy algorithms. To this end, we need to restrict somewhat the routing
algorithm.

4.1. Priority to Restricted Packets

We say that a packet in the two-dimensional mesh isrestrictedif it has exactly one good
direction. We divide the restricted packets into two types (see Figure 5):

Type A. Packets that were restricted in the previous step, and advanced in it.

Type B. All the other packets, i.e., either packets that were deflected in the previous
step, or packets that were not restricted in the previous step.

Definition 18. We say that a greedy routing algorithmprefers restricted packetsif
a nonrestricted packet cannot deflect a restricted one. This implies that whenever a
restricted packet is deflected, the packets that deflect it must also be restricted.

For the definition of the potential function, we need the following properties of algorithms
that prefer restricted packets:

1. A restricted packet can deflect at most one type A packet at every step.
2. If a type A packet,q, is deflected by another restricted packet,p, thenp must be

of type B.

4.2. Definition of the Potential Function

We now show that a routing algorithm in the two-dimensional mesh which prefers
restricted packets routes any routing problem withk packets in at most 8

√
2 ·n√k steps.

To this end, we define the potential function as follows: The potential of a packetp
in stept includes the distance fromp to its destination, denoted bydistp(t), and some
additional amount of potential. Changes in the potential are depicted in Figure 6.

Initially, every packetp has 2n additional units of potential. As long asp is not
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Fig. 6. Changes in the potential of packets in one step.

of type A, its additional potential remains fixed. Whenp becomes a type A packet, it
“drops” two units of its additional potential in every step.

If a type A packet is deflected by some other packet, then the two packets “switch”
their additional potential, and the advancing packet drops two units of the potential it
has just received from the deflected packet.

Formally, we denote the amount of additional potential of packetp after stept by
Cp(t).

1. Initially, for everyp, Cp(0) = 2n.
2. If after stept packetp is not restricted, or if it is a restricted packet of type B,

thenCp(t) = 2n.
3. If after stept packetp is a restricted packet of type A, then there are two cases:

(a) p did not deflect any restricted packet of type A in stept . In this case
Cp(t) = Cp(t − 1)− 2.

(b) p deflected a restricted packet of type A. Denote this packet byq (there is
exactly one such packet). In this caseCp(t + 1) = Cq(t)− 2.

4. If p has reached its destination by stept , thenCp(t) = 0.

From the properties of algorithms which prefer restricted packets, it follows that in
case 3(b), packetp was a type B packet at the beginning of stept . Therefore,p had 2n
units of additional potential. At the end of stept , packetq had 2n units of additional
potential (since it was deflected), and packetp hasCq(t − 1) − 2 units of additional
potential. Thus, the sum of additional potential of packetsp andq is 2n+Cq(t−1)−2.
This is exactly the same amount we would have got ifq would have deflectedp.

Thus, as far as the potential function is concerned, it does not matter whetherp
deflectsq or vice versa. Therefore, when we analyze the changes in the potential of a
node, we can always assume that the type A packets are advancing.

The potential of a packetp at the beginning of stept is ϕp(t)
def= distp(t) + Cp(t).

The potential of the mesh at the beginning of stept is8(t)
def= ∑p ϕp(t). We proceed to

show that the potential function8 satisfies Property 8.
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Lemma 19. Consider an algorithm which prefers restricted packets, and let S be a
node in the mesh. If S contains̀ ≤ 2 packets in step t, then it looses at least̀ units of
potential in that step, and if S contains̀ > 2 packets in step t, then it looses at least
4− ` units of potential in that step.

Proof. We consider two cases:

• S does not contain any restricted packet. Thus every packet inS has two good
directions. As it takes two advancing packets to deflect one nonrestricted packet,
it follows that if ` ≤ 2, then all the packets inS will advance. If` > 2, then at
least two packets will advance fromS, and at most̀ − 2 will be deflected.

Since the additional potential of nonrestricted packets is fixed, only the
“distance-potential” of the packet inS is changed. If̀ ≤ 2 we get1S ≥ `, and if
` ≥ 3 we get1S ≥ 2− (`− 2) = 4− `.
• S contains restricted packets, so at least one restricted packet,p, will advance

from S. Assume, without loss of generality, that no restricted packet of type A is
deflected fromS, so rule 3(b) above is not applied. Therefore, the potential ofp
will be decreased by three units. The potential of each of the other packets inS
is increased by at most one unit, and the lemma follows.

Since the potential function satisfies Property 8, and 0≤ ϕp(t) ≤ 4n, we can use
Theorem 17 withd = 2 andM = 4n to obtain

Theorem 20. Every greedy routing algorithm that prefers restricted packets solves
every routing problem with k packets within at most8

√
2 · n√k steps.

Remark. A hot-potato routing problem in the mesh can be split into two independent
problems according to the parity of the packets origin. These problems do not interfere
with one another. Therefore, if every node is the origin of a single packet (that isk = n2),
we can strengthen the result a little, getting a bound of 8n2. Also, when every node is
the origin of four packets, we get a bound of 16n2, which is only eight times the lower
bound.

5. Potential Functions in thed-Dimensional Mesh

In this section we briefly describe how to generalize the method of Section 4 to the
d-dimensional mesh. This generalization includes fairly complex technical details, and
the bound that is obtained this way deteriorates exponentially withd. Therefore, at the
advice of the referees, we choose to omit the detailed proof of this bound and to give
only the ideas here. The full proof can be found in [Hal] and [BHS] or can be obtained
directly from the authors.

We start by generalizing the notion of arestricted packet. Since packets in thed-
dimensional mesh can have more that two good directions, we classify them by the
number of good directions they have. Just like in the two-dimensional case, we divide



58 A. Ben-Dor, S. Halevi, and A. Schuster

packets with the same number of good directions into “type A” and “type B” packets,
according to whether or not they advanced in the previous step.

The natural generalization of algorithms which prefer restricted packets are algo-
rithms which prefer packets with less good directions. A technical difficulty that arises
here is that packets can deflect each other even if they do not have the exact same good
directions, and this causes a problem in the proof. To fix this problem, we need to restrict
the algorithm a little further and to require that it maximizes the number of advancing
packets from every node.

Then we define a potential function which is a natural generalization of the one
in the two-dimensional case. Namely, each packet has a “load of spare potential” from
which it throws as it advances. The amount of “spare potential” it throws is chosen so
that it can compensate for all the packets it may deflect.

Using the ideas above and working out the technicalities, we can show an upper
bound of 4d+1−1/d · d1−1/d · k1/d · nd−1 on the running time of a natural class of greedy
hot-potato algorithms in thed-dimensional mesh.

6. Conclusions and Open Problems

In this work we introduced the notion of greedy hot-potato routing algorithms in meshes.
We developed a technique for the analysis of such algorithms using potential functions.
Using this technique we have shown an upper bound of 8

√
2n
√

k on the running times
of a large class of greedy hot-potato routing algorithms in the two-dimensional mesh.
This can be generalized to obtain anO(exp(d)k1/dnd−1) bound for algorithms ind-
dimensional meshes.

Two important ingredients in our method are as follows:

• The specific routing algorithm and the corresponding potential function. These
are to be plugged in the general result (see Theorem 17).
• The isoperimetric inequality to be plugged in Lemma 14, and for which the worst

case is evaluated in Section 4.

An important observation here is that once better algorithms with better corresponding
potential functions are found, the respective bound immediately improves. It is likely
that such algorithms are found for more specific routing problems, or due to a change in
the network parameters (diameter, degree).

Another improvement in the bound can be obtained when a better isoperimetric
inequality is found. For example, a much better bound than that derived in Section 4
can be shown when the maximal distance to destination is small. However, in order to
complete this observation to a better routing time of a small distance routing algorithm,
it is still left to show that packets are not deflected much further, which seems to be a
harder task.

When the dimension of the mesh increases, routing terminate faster due to the
existence of more communication links and paths. Unfortunately, ford-dimensional
meshes, our bound gets worse. Yet, as is explained in the above discussion, improve-
ment can be obtained by finding better algorithms and potential functions, using the extra
paths.
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The dependence of our result on the number of packets in the system is suboptimal.
A natural open problem is to improve the bound for sparse requests where the number
of packets is small, i.e.,k¿ nd.

An interesting problem is to present upper bounds on the worst-case running time
of a greedy algorithm for routing a permutation of messages. In such routing requests
each node is the origin and the destination of at most one packet. Intuitively, permutation
routing should terminate faster than the single destination case. For nongreedy routing
there exists a well-developed theory of such algorithms, where most lower bounds are
matched up to small constant factors, see [NS2] and [KLS]. In the greedy domain,
however, although simulations predict superb performance, there were no better upper
bounds than those presented in [BC] and in this work. After this work was completed
there has been some progress in this direction, see below.

6.1. Postscript: Following this Work

Following the notion ofgreedy hot-potato routing algorithmsintroduced in this work
there were several related results. In this subsection we give a brief overview of these
results.

Ben-Aroyaet al. showed a greedy algorithm on the two-dimensional mesh for
routing a batch ofk packets with maximal source-to-destination distancedmax in 2(k−
1)+dmax steps [BTS]. Independently, this bound was also obtained by Feige [Fe] and by
Borodinet al. [BRS]. Furthermore, the bound in [BRS] holds also for higher-dimensional
meshes. (The bound in [Fe] also holds for higher-dimensional meshes, however, the
algorithm does not remain greedy.)

[Fe] and [BTS] define a stronger notion of greed. [Fe] contains several upper and
lower bounds for greedy and strongly greedy routing algorithms. [BTS] presents a greedy
single-target algorithm (allk packets destined to the same node) which exactly matches
the lower bound ofdmax+ k in the two-dimensional mesh. [BTS] gives a seven-step
greedy algorithm for routing permutations withdmax = 3 (a five-step algorithm in [Fe]
for the same problem is nongreedy). A folklore algorithm achievesO(n2) routing time
on the 2n hypercube for the same problem [Bo].

Ben-Aroyaet al. gave a randomized single-target greedy routing algorithm ond-
dimensional meshes and then-dimensional hypercube [BNS]. As far as we know this is
the only greedy hot-potato routing algorithm for which the bound improves when higher
dimensions are considered (i.e., the algorithm utilizes the higher in-degree of the nodes).

Borodinet al. were the first to obtain ano(k) permutation greedy routing algorithm
[BRS]. They observed that their greedy algorithm, which achieves 2k + dmax on any
routing instance, obeys the conditions for the analysis in [BRST], thus proving that it
terminates inO(n1.5) steps for permutation routing. It was recently claimed that this is
also the lower bound for this algorithm with respect to permutation routing [Sy].

Ben-Aroyaet al. gave lower bounds on the permutation routing time for adaptive
algorithms which attempt to keep the paths to destinations nearly minimal [BCS]. They
extend their lower bounds for hot-potato routing, and show a specific greedy algorithm
that gives priority to restricted packets and which requiresÄ(n2) steps to route some
worst-case permutations on then× n mesh. This proves that the analysis that is given
in this work (and that applies for all routing instances) is the best possible with respect
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to the class of algorithms that give priority to restricted packets, even when the set of
routing instances consist of permutations only.
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