
Theory Comput. Systems30, 645–670 (1997) Theory of
Computing

Systems
© 1997 Springer-Verlag

New York Inc.

Elimination Trees and the Construction of Pools and Stacks∗

N. Shavit1,2 and D. Touitou1

1Computer Science Department, Tel Aviv University,
Ramat Aviv 69 978, Israel
{shanir,danidin}@cs.tau.ac.il

2Laboratory for Computer Science, MIT,
545 Technology Square, Cambridge, MA 02139, USA
shanir@theory.lcs.mit.edu

Abstract. Sharedpoolsandstacksare two coordination structures with a history of
applications ranging from simple producer/consumer buffers to job-schedulers and
procedure stacks. This paper introduceselimination trees, a novel form of diffracting
trees that offer pool and stack implementations with superior response (on average
constant) under high loads, while guaranteeing logarithmic time “deterministic”
termination under sparse request patterns.

1. Introduction

As multiprocessing breaks away from its traditional number crunching role, we are likely
to see a growing need for highly distributed and parallel coordination structures. A real-
time application such as a system of sensors and actuators will require fast response under
both sparse and intense activity levels (typical examples could be a radar tracking system
or a traffic flow controller). Sharedpoolsoffer a potential solution to such coordination
problems, with a history of applications ranging from simple producer/consumer buffers
to job-schedulers [6] and procedure stacks [26]. Apool[19] (also called a pile [22], global
pool [6], or a producer/consumer buffer) is a concurrent data-type which supports the
abstract operations:enqueue(e) —adds elemente to the pool, anddequeue —deletes
and returns some elemente from the pool. A stack is a pool with a last-in-first-out (LIFO)
ordering on enqueue and dequeue operations.

∗ A preliminary version of this paper appeared in theProceedings of the7th Annual Symposium on Parallel
Algorithms and Architectures(SPAA), pages 54–63, July 1995. This research was supported by Contracts HRPA
#F19628-95-C-0118, AFOSR/ONR #F49620-94-1-0199, NSF #9225124-CCR, and #9520298-CCR.

646 N. Shavit and D. Touitou

Since the formal introduction of the problem and its first solution by Manber [19], the
literature has offered us a variety of possible pool implementations. On the one hand there
are queue-lock-based solutions such as those of Anderson [4] and Mellor-Crummey and
Scott [20], which offer good performance under sparse access patterns, but scale poorly
since they offer little or no potential for parallelism in high-load situations. On the other
hand there are a variety of “load-balanced local pools”-based algorithms like Manber’s
search treestructure [19] and the simple and effective randomizedwork-pile and job-
stealingtechniques as designed by Kotz and Ellis [15], Rudolphet al. [22], Lüling and
Monien [17], and Blumofe and Leiserson [6]. These algorithms offer goodexpected
response time under high loads, but very poor performance as access patterns become
sparse (their expected response time becomes linear inn—the number of processors in
the system—as opposed to that of a “deterministic” queue-lock-based pool that is linear
in the number of participating processors). This linear behavior under sparse access
patterns also holds for Manber’s tree-based deterministicjob-stealingmethod [19].

Shavit and Zemach’sdiffracting trees[25] have recently been proposed as a reason-
able middle-of-the-road solution to the problem. Widthw trees guarantee termination
within O(logw) time (wherew ¿ n) under sparse access patterns, and rather surpris-
ingly manage to maintain similar average response time under heavy loads.

1.1. Elimination Trees

This paper introduceselimination trees, a novel form of diffracting trees that offers pool
implementations with the sameO(logw) termination guarantee under sparse patterns,
but with a far superior response (on average constant) under high loads. Our empirical
results show that unlike diffracting trees, and in spite of the fact that elimination trees
offer a “deterministic” guarantee of coordination,1 they scale like “randomized” methods
[6], [15], [17], [22], providing improved response time as the load on them increases.

In a manner similar to diffracting trees, elimination trees are shared data structures
constructed from simple one-input two-output computing elements calledelimination
balancersthat are connected to one another by wires to form a balanced binary tree
with a single root input wire and multiple leaf output wires. While diffracting trees route
tokens, elimination trees route bothtokensandantitokens. These arrive on the balancer’s
input wire at arbitrary times, and are output on its output wires. The balancer acts as a
toggle mechanism, sending tokens and antitokens left and right in a balanced manner.
For example, to create a pool implementation that has stack-like behavior, the balancer
can consist of a single bit, with the rule that tokens toggle the bit and go to the 0 or
1 output wire according to itsold value, while antitokens toggle the bit and go left or
right according to itsnewvalue. Now, imagine that stack array entries are placed at the
leaves of the tree, and think of tokens as enqueue (“push”) requests and antitokens as
dequeue (“pop”) requests. Figure 1 shows a width four tree after three enqueues and a
dequeue have completed. The reader is urged to try this sequence with toggles initially
0. The state of the balancers after the sequence is such that if a token will enter next it
will see 0 and then 1 and end up on wirey2, while if an antitoken is next to enter it will
get a 1 and then a 0 and end up on wirey1, finding the value to be deleted. In fact, our

1 They guarantee that a dequeue operation on a nonempty queue will always succeed.

Elimination Trees and the Construction of Pools and Stacks 647

Fig. 1. A sequential execution on a STACK[4] elimination tree.

tree construction is a novel form of acounting-network-based [5] counter, that allows
decrement (antitoken) operations in addition to standard increment (token) operations.

However, this simple approach is bound to fail since the toggle bit at the root of the
tree will be subject to multiple concurrent modification requests that can be answered only
one at a time. It will thus become a hot-spot [11], [21] and a sequential bottleneck, making
our solution no better than a centralized stack implementation. The problem is overcome
by placing adiffracting prism[25] structure in front of the toggle bit inside every balancer
(see Figure 2). Pairs of tokens attempt to “collide” on independent locations in the prism,
diffracting in a coordinated manner, one to the 0-wire and one to the 1-wire, thus leaving
the balancer without ever having to toggle the shared bit. This is not a problem since in
any case after both toggled it, the bit would return to its initial state. This bit will only
be accessed by processors that did not succeed in colliding, and they will toggle it and
be directed as before.

Our first observation is that the stack behavior will not be violated if pairs of anti-
tokens, not only tokens, are diffracted. The second, more important, fact is that it will
continue to work if collisions among a token and an antitoken result in the “elimination”
of the pair, without requiring them to continue traversing the tree! In other words, a token
and antitoken that meet on a prism location in a balancer can exchange enqueue/dequeue
information and complete their operation without having to continue through logw

balancers. In fact, our empirical tests show that under high loads, most tokens and anti-
tokens are eliminated within two levels. Of course, the tree structure is needed since one
could still have long sequences of enqueues only.

We compared the performance of elimination trees with other known methods using
the Proteus Parallel Hardware Simulator [7] in a shared memory architecture similar to
the Alewife machine of Agarwalet al. [1]. We first compared, under high loads, a variety
of methods that can be used to implement a stack-like pool and are known to perform
well under sparse access patterns. We found that elimination trees scalesubstantially
better than all of these methods, including queue-locks [20], combining trees [12], and
diffracting trees [25].

We then compared elimination trees with theload-balanced local poolstechniques
[19], [15], [22], [17], [6] which cannot be used to implement a stack-like pool and
theoretically provide only linear performance under sparse access patterns. We found
that in many high-load situations elimination trees are inferior to these methods (as is
explained in what follows, we chose for the comparison a representative technique, the
randomized technique of Rudolphet al. [22]), especially for job distribution applications

648 N. Shavit and D. Touitou

where a typical processor is the dequeuer of its latest enqueue (though in many cases
not by much). However, our empirical evidence suggests that elimination trees provide
a better response time, up to a factor of 30 faster than the randomized methods under
sparse loads. Finally, we present evidence that our new elimination balancer design offers
a more scalable diffracting balancer construction even in cases where no collisions are
possible.

In summary, this paper introduceselimination trees, novel forms of diffracting trees
that we beleive will offer effective implementations concurrent pool structures. The
remainder of this paper is organized as follows. In Section 2 we present a concurrent
pool specification, our pool implementation, and its empirical evaluation. Section 3 does
the same for our stack-like pool structure. Then in Section 4 we discuss future research
directions.

2. Pools

We begin with our pool specification and implementations, later showing how to modify
them to create stack-like pools.

A pool [19] (also called a pile [22], centralized “pool” [6], or a producer/consumer
buffer) is a concurrent data-type which maintains a multiset of values by supporting
the abstract operations:enqueue(e) —adds elemente to the multiset, anddequeue —
deletes and returns some elemente from the multiset. For simplicity, assume that all
enqueued elementseare unique, that is, multiset is simply a set. A pool is a relaxation of
a first-in-first-out queue: apart from the queue’s basic safety properties, no causal order
is imposed on the enqueued and dequeued values. However, it is required that:

(P1) an enqueue operation always succeeds, and
(P2) a dequeue operation succeeds if the pool is nonempty, that is, for every exe-

cution in which the number of enqueue operations is greater than or equal to
the number of dequeue operations, all the dequeue operations succeed.

A successfuloperation is one that is guaranteed to return an answer within finite (in our
construction,bounded) time. Note that the randomized decentralized techniques of [6],
[15], [17], and [22] implement a weaker “probabilistic” pool definition, where condition
(P2) is replaced by aprobabilisticguarantee that dequeue operations succeed.

2.1. Elimination Trees

Our pool implementation is based on the abstract notion of anelimination tree, a special
form of the diffracting tree data structures introduced by Shavit and Zemach in [25].
Our formal model follows that of Aspneset al. [5] and the I/O-automata of Lynch and
Tuttle [18].

An elimination balanceris a routing element with one input wirex and two out-
put wires y0 and y1. Tokensandantitokensarrive on the balancer’s input wire at ar-
bitrary times, and are output on its output wires. Every token carries a value. When-
ever a token “meets” an antitoken in a balancer, it passes the value to the antitoken
and both token and antitoken are “eliminated”—effectively never leaving the balancer.
More formally, a pool balancer is a shared object that allows processors to execute
TokenTraverse (TokenType , v) operations which have as inputs the token’s type,

Elimination Trees and the Construction of Pools and Stacks 649

TOKENor ANTITOKEN, and its valuev (which is nonempty in case of aTOKENtype
traversal). Each such operation returns0 or 1, depending on which of the output wiresy0

andy1 the token should proceed, or the pair(ELIMINATED,v) meaning that the token
(or antitoken) was eliminated and that the valuev was exchanged. We slightly abuse
our notation and denote byx andx̄ the number of tokens and antitokens ever received,
and byyi and ȳi , i ∈ {0, 1}, the number of tokens and antitokens ever output on thei th
output wire. The pool balancer object must guarantee:

Quiescence Given a finite number of input tokens and antitokens, the balancer
will reach aquiescentstate, that is, a state in which all the tokens and antitokens
traversal operation executions have completed.

Pairing In any quiescent state, there exists aperfect matchingbetween eliminated
tokens and eliminated antitokens, such that the value returned by an eliminated
antitoken is matched with the value carried by its corresponding eliminated
token.

Pool Balancing In any quiescent state, ifx ≥ x̄, then, for every output wire
i ∈ {0, 1}, yi ≥ ȳi .

Let POOL[w] be a binary tree of elimination balancers with a root input wirex
andw designated output wires:y0, y1, . . . , yw−1, constructed inductively by connecting
the outputs of an elimination balancer to two POOL[w/2] trees. From the quiescence
property of the balancers, given a finite number of input tokens and antitokens, POOL[w]
will reach a quiescence state in which all the tokens and antitokens are either eliminated
or have exited through one of the POOL[w] outputs. We extend pool-balancing to trees
in the natural way claiming that:

Lemma 2.1. The outputs y0, . . . , yw−1 of POOL[w] satisfy the pool-balancing prop-
erty in any quiescent state.

Proof. The proof is by induction onw. Whenw = 2 this follows directly from the
balancer definition. We assume the claim for POOL[w/2] and prove it for POOL[w]. If
the number of tokens entering the root balancer of POOL[w] is greater than or equal to
the number of antitokens, then, by definition, this property is kept on the output wires
of the root balancer, and by the induction hypothesis holds for the output wires of both
POOL[w/2] trees.

On a shared memory multiprocessor, an elimination tree can be implemented as
a shared data structure, where balancers are records, and wires are pointers from one
record to another. Each of the machine’s asynchronous processors can run a program
that repeatedly traverses the data structure from the root input pointer to some output
pointer, each time shepherding a new “token” or “antitoken” through the network (see
Figure 3). Constructing apool object from a POOL[w] tree is straightforward: each
tree output wire is connected to a sequentially accessed “local” pool, a simple queue
protected by a Mellor-Crummey and Scott MCS-queue-lock [20] will do. The MCS-
queue-lock has the property of being “fair,” and so every access request to the queue
will be granted within a bounded number of operations. A process performs an enqueue
operation by shepherding a token “carrying” the value down the tree. If the token reaches

650 N. Shavit and D. Touitou

the output wire, the associated value is enqueued in the local pool connected to that wire.
The dequeue operation is similarly implemented by carrying an antitoken through the
network. If this antitoken collides with a token in a balancer, the dequeuing process
returns the token’s value. Otherwise it exits on a wire and performs a dequeue operation
on the antitoken’s local pool. Naturally if the local pool is empty the dequeuing process
waits until the pool is filled and then access it. The elimination tree is thus a load-
balancedcoordinationmedium among a distributed collection of pools. It differs from
the elegant randomized constructions of [6], [15], [17], and [22] in its deterministic
dequeue termination guarantee and in performance. While work in an individual balancer
is relatively high, each enqueue or dequeue request passes at most logw balancers under
both high and low loads.

Theorem 2.2. The elimination-tree-based pool construction is a correct pool imple-
mentation.

Proof. The basic safety properties of the pool are satisfied thanks to the perfect matching
between eliminated tokens. By the quiescence property of the balancers all the tokens
and antitokens will eventually reach the exits of the elimination tree. Since the MCS-
queue-locks controlling access to the local pools are fair, all the enqueue operations
will succeed in adding their value to the local pools within some bounded number of
operations and property (P1) will be satisfied. Now, if the number of dequeue operations
is greater than the number of enqueue operations, by Lemma 2.1 this will eventually be
the case at each of the local pools at the leaves, then no dequeue operation will ever have
to wait indefinitely at a leaf. This satisfies property (P2).

2.2. Pool Elimination Balancers

The scalable performance of our pool constructions depends on providing an efficient
implementation of an elimination balancer.

Diffracting balancers were introduced in [25]. Our shared memory construction of
a diffracting elimination balancer, apart from providing a mechanism for token/anti-
token elimination, also improves on the performance of the original diffracting balancer
design. While a regular diffracting balancer [25] is constructed from a single prism array
and a toggle bit, the elimination balancer we use in our pool construction (see the top of
Figure 2) has a sequence of prism arrays and two toggle bits, one for tokens and one for
antitokens.2 Each of the toggle bit locations is protected by an MCS-queue-lock [20]. A
process shepherding a token or antitoken through the balancer decides on which wire to
exit according to the value of the respective token or antitoken toggle bit, 0 to the left and
1 to the right, toggling the bit as it leaves. The toggle bits effectively balance the number
of tokens (resp. antitokens) on the two output wires, so that there is in any quiescent state
at most one token (resp. antitoken) more on the 0 output wire than on the 1 wire. Readers
can easily convince themselves that this suffices to guarantee the pool-balancing property.
However, if many tokens were to attempt to access the same toggle bit concurrently, the

2 The two separate toggle locations are an artifact of the pool-balancing property. In our stack construction
in Section 3 the elimination balancer uses a single toggle bit for both tokens and antitokens.

Elimination Trees and the Construction of Pools and Stacks 651

AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA

prism1

prismk

0/1

0/1

tokentoggle

anti-tokentoggle

eliminating
collision

diffracting
collision

prism2

y0

y1

x

Pool elimination balancer

AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA

prism1

prismk

0/1

toggle

eliminating
collision

diffracting
collision

prism2

y1

x

Stack elimination balancer

y0

Toggled anti-token
traces path
of token

Fig. 2. The structure of pool and stack elimination balancers.

bit would quickly become a hot spot. The solution presented in [25] is to add aprismarray
in front of each toggle bit. Before accessing the bit, the process shepherding the token
selects a locationl in the prism uniformly at random, hoping to “collide” with another
token which selectedl . If a collision occurs, then the tokens “agree” among themselves
that one should be “diffracted” left and the other right (the exact mechanism is described
in what follows), without having to access the otherwise congested toggle bit. If such
a diffracting collisiondoes not occur, the process toggles the bit as above and leaves
accordingly. As proved in [25], the combination of diffracted tokens and toggling tokens
behaves exactly as if all tokens toggled the bit, because if any two diffracted tokens were
to access the bit instead, after they both toggled it the bit state would anyhow return to
its initial state. The same kind of prism could be constructed for antitokens.

The key to our new constructions is the observation that for data structures which
have complementary operations (such as enqueues and dequeues), a substantial perfor-
mance benefit can be gained from having a joined prism for both tokens and antitokens.
In addition to toggling and diffracting of tokens and antitokens, if a collision between

652 N. Shavit and D. Touitou

Fig. 3. Tree traversal code.

a token and antitoken occurs in the shared prism, they can be “eliminated” (exchanging
the complementary information among themselves) without having to continue down
the tree. We call this aneliminating collision. Unlike with diffracting collisions, if the
eliminating collision had not occurred, each of the token and antitoken toggle bits would
have changed. Nevertheless, the combination of toggling, diffracting, and elimination
preserves the pool-elimination balancer’s correctness properties, which by Lemma 2.1
guarantees pool balancing.

The sizeof (number of locations in) the prism array has critical influence on the
efficiency of the node. If it is too high, tokens will miss each other, lowering the number
of successful eliminations, and causing contention on the toggle bits. If it is too low, too
many processes will collide on the same prism entry, creating a hot-spot. We typically
found the optimal performance was when the prism width at a balancer on a given level is
the same as the width of the subtree below it (this conforms with recent projections based
on steady-state analysis [24]). Moreover, unlike the single prism array of [25], we found it
more effective to pass a token through a series of prisms of decreasing size, thus increasing
the chances of a collision. This way, at high contention levels most of the collisions will
occur on the larger prisms, while at low levels they happen on the smaller ones.

Figure 4 gives the code for traversing an elimination balancer. Note that for algo-
rithmic simplicity we omitted input values and the code for their exchange, and have
deferred a discussion of this issue to Section 2.4.

Elimination Trees and the Construction of Pools and Stacks 653

Fig. 4. Traversing an eliminating balancer.

Apart from reading and writing memory, our implementation uses a hardware

• register to memory swap(addr,val) operation, and a
• compare and swap(addr,old,new) , an operation which checks if the value

at addressaddr is equal toold , and, if so, replaces it withnew, returningTRUE
and otherwiseFALSE.

Our implementation also uses standardAquireLock andReleaseLock procedures
to enter and exit the MCS-queue-lock [20].

Initially, processorp announces the arrival of its token at nodeb, by writingb and its
token type toLocation [p]. It then chooses a location in thePrism 1 array uniformly
at random (note that randomization here is used only to load-balance processors over

654 N. Shavit and D. Touitou

the prism, and could be eliminated in many cases without a significant performance
penalty) and swaps its own PID for the one written there. If it read a PID of an existing
processorq (i.e., not empty(him)), p attempts to collide withq. This collision is
accomplished by first executing a〈his b,his type 〉 := Location[him] read
operation to determine the type of token being collided with, and then performing two
compare-and-swap operations on theLocation array. The first clearsp’s entry, assuring
no other processor will collide with it during its collision attempt (this eliminates race
conditions). The second attempts to markq’s entry as “collided withp,” notifying q of the
collision type:DIFFRACTEDor ELIMINATED. If both compare-and-swap operations
succeed, the collision is successful, andp decides based on collision type either to
diffract through the right output wire or to be eliminated. If the first compare-and-swap
fails, it follows that some other processorr has already managed to collide withp. In
that casep diffracts through the left output wire or is eliminated, depending on the
type of processor that collided with it. If the first succeeds but the second fails, then the
processor with whomp was trying to collide is no longer at balancerb, in which casep
resets itsLocation entry to contain the balancer name and its token type, and, having
failed to “collide with” another processor, spins onLocation[p] waiting for another
processor to “collide with it.” If afterspin time units no collision occurs,p restarts the
whole process at the next levelPrism 2 and so on. Ifp has traversed all the prism levels
without colliding, it acquires the lock on the toggle bit, clears its element, toggles the
bit, and releases the lock. Ifp’s element could not be erased, it follows thatp has been
collided with, in which casep releases the lock without changing the bit and diffracts or
is eliminated accordingly.

2.3. Correctness Proof of Pool Balancer Implementation

Clearly, if no diffractions and no eliminations occur during an execution, by the code
all the tokens would access the toggle bits and the balancing property will be easily
satisfied. Hence, in order to prove the correctness of our implementation we should
focus on showing that eliminating and diffracting tokens are paired off correctly. For
example, we must show that a scenario in which tokenT1 diffracts with tokenT2 and in
which T2 is not aware of it and still toggles the bit, will never happen. As a first step,
we assume that every token in a given execution has a unique virtual IDTp, and let
the subscriptp denote the PID of the process shepherding the token. We use the “∗”
notation throughout the paper to denote an unspecified value. In the following lemma we
show that if some processp readsLocation[q] = 〈b,* 〉, then processq is currently
shepherding a token through balancerb.

Lemma 2.3. For every process p, if Location[p] = 〈b,* 〉 then p is executing
TokenTraverse on balancer b.

Proof. Initially Location[p] = 0. From the algorithm it is clear that onlyp can
write a value different from 0 as a balancer name inLocation[p] . Sincep always
writes 0 intoLocation[p] (a successfulcompare and swap) before completing
TokenTraverse , the claim follows.

Elimination Trees and the Construction of Pools and Stacks 655

We now define a tokenTp traversing a balancerb as adiffracting token if p has
executed Line 1 in the algorithm and thus “leaves on output wire 1.” Since, for every
diffracting tokenTp, p executed a successfulcompare and swap(Location[him],
〈b,* 〉, 〈0,DIFFRACTED〉), we know by Lemma 2.3 that at the same time processhim
was shepherding some tokenThim throughb. We designateThim, which “leaves on
output wire 0” asdiffracted by Tp. We also define a tokenTp as aneliminatingtoken if p
executed Line 2. In a similar way as for diffracting tokens we designate the tokenThim

aseliminatedby Tp. Finally we define a tokenTp as atoggling token if p has executed
Line 3 in the algorithm. From the flow control of the algorithm it is clear than a token
cannot be both toggling and eliminating, or toggling and diffracting, or eliminating and
diffracting.

In the next two lemmas we show that tokens are paired off correctly during elimi-
nation and diffraction.

Lemma 2.4. Every token traversing a balancer b can be diffracted or eliminated by
at most one other token.

Proof. By way of contradiction. Assume that a tokenTp, while traversingb, has been
eliminated or diffracted by two other tokensTq and Tr . In that case, bothq and r
have successfully executedcompare and swap(Location[p], 〈b,* 〉, 〈0,* 〉) .
It follows that p must have written〈b,* 〉 in Location[p] at least twice during
the execution of theTokenTraverse carrying Tp throughb. However, in that case
compare and swap(Location[p], 〈b,* 〉, 〈0,EMPTY〉) was successfully exe-
cuted by p before writing〈b,* 〉 on Location[p] for the second time. A contra-
diction.

Lemma 2.5. A toggling, eliminating, or diffracting token Tp cannot be eliminated or
diffracted by some other token Tq.

Proof. The proof follows sinceq executes Lines 1, 2, or 3, or writes〈b,* 〉 on Loca -
tion[q] , only after executing a successfulcompare and swap(Location[q],
〈b,* 〉, 〈0,EMPTY〉) , no other process will be able to execute a successfulcom-
pare and swap(Location[q], 〈b,* 〉, 〈 0,EMPTY〉) .

We now prove that:

Theorem 2.6. The pool balancer implementation given in Figure4 satisfies the pool-
balancing property.

Proof. Given any execution of the pool implementation, letd1 andd̄1 be the number
of diffracting (leaving on wire 1) tokens and antitokens respectively and letd0 andd̄0

be the number of diffracted (leaving on wire 0) tokens and antitokens. We designate by
e the number of eliminated and eliminating tokens and byē the number of eliminating
and eliminated antitokens. Finally, lett and t̄ be the number of toggling tokens and
antitokens, respectively.

656 N. Shavit and D. Touitou

By Lemma 2.5,x = d0+d1+e+ t andx̄ = d̄0+ d̄1+ ē+ t̄ . By Lemma 2.4,̄e= e,
d0 = d1, andd̄0 = d̄1. Now, if x ≥ x̄, thent + d0+ d1 = x − e≥ x̄ − ē= t̄ + d̄0+ d̄1.
Consequently,

⌈
t + d0+ d1

2

⌉
≥
⌈

t̄ + d̄0+ d̄1

2

⌉
,

and sinced0 = d1 and d̄0 = d̄1 thendt/2e + d0 ≥ dt̄/2e + d̄0. Thereforey0 ≥ ȳ0.
Using the same arguments, it can be shown thatbt/2c + d1 ≥ bt̄/2c + d̄1 and therefore
y1 ≥ ȳ1.

2.4. Exchanging Values in Eliminating Collisions

The purpose of the eliminating collisions is to allow enqueuers and dequeuers to ex-
change values and to leave the pool. The algorithm in Figure 4 can be easily modified
to handle value exchanges: every process writes and reads fromLocation[mypid] a
triplet 〈b,mytype,value 〉 instead of just the pair〈b,mytype 〉. To eliminate an anti-
token, a token writes〈0,ELIMINATED,value 〉 in the antitoken’sLocation . Note
that it knows this is an antitoken following the preliminary〈his b,his type 〉 :=
Location[him] read operation. In this way the eliminated antitoken will find this
value and return it. On the other hand, an eliminating antitoken returns the value it has
read from the eliminated token’sLocation entry. Since, the triplets stored inLocation
are written and updated atomically, only minor modifications are needed in the correct-
ness proof: we just have to show that an eliminating (or eliminated) antitoken returns
the value carried by the token it has eliminated (or was eliminated by). The proof of this
lemma is identical to the proof of Lemma 2.3.

Lemma 2.7. For every process p, if Location[p] = 〈b,TOKEN, v〉, then p is shep-
herding a token carrying valuev on balancer b.

We have shown in Lemmas 2.4 and 2.5 that eliminated tokens and antitokens are
paired off correctly. We now prove that eliminated or eliminating antitokens exchange
values in a proper way.

Lemma 2.8. Every eliminated antitoken returns the value carried by the token that has
eliminated it. Every eliminating antitoken returns the value carried by the token it has
eliminated.

Proof. Assume thatTp is an eliminated antitoken. LetTq be the token which elimi-
natedTp. By the modified algorithmcompare and swap(Location[p], 〈b,ANTI-
TOKEN,NULL〉, 〈0,ELIMINATED, v〉) was successfully executed byq, wherev is the
value carried byTq. Since onlyp can change the content ofLocation[p] , and it could
not, it must have returnedv.

Assume thatTq is an eliminating antitoken which returned a valuev and letTp

be the token it eliminated. Processq executedcompare and swap(Location[p],

Elimination Trees and the Construction of Pools and Stacks 657

〈b,TOKEN, v〉, 〈0,ELIMINATED,NULL 〉) successfully, and therefore, by Lemma 2.7,
v must be the value carried byTp.

2.5. Performance of the Elimination-Tree-Based Pool

We evaluated the performance of ourelimination-tree-based pool construction relative to
other known methods by running a collection of benchmarks on a simulated distributed-
shared-memory machine similar to the MITAlewifemachine [1] of Agarwalet al. The
results presented hopefully exemplify the potential in using elimination trees, but in no
way claim to be a comprehensive study of their performance.

Our simulations were performed usingProteus, a multiprocessor simulator devel-
oped by Breweret al. [7]. Proteus simulates parallel code by multiplexing several parallel
threads on a single CPU. Each thread runs on its own virtual CPU with accompanying
local memory, cache, and communications hardware, keeping track of how much time is
spent using each component. In order to facilitate fast simulations, Proteus does not com-
pletecycle per cyclehardware simulations. Instead, local operations (that do not interact
with the parallel environment) are run uninterrupted on the simulating machine’s CPU.
The amount of time used for local calculations is added to the time spent performing
simulated globally visible operations to derive each thread’s notion of the current time.
Proteus makes sure a thread can only see global events within the scope of its local time.

Our simulated Alewife-like machine has 256 processors, each at a node of a Torus-
shaped communication grid. Each node also contains a cache memory, a router, and
a portion of the globally addressable memory. The cost of switching or wiring in the
Alewife architecture is 1 cycle/packet. Each processor has a cache with 2048 lines of
8 bytes. The cache coherence is provided using a version of Chaiken’s directory-based
cache-coherence protocol [9].

2.5.1. The Produce–Consume Benchmark. We begin by comparing under various
loadsdeterministicpool constructions which are known to guarantee a good enqueue/

dequeue time when the load is low (sparse access patterns). These methods are also the
ones that can be modified to provide stack-like pool behavior. In the produce–consume
benchmark each processor alternately enqueues a new element in the pool, dequeues a
value from the pool, and then waits a random number of cycles between 0 andWorkload
(see Figure 5).

We ran this benchmark varying the number of processors (the architecture remained
the same 256 node machine) participating in the simulation during 106 cycles, mea-
suring:latency, the average amount of time spent per produce and consume operation,

Fig. 5. The Produce–consume benchmark.

658 N. Shavit and D. Touitou

Fig. 6. A pool based on a cyclic array and shared counters.

and throughput, the number of produce and consume operations executed during 106

cycles.
In preliminary tests we found that the most efficient pool implementations are at-

tained when using shared counting to load balance and control access to a shared array
(see Figure 6).

We thus realized the centralized pool in the style of [5], given in Figure 6, where
the headcounter and tailcounter are implemented using two counters of the
following type:

MCS The MCS-queue-lock of [20], whose response time is linear in the num-
ber of concurrent requests. Each processor locks the shared counter, incre-
ments it, and then unlocks it. The code was taken directly from the article,
and implemented using atomic operations:register to memory swap and
compare and swap operations.

CTree A Fetch&Incusing an optimal width software combining tree following the
protocol of Goodmanet al. [12], modified according to [13]. The tree’s response
time is logarithmic in the maximal number of processors. Optimal width means
that whenn processors participate in the simulation, a tree of widthn/2 will be
used [13].

DTree A diffracting tree of width 32, using the optimized parameters of [25],
whose response time is logarithmic inw = 32, which is smaller than the maximal
number of processors. The prismsize s were 8, 4, 2, 2, and 1 for levels 1, . . . ,5,
respectively. Thespin is equal to 32, 16, 8, 4, and 2 for balancers at depths 0,
1, 2, 3, 4, and 5, respectively.

and compared it with:

ETree A POOL[32] elimination-tree-based pool, whose response time is logarith-
mic inw = 32, which is smaller than the maximal number of processors. This
size was chosen based on empirical testing. The root node and its children con-
tain two prisms of size 32 and 8 for the root and 16 and 4 its children. The nodes
at depths 3, 4, and 5 have a single prism of size 2, 1, and 1, respectively. The
spin is equal to 32, 16, 8, 4, and 2 for balancers at depths 0, 1, 2, 3, 4, and 5,
respectively.

Elimination Trees and the Construction of Pools and Stacks 659

Fig. 7. Produce–consume: throughput and latency withWorkload= 0 .

From Figure 7 we learn that under high loads diffracting and elimination trees
provide the most scalable high-load performance. However, as observed by Shavit and
Zemach [25], as the level of concurrency increases, while the diffracting tree manages
only to keep the average latency constant, the average latency in the elimination tree
continues todecreasedue to the increased numbers of successful eliminating collisions
taking place on the top levels of the tree. The effect on the throughput is an up to 2.5
times increase in requests that are answered by the elimination tree! The percentage
of eliminated tokens at the root varies between 44.7% when only 16 processors are
participating and up to 49.7% for 256 processors. In fact, as can be seen from Table 1,
most enqueue/dequeue requests never reach the lower level balancers, and the expected
number of balancers traversed (including the pool at the leaf) for 16 processors is 3.14
nodes (38.9% of the requests access the leaf pools) and for 256 processors 2.082 nodes
(only 8.95% of the requests eventually access the pools at the leaves). As seen in Figure 7,
at such high levels of concurrency the elimination tree is almost as fast as the MCS-queue-
lock is when there are just a few processes.

Table 1. Fraction of tokens eliminated per tree level.

16 Processors 256 Processors

Level 0 44.7% 49.8%
Level 1 24% 49.1%
Level 2 5.8% 45.2%
Level 3 1.9% 32.9%
Level 4 0% 6.8%

660 N. Shavit and D. Touitou

Fig. 8. Produce–consume: throughput and latency withWorkload > 0 .

In Figure 8 we compared the various methods as access patterns become more
sparse. The MCS lock outperforms all others when the number of processes is small,
and, unlike in the high-load case of Figure 8, even with a high number of processes the
elimination tree cannot match its low latencies because of the low levels of elimination
on the root balancer. As the chances of combining, diffraction, and elimination drop, the
depth of the structures comes more into play. For 256 processors the optimal combining
tree requires 2 logn = 16 node traversals (up and down the tree), while the optimal width
32 diffracting and elimination trees have depth 5 and thus require far fewer operations.

Elimination Trees and the Construction of Pools and Stacks 661

Fig. 9. The Counting benchmark.

It follows that the elimination and diffracting tree performance graphs converge, and at
sufficiently high levels of concurrency remain far better than the combining tree.

2.5.2. The Counting Benchmark. Our new multilayered prism approach is slightly
more costly but scales better than the original single prism construction of Shavit and
Zemach [25], since it increases the likelihood of successful collisions. This conforms with
the steady-state modeling of diffracting trees by Shavitet al. [24]. As can be seen from
Figure 9, when running a benchmark offetch&incrementoperations where noeliminating
collisionscan occur, the DTREE[32] and DTREE[64] with original singlePrism balancers
outperform a DTREE[32] with our new multilayered balancers in almost all the levels of
concurrency which could be incurred in the 256-processor produce–consume benchmark
(on average each DTREE[32] has 128 or so concurrent enqueues). However, unlike our
multilayered balancer constructions, they do not continue to scale well at higher levels
of concurrency.

2.5.3. The Response Time Benchmark. We compared elimination trees with the ran-
domized method of Rudolphet al. (RSU) [22], which we chose as a representative of the
class ofload-balanced local poolsmethods, which also include the randomized meth-
ods of Kotz and Ellis [15] (RSU is a refinement of this method), of L¨uling and Monien
[17] (this method is a refinement of RSU), and the job-stealing method of Blumofe and
Leiserson [6]. We did not compare with Manber’s deterministic method [19] as Kotz

662 N. Shavit and D. Touitou

and Ellis [15] have shown empirically that the randomized methods tend to give better
overall performance. It should be kept in mind that there are various situations in which
any one of these techniques outperforms all the others and vice versa.

The RSU scheme is surprisingly simple:

RSU A processor enqueues tasks in its private task queue. Before dequeuing a
task, every processor flips a coin and executes aload-balancingprocedure with
probability 1/ l , wherel is the size of its private task queue. Load balancing is
achieved by first choosing a random processor and then moving tasks from the
longer task queue to the smaller to equalize their sizes.

We note that under high loads, and especially in applications such as job-distribution
where each process performs both enqueues and dequeues, these methods are by far
superior to elimination trees and all other presented methods. (The 10-queens benchmark
in the left-hand side of Figures 10 and 11 is a lesser example of RSU’s performance.
Initially one processor generates 10 tasks of depth 1 simultaneously. Each one ofn
processors repeatedly dequeues a task and if the task’s depth is smaller than 3 it waits
work = 8000 cycles and enqueues 10 new tasks of depth increased by one.) However,
as we know from theoretical analysis, their drawback is the rather poor2(n) expected
latency when there are sparse access patterns by producers and consumers that are
trying to pass information from one to the other, as could happen, say, in an application
coordinating sensors and actuators.

The right-hand side of Figures 10 and 11 show the results of an experiment at-
tempting to evaluate (in a synthetic setting of course) how much this actually hampers
performance, by measuring the average latency incurred by a dequeue operation try-
ing to find an element to return. We do so by running our 256-processor machine with
n/2 processors as enqueuers andn/2 as dequeuers, wheren varies between 2 and 256.

Fig. 10. 10-Queens and response time graphs.

Elimination Trees and the Construction of Pools and Stacks 663

Fig. 11. Code for the 10-Queens and response time benchmarks.

Each one of the enqueuing processors repeatedly enqueues an element in the pool and
waits until the element has been dequeued by some dequeuing process. Each time we
measured the time elapsed between the beginning of the benchmark until 2560 elements
were dequeued, and normalized by the number of dequeue operations per process. Note
that because of the way it is constructed, there is no real pipelining of enqueue opera-
tions, and this benchmark does not generate the high workload of the produce–consume
benchmark for large numbers of participants.

As can be seen, RSU does indeed have a drawback since it is almost 100 times
slower than the queue-lock and 30 times slower than an elimination tree for sparse
access patterns. This is mostly due to the fact that the elimination tree even without
eliminating collisions will direct tokens and antitokens to the same local piles within
O(logw) steps. RSU reaches a crossover point when about a quarter of all local piles are
being enqueued into. In summary, elimination trees seem to offer a reasonable middle-
of-the-way response time over all ranges of concurrency.

3. Stack-Like Pools

Many applications in the literature that benefit by keeping elements in LIFO order would
perform just as well if LIFO were kept among all but a small fraction of operations. LIFO-
based scheduling will not only eliminate excessive task creation in many cases, but it will
also prevent processors from attempting to dequeue and execute a task which depends on
the results of other tasks [26]. Blumofe and Leiserson [6] provide a scheduler based on
a randomized distributed pool having stack-like behavior on the level of local pools. We
present here a construction of a pool that globally behaves like a stack. Our construction
is based on the use of an elimination tree to create a single counter that can be both
incremented and decremented concurrently, and can thus serve as a high bandwidth
pointer to the head of the stack.

3.1. Increment–Decrement Counting Trees

We define a new type of balancer, thegap elimination balancer, that allows both tokens
and antitokens as inputs, and balances the “difference” between them (the surplus of
tokens over antitokens) on its output wires. We usegap elimination balancers to construct

664 N. Shavit and D. Touitou

counting trees that allow both increments and decrements. It has recently been shown
by two independent teams, Busch and Mavronicolas [8] and Aielloet al. [3] that the
increment/decrement properties we describe hold for counting networks in general, not
only for trees.

A gap elimination balanceris aelimination balancerthat in addition to the quies-
cence and pairing property must satisfy the additional requirement that:

Gap Step Property. In any quiescent state 0≤ (y0− ȳ0)− (y1− ȳ1) ≤ 1.

In other words, any surplus of tokens over antitokens on the balancers output wires is
distributed so that there is a gap of no more than one token on wire 0 relative to wire 1 in
any quiescent state. Clearly, the gap step property implies thepool-balancingproperty
on the balancer’s output wires.

Claim 3.1. Every gap elimination balancer satisfies the pool-balancing property.

We design INCDECCOUNTER[w] as acounting tree[25] (a special case of the struc-
ture with regular token routing balancers replaced by token/antitoken routinggap elimi-
nation balancers). Forw a power of two, INCDECCOUNTER[2k] is just a root gap balancer
connecting to two INCDECCOUNTER[k] trees with the output wiresy0, y1, . . . , yk−1 of
the tree hanging from wire “0” redesignated as the even output wiresy0, y2, . . . , y2k−2

of INCDECCOUNTER[2k], and the wires of the tree extending from the root’s “1” output
wire redesignated as the odd output wiresy1, y3, . . . , y2k−1.

Lemma 3.2. The INCDECCOUNTER[w] tree constructed from gap elimination bal-
ancers has the gap step property on its output wires, that is, in any quiescent state

0≤ (yi − ȳi)− (yj − ȳj) ≤ 1

for any i < j .

Proof. We use that fact that the layout of the INCDECCOUNTER is identical to that of
a counting tree [25], in order to show that if for some execution the INCDECCOUNTER

reaches a quiescent state which does not satisfies the gap step property, then there is
an execution of the counting tree in which the step property is violated too. This is
a contradiction to Theorem 5.5 of [25]. LetTg be an INCDECCOUNTER constructed
from gap balancersg, and letTb be the isomorphic counting tree which is the result of
replacing every gap balancerg in INCDECCOUNTER by a regular balancerb. Given an
execution historyhg of Tg, for every gap balancerg, let hg

x be the gap between tokens
and antitokens ong’s input wire x, and lethg

0 andhg
1 be the gap at each ofg’s output

wires y0 andy1. Definehb
x, hb

0, andhb
1 for hb of Tb analogously.

Assume that for some execution historyhg of Tg, the gap step property is violated
in a quiescent state. Assume first that the total difference between the number of tokens
and antitoken accessingTg is some nonnegative numberG. Let hb be an execution of
Tb in which G tokens access the treeTb. By a simple inductive argument used on the
depth of the trees, it can be shown that for every gap balancerg in Tg and its matching

Elimination Trees and the Construction of Pools and Stacks 665

balancerb in Tb, the following holds:hg
x = hb

x ∧ hg
0 =b

0 ∧hg
1 = hb

1. Consequently, it
follows that:

Claim 3.3. If for some execution history hg of Tg, where G is nonnegative, the gap
step property is violated in a quiescent state, then it is also violated for the matching
history hb of Tb.

Assume now that, forhg, the differenceG between the total number of tokens and
antitokens is negative. Letk be the smallest number such that 2d ∗ k+G ≥ 0 whered is
the depth of the tree. Leth1g be an execution ofTg, in which after the completion ofhg,
2d ∗ k tokens were pushed throughTg. Using a simple inductive argument on the depth
of the tree, it can be shown that, for every nodeg of depthd′ in Tg, hg

x+k∗2d−d′ = h1g
x.

Therefore, sincek tokens will have been added equally to all the exits ofTg, the gap step
property will be violated inh1g too. Since, inh1g, the gap at the entrance of the tree is
nonnegative, the claim follows by applying Claim 3.3.

A stack-like poolis constructed, as with the pool data structure, by placing sequen-
tially accessed “local stacks” at the leaves of an INCDECCOUNTER[w] tree. The following
theorem is a corollary of Theorem 2.2 and Claim 3.1:

Theorem 3.4. The stack-like pool construction is a correct pool implementation.

The next theorem, which explicates the the LIFOish behavior of a stack-like pool
is a direct corollary from the step property of Lemma 3.2, and is left to the interested
reader.

Theorem 3.5. In any sequential execution the stack-like pool provides a LIFO order
on enqueues and dequeues.

In Section 3.5 we present empirical evidence that suggests that even though the
stack-like pool is not linearizable [14] to a sequential stack, it is linearizable in executions
without severe timing anomalies, hence our use of the term “stack-like.”

3.2. Implementing the Gap Elimination Balancer

The pool elimination balancer construction from the former section can be modified so
that it satisfies the gap step property. This is done by replacing Part 2 of the code in
Figure 4 with the following:

AquireLock(b → Lock);
if compare and swap(Location[mypid], 〈b,my type 〉, 〈0,EMPTY〉) then

i:= b → INCDECtoggle;
b → INCDECtoggle := Not(i);
ReleaseLock(b → Tokens[mytype]);
return b → OutputWire[i];

666 N. Shavit and D. Touitou

else
ReleaseLock(b → Lock);
if Location[mypid]= 〈0,DIFFRACTED〉 return (b → OutputWire[0])
else return ELIMINATED

Instead of accessing two different toggle bits, both tokens and antitokens use the same
toggle bitINCDECtoggle . If a token does not collide in the prisms, it togglesINCDEC-
toggle and chooses an output wire according to the old value of the bit. An anti-
token similarly togglesINCDECtoggle , but it chooses an output wire according to
thenewvalue ofINCDECtoggle (using machine language notation, tokens perform a
fetch&complement and antitokens acomplement&fetch). On an intuitive level,
this combination causes an antitoken to “trace” the last inserted token.

3.3. Correctness Proof of Gap Balancer Implementation

In order to prove the correctness of our gap balancer implementation we first show that
all the tokens that have accessed the toggle bit satisfy the gap step property. As before, let
ti andt̄i be the number of toggling tokens and antitokens exiting the balancer on wirei .

Lemma 3.6. In any quiescent state0≤ (t0− t̄0)− (t1− t̄1) ≤ 1.

Proof. The proof is by induction on the length of the historyh of accesses to the toggle
bit. If history h contains only token transitions or only antitoken transitions, then the
property holds trivially. Ifh consists of transitions of both token types, there must be at
least one token transitionτ and one antitoken accessτ̄ which followed one other in the
history. We defineh′ to be the historyh without τ and τ̄ . Since followingτ and τ̄ the
INCDECtoggle bit returns to the same state it was before these transitions accessed it,
h′ is a possible history of the access toINCDECtoggle and by induction hypothesis
satisfies the step property. Now, since bothτ andτ̄ leave on the same output wire,h also
satisfies the balancing property.

Since the elimination protocols are identical in both the pool and gap elimination
balancer implementations, the proof of the following three lemmas are identical to the
proofs of Lemmas 2.3, 2.4, and 2.5, respectively, and are therefore omitted.

Lemma 3.7. For every process p, if in a given stateLocation[p] = 〈b,* 〉, then p
is executingTokenTraverse on balancer b.

Lemma 3.8. Every token traversing a balancer b can be diffracted or eliminated by
at most one other token.

Lemma 3.9. A toggling, eliminating, or diffracting token Tp cannot be eliminated or
diffracted by some other token Tq.

We can now conclude the correctness proof of our gap balancer implementation:

Elimination Trees and the Construction of Pools and Stacks 667

Theorem 3.10. The gap eliminating balancer implementation satisfies the gap step
property.

Proof. Using the same notations as in the correctness proof of the pool balancer, we
know from Lemmas 3.7, 3.8, and 3.9 thatē = e, d0 = d1, and d̄0 = d̄1. Therefore
(t0− t̄0)− (t1− t̄1) = ((t0+d0)− (t̄0+ d̄0))− ((t1+d1)− t̄1+ d̄1). Since,y0 = t0+d0,
y1 = t1+d1, ȳ0 = t̄0+d̄0, andȳ1 = t̄1+d̄1 we may conclude that 0≤ (y0− ȳ0)−(y1− ȳ1)

≤ 1.

3.4. Performance of the Stack-Like Pool

We tested the performance of the stack-like pool for the produce–consume benchmark
from Section 2. We implemented an INCDECCOUNTER[32] with prism sizes and spin
times as in the POOL[32]. In Figure 12 we present the result of a comparision between an
INCDECCOUNTER[32]-based stack-like pool and a POOL[32] in the producer-consumer
benchmark under high loadWorkload = 0 . As can be seen, though tokens are access-
ing a shared toggle bit instead of two separate ones, high elimination rates on the prisms
allow the efficiency of the stack-like pool to fall only slightly from that of the POOL[32].

3.5. Almost Linearizability

Herlihy and Wing’s linearizability [14] is a consistency condition that specifies the
allowable concurrent behaviors of an object by way of a mapping to a sequentially
specified object whose behaviors are easy to state. A linearization mapping exists if a
point can be picked within the execution interval of every concurrent operation so that
the collection of operations executed sequentially according to the order among these
points, meets the sequential object specification. We present some empirical evidence
that suggests that even though the stack-like pool is not always linearizable to a sequential
stack, it behaves very much like one.

Given a stack-like pool implementation, letE(e) andD(e) respectively denote an
enqueue operation ofeand a dequeue operation returninge. Let→ be the real-time order

Fig. 12. Comparison between a pool and a stack-like pool.

668 N. Shavit and D. Touitou

Fig. 13. Produce–consume: percentage of dequeue operations that are not linearizable.

between the operations (O P1→ O P2 iff O P1 has terminated beforeO P2 has started).
We say that the operationD(x) in an executione is not linearizableif there areE(y),
E(x) such thatE(x) → E(y) → D(x) and eitherD(y) does not exist ine or D(y)
exists ine andE(x) → E(y) → D(x) → D(y). A stack-like pool implementation is
linearizable[14] if it ensures that every execution does not contain a dequeue operation
that is not linearizable.

Our elimination-tree-based INCDECCOUNTER[w] is easily shown to be not lineariz-
able to a sequential counter with increments and decrements. However, we present in
Figure 13 empirical evidence suggesting that scenarios in which the linearizabilty of our
stack-like pool is violated require extreme timing anomalies that it might be argued are
not likely to occur frequently. We ran the producer-consumer benchmark where each
processor, after traversing a balancer node, waits a random number of cycles between
0 andW = 0, 1000, 10,000, 100,000 until 2000 dequeue operations are executed. The
graph presented plots the percentage of dequeue operations that are not linearizable.
Note that for tightly synchronized executions (W = 0), our stack-like implementation
is linearizable to a stack at almost all levels of concurrency.

4. Conclusions and Further Research

Our paper introduces the notion of “antitokens” to allow decrement operations on a
counting-tree [25]. Since the initial publication of our results [2], two independent re-
search teams, Busch and Mavronicolas [8] and Aielloet al. [3], have recently extended
our proofs to show that counting networks [5] in general, not only trees, work with anti-
tokens (Busch and Mavronicolas [8] show this also for multibalancers [2], [10], that is,
balancers with multiple inputs and output wires).

In summary,elimination treesrepresent a new class of concurrent algorithms that
we hope will prove an effective alternative to existing solutions for produce/consume co-
ordination problems. This paper presents shared memory implementations of elimination
trees, and uses them for constructing pools and stack-like pools.

There is clearly room for experimentation on real machines and networks. Given
the hardwarefetch-and-complementoperation to be added to the Alewife machine’s

Elimination Trees and the Construction of Pools and Stacks 669

Sparcle chip’s set of colored load/store operations [16], a shared memory elimination-
tree will be able to be implemented in a wait-free manner, that is, without any locks. Our
plan is to test such “hardware supported” elimination-tree performance. We also plan
to develop better measures and methods for setting the tree parameters such as prism
size and balancerspin , and are currently developing message passing versions of our
algorithms.

Acknowledgments

We would like to thank Yehuda Afek, Bill Aiello, Maurice Herlihy, and Asaph Zemach for their many helpful
comments.

References

[1] A. Agarwal, R. Bianchini, D. Chaiken, K. Johnson, D. Kranz, J. Kubiatowicz, B. Lim, K. Mackenzie,
and D. Yeung. The MIT Alewife Machine: Architecture & Performance. InProceedings of the22nd
International Symposium on Computer Architecture, pages 2–13, Santa Margherita, Ligure, Italy, June
1995. Also, MIT/LCS Memo TM-454, 1991.

[2] E. Aharonson and H. Attiya. Counting Networks with Arbitrary Fan Out.Distributed Computing,
8(4):163–169, 1995. Also, Technical Report 679, The Technion, June 1991.

[3] W. Aiello, M. Herlihy, N. Shavit and D. Touitou. Inc/Dec Counting Networks. Manuscript, December
1995.

[4] T. E. Anderson. The Performance of Spin Lock Alternatives for Shared-Memory Multiprocessors.IEEE
Transactions on Parallel and Distributed Systems, 1(1):6–16, January 1990.

[5] J. Aspnes, M. P. Herlihy, and N. Shavit. Counting Networks.Journal of the ACM, 41(5):1020–1048,
September 1994.

[6] R. D. Blumofe and C. E. Leiserson. Scheduling Multithreaded Computations by Work Stealing. In
Proceedings of the35th Symposium on Foundations of Computer Science, pages 365–368, November
1994.

[7] E. A. Brewer, C. N. Dellarocas, A. Colbrook, and W. E. Weihl. PROTEUS: A High-Performance Parallel-
Architecture Simulator. Technical Report MIT/LCS/TR-561, Laboratory for Computer Science,
Massachusetts Institute of Technology, September 1991.

[8] C. Busch and M. Mavronicolas. The Strength of Counting Networks. InProceedings of the15th Annual
ACM Symposium on Principles of Distributed Computing, page 311, Philadelphia, PA, May 1996.

[9] D. Chaiken. Cache Coherence Protocols for Large-Scale Multiprocessors. S. M. thesis, Laboratory
for Computer Science, Massachusetts Institute of Technology, Technical Report MIT/LCS/TR-489,
September 1990.

[10] E. W. Felten, A. LaMarca, and R. Ladner. Building Counting Networks from Larger Balancers. T.R.
#93-04-09, University of Washington.

[11] D. Gawlick. Processing “Hot Spots” in High Performance Systems. InProceedings COMPCON ’85,
pages 249–251, San Francisco, CA (30th IEEE Comp. Society International Conference), February
1985.

[12] J. R. Goodman, M. K. Vernon, and P. J. Woest. Efficient Synchronization Primitives for Large-Scale
Cache-Coherent Multiprocessors. InProceedings of the3rd ASPLOS, pages 64–75, April 1989.

[13] M. Herlihy, B. H. Lim, and N. Shavit. Scalable Concurrent Counting.ACM Transactions on Computer
Systems, 13(4):343–364, 1995. Full version available as a DEC TR.

[14] M. Herlihy and J. M. Wing. Linearizability: A Correctness Condition for Concurrent Objects.ACM
Transaction on Programming Languages and Systems, 12(3):463–492, July 1991.

[15] D. Kotz and C. S. Ellis. Evaluation of Concurrent Pools. InProceedings of the International Conference
on Distributed Computing Systems, pages 378–385, June 1989.

670 N. Shavit and D. Touitou

[16] J. Kubiatowicz. Personal communication (February 1995).
[17] R. Lüling and B. Monien. A Dynamic Distributed Load Balancing Algorithm with Provable Good

Performance. InProceedings of the5th ACM Symposium on Parallel Algorithms and Architectures,
pages 164–173, June 1993.

[18] N. A. Lynch and M. R. Tuttle. Hierarchical Correctness Proofs for Distributed Algorithms. InProceed-
ings of the Sixth ACM SIGACT–SIGOPS Symposium on Principles of Distributed Computing, August
1987, pp. 137–151. Full version available as Technical Report MIT/LCS/TR–387, Laboratory for
Computer Science, Massachusetts Institute of Technology.

[19] U. Manber. On Maintaining Dynamic Information in a Concurrent Environment.SIAM Journal on
Computing, 15(4):1130–1142, November 1986.

[20] J. M. Mellor-Crummey and M. L. Scott. Algorithms for Scalable Synchronization on Shared-Memory
Multiprocessors.ACM Transactions on Computer Systems, 9(1):21–65, Feb. 1991.

[21] G. H. Pfister and A. Norton. “Hot Spot” Contention and Combining in Multistage Interconnection
Networks.IEEE Transactions on Computers, 34(11):933–938, November 1985.

[22] L. Rudolph, M. Slivkin, and E. Upfal. A Simple Load Balancing Scheme for Task Allocation in Par-
allel Machines. InProceedings of the3rd ACM Symposium on Parallel Algorithms and Architectures,
pages 237–245, July 1991.

[23] N. Shavit and D. Touitou. Elimination Trees and the Construction of Pools and Stack. InProceedings of
the7th Annual Symposium on Parallel Algorithms and Architectures(SPAA), pages 54–63, July 1995.

[24] N. Shavit, E. Upfal, and A. Zemach. A Steady-State Analysis of Diffracting Trees. InProceedings of
the8th Annual ACM Symposium on Parallel Algorithms and Architectures, pages 33–41, Padua, Italy,
June 1996. Also, to appear in special issue ofTheory of Computing Systems.

[25] N. Shavit and A. Zemach. Diffracting Trees.ACM Transactions on Computer Systems, 14(4):385–428,
November 1996.

[26] K. Taura, S. Matsuoka, and A. Yonezawa. An Efficient Implementation Scheme of Concurrent Object-
Oriented Languages on Stock Multicomputers. InProceedings of the4th Symposium on Principles and
Practice of Parallel Programming, pages 218–228, May 1993.

Received February28, 1996,and in final form January23, 1997.

