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Abstract
We combine Solomonoff’s approach to universal prediction with algorithmic statistics
and suggest to use the computable measure that provides the best “explanation” for
the observed data (in the sense of algorithmic statistics) for prediction. In this way
we keep the expected sum of squares of prediction errors bounded (as it was for the
Solomonoff’s predictor) and,moreover, guarantee that the sumof squares of prediction
errors is bounded along any Martin-Löf random sequence. An extended abstract of
this paper was presented at the 16th International Computer Science Symposium in
Russia (CSR 2021) (Milovanov 2021).

1 Introduction

We consider probability distributions (or measures) on the binary tree, i.e., non-
negative functions P : {0, 1}∗ → R such that P(empty word) = 1 and P(x0) +
P(x1) = P(x) for every string x . We assume that all the values P(x) are rational; P
is called computable if there exists an algorithm that on input x outputs P(x).

Consider the following prediction problem. Imagine a black box that generates
bits according to some unknown computable distribution P on the binary tree. Let
x = x1 . . . xn be the current output of the black box. The predictor’s goal is to guess
the probability that the next bit is 1, i.e., the ratio P(1|x) = P(x1)/P(x).

Ray Solomonoff suggested to use the universal semi-measure M (called also the a
priori probability) for prediction. Recall that a semi-measure S on the binary tree
(a continuous semi-measure) is a non-negative function S : {0, 1}∗ → R such
that S(empty word) � 1 and S(x0) + S(x1) � S(x) for every string x . Semi-
measures correspond to probabilistic processes that output a bit sequence but can
hang forever, so an output may be some finite string x ; the probability of this event is
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S(x) − S(x0) − S(x1). A semi-measure S is called lower semi-computable, or enu-
merable, if the set {(x, r) : r < S(x)} is (computably) enumerable. Here x is a
string and r is a rational number. Finally, a lower semi-computable semi-measure M
is called universal if it is maximal among all semimeasures up to a constant factor,
i.e., if for every lower semi-computable semi-measure S there exists c > 0 such that
M(x) � cS(x) for all x . Such a universal semi-measure exists [7, 11, 12].1

Solomonoff suggested to use the ratio M(1|x) := M(x1)/M(x) to predict P(1|x)
for an unknown computable measure P . He proved the following bound for the pre-
diction errors.

Theorem 1 ([13]) For every computable distribution P and for every b ∈ {0, 1} the
following sum over all binary strings is finite:

∑

x

P(x) · (P(b|x) − M(b|x))2 < ∞. (1)

Moreover, this sum is bounded by O(K(P)), whereK(P) is the prefix complexity of
the computable measure P (theminimal length of a prefix-free program corresponding
P).

Note that for semi-measure the probabilities to predict 0 and 1 do not sum up to 1,
so the statements for b = 0 and b = 1 are not equivalent (but both are true).

The sum from Theorem 1 can be rewritten as the expected value of the function D
on the infinite binary sequences with respect to P , where D(ω) is defined as

D(ω) =
∑

x is a prefix of ω

(P(b|x) − M(b|x))2.

This expectation is finite, therefore for P-almost all ω the value D(ω) is finite and

P(b|x) − M(b|x) → 0.

when x is an increasing prefix of ω. One would like to have this convergence for all
Martin-Löf randomsequencesω (with respect tomeasure P), but this is not guaranteed,
since the null set provided by the argument above may not be an effectively null set.
An example from [5] shows that this is indeed the case.

Theorem 2 ([5]) There exist a specific universal semi-measureM, computable distri-
bution P and Martin-Löf random (with respect to P) sequence ω such that

P(b|x) − M(b|x) �→ 0.

for increasing prefixes x of ω.

1 One may even require that the probabilities for finite outputs, i.e., the differences S(x) − S(x0) − S(x1)
are maximal, but we do not require this.
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Lattimore and Hutter generalized Theorem 2 by proving the same statement for a
wide class of universal semi-measures [8].

Trying to overcome this problem and get a good prediction for all Martin-Löf
random sequences, we suggest the following approach to prediction. For a finite string
x we find a distribution Q on the binary tree that is the best (in some sense) explanation
for x . The probabilities of the next bits are then predicted as Q(0|x) and Q(1|x).

This approach combines two advantages. The first is that the series of type (1) also
converges, though the upper bound for it (at least the one that we are able to prove) is
much greater than O(K(P)). The second property is that the prediction error (defined
as in Theorem 2) converges to zero for every Martin-Löf random sequence.

Let us give formal definitions. The quality of the computable distribution Q on the
binary tree, considered as an “explanation” for a given string x , is measured by the
value 3K(Q) − log Q(x): the smaller this quantity is, the better is the explanation.
One can rewrite this expression as the sum

2K(Q) + [K(Q) − log Q(x)].

Here the expression in the square brackets can be interpreted as the length of the
two-part description of x using Q (first, we specify the hypothesis Q using its shortest
prefix-free program, and then, knowing Q, we specify x using arithmetic coding; the
second part requires about − log Q(x) bits). The first term 2K(Q) is added to give
extra preference to simple hypotheses; the factor 2 is needed for technical reasons (in
fact, any constant greater than 1 will work2).

For a given x we select the best explanation that makes this quality minimal.
Formally, we find

Qx = argminQ{3K(Q) − log Q(x)}.

So, Qx is the best explanation for string x (or one of the best explanations if there
are several).

Then we predict the probability that the next bit after x is b:

H(b|x) := Qx (xb)

Qx (x)
,

In this paper we prove the following results:

Theorem 3 For every computable distribution P the following sum over all binary
strings x is finite: ∑

x

P(x)(P(0|x) − H(0|x))2 < ∞.

2 One can consider a similar prediction method with factor 1 + α for arbitrary positive α instead of factor
2. However it does not give an significant improvement so we do not do it.
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Theorem 4 Let P be a computable measure and let ω be a Martin-Löf random
sequence with respect to P. Then

H(0|x) − P(0|x) → 0

for prefixes x of ω as the length of prefix goes to infinity.

We speak about the probabilities of zeros, but both P and Q are measures, so this
implies the same results for the probabilities of ones.

We prove that ∑

x is a prefix of ω

(H(0|x) − P(0|x))2 < ∞

(Theorem 7) that is the strengthening of Theorem 4.

Remark 1 Note that function H as well as Solomonoff’s predicator is uncomputable.
Indeed, consider some computable predictor H . Then there exists a computable dis-
tribution P such that |H(0|x) − P(0|x)| � 1

2 for every x . Of course this predictor
does not satisfy Theorem 3.

In [3] Hutter suggested a similar approach but without coefficient 3 for K(Q) (see
also [2, 4]). For this approach he proved an analogue of Theorem 3 with different
proof technique.

In [5] the existence of a semi-computablemeasure satisfyingTheorem4was proved.
In [6] authors prove an analogue of Theorem 3 for the Hellinger distance with double
exponential in K(P) bound.

In the next section we prove Theorem 4.
In Section 3 we prove Theorem 3.
Finally, in Section 4 we consider the case when we know some information about

P . More precisely, we know that P belongs to some enumerable set of computable
measures. We suggest a similar approach for prediction in this case. We prove ana-
logues of Theorems 4 and 3 (Theorems 9 and 10) for this prediction method. We
achieved better (polynomial in complexity of P) error estimations in these theorems.

2 Prediction onMartin-Löf Random Sequences

Recall the Schnorr–Levin theorem [11, ch.5] that says that a sequence ω is random
with respect to a computable probability measure P if and only if the ratioM(x)/P(x)
is bounded for x that are prefixes of ω.

The same result can be reformulated in the logarithmic scale. Let us denote by
KM(x) the a priori complexity of x , i.e., �− logM(x)� (the rounding is chosen in this
way to ensure upper semicomputability of KM). We have

KM(x) � − log P(x) + O(1)

for every computable probability measure P , where O(1) depends on P but not on x .
Indeed, since M is maximal, the ratio P(x)/M(x) is bounded. Moreover, since P(x)
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can be included in the mix for M(x) with coefficient 2−K(P), we have

KM(x) � − log P(x) + K(P) + O(1)

with some constant in O(1) that does not depend on P (and on x). As we have
discussed in the previous section, the right-hand side includes the length of the two-
part description of x .

Let us call
d(x |P) := − log P(x) − KM(x)

the randomness deficiency of a string x with respect to a computable measure P .
(There are several notions of deficiency, but we need only this one.) Then we get

d(x |P) � −K(P) − O(1)

so the deficiency is almost non-negative. The Schnorr–Levin theorem characterizes
Martin-Löf randomness in terms of deficiency:

Theorem 5 (Schnorr–Levin)
(a) If a sequence ω is Martin-Löf random with respect to a computable disctibution

P, then d(x |P) is bounded for all prefixes x of ω.
(b) Otherwise (if ω is not random with respect to P), then d(x |P) → ∞ as the

length of a prefix x of ω increases.

Note that there is a dichotomy: the values d(x |P) for prefixes x of ω either are
bounded or converge to infinity (as the length of x goes to infinity). We can define
randomness deficiency for infinite sequence ω as

d(ω|P) := sup
x is prefix of ω

d(x |P);

it is finite if and only if ω is random with respect to P .
Let us also recall the following result of Vovk:

Theorem 6 ([15]) Let P and Q be two computable distributions. Letω be aMartin-Löf
random sequence with respect both to P and Q. Then

P(0|x) − Q(0|x) → 0

for prefixes x of ω as the length of prefix goes to infinity.

We will prove this theorem (and even more exact statement) in the next section.

Proof of Theorem 4 Nowwe have a sequenceω that isMartin-Löf randomwith respect
to some computable measure P , so D = d(ω|P) is finite. For each prefix x of ω we
take the best explanation Q that makes the expression

3K(Q) − log Q(x)
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minimal. Note that P is among the candidates for Q, so this expression should not
exceed

3K(P) − log P(x).

Since ω is random with respect to P and x is a prefix of ω, Schnorr–Levin theorem
guarantees that the latter expression

3K(P) − log P(x) = KM(x) + O(1)

where constant in O depends on P andω but not on x . On the other hand, the inequality
KM(x) � K(Q) − log Q(x) + O(1) implies that

3K(Q) − log Q(x) = 2K(Q) +K(Q) − log Q(x) � 2K(Q) +KM(x) − O(1). (2)

Someasures Qwith largeK(Q) cannot competewith P , and there is only a finite list
of candidate measures for the best explanation Q. For some of these Q the sequence ω

is Q-random with respect to Q, so one can use Vovk’s theorem to get the convergence
of predicted probabilities when these measures are used.

Still we may have some “bad” Q in the list of candidates for which ω is not Q-
random. However, the Schnorr–Levin theorem guarantees that for a bad Q we have

− log Q(x) − KM(x) → ∞

if x is a prefix of ω of increasing length. So the difference between two sides of (2)
goes to infinity as the length of x increases, so Q loses to P for large enough x (is
worse as an explanation of x). Therefore, only good Q will be used for prediction after
sufficiently long prefixes, and this finishes the proof of Theorem 4. 	


3 On the Expectation of Squares of Errors

In this section we prove Theorem 3. First we will prove some strengthening of
Theorem 6

Lemma 1 Let P and Q be computable distributions. and let M be a universal semi-
measure. Assume that for string x = x1 . . . xn and C > 0 it holds that P(x), Q(x) �
M(x)/C. Then:

n−1∑

i=1

(P(xi |x1 . . . xi−1) − Q(xi |x1 . . . xi−1))
2 = O(logC + K(P, Q)).

Proof of Theorem 6 from Lemma 1 According to one of definitions of Martin-Löf ran-
domness the valuesM(x)/P(x) andM(x)/Q(x) are bounded by a constant. It reminds
to use Lemma 1. 	
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Proof of Lemma 1 Denote

pi = P(xi |x1 . . . xi−1), qi = Q(xi |x1 . . . xi−1).

Note that

P(x1 . . . xn) = p1 p2 . . . pn, Q(x1 . . . xn) = q1q2 . . . qn .

Now consider the “intermediate” measure R for which the probability of 0 (or 1)
after some x is the average of the same conditional probabilities for P and Q:

R(0|x1 . . . xi−1) = P(0|x1 . . . xi−1) + Q(0|x1 . . . xi−1)

2
.

The corresponding ri = R(xi |x1 . . . xi−1) are equal to (pi + qi )/2.
Probability distribution R is computable and K(R) � K(P, Q) + O(1). Hence, it

holds that R(x) � 2K(P,Q)M(x) � 2K(P,Q) · C · P(x). The similar inequality holds
for distribution Q. Therefore:

r1 · · · rn � C · 2K(P,Q) · p1 · · · pn
and

r1 · · · rn � C · 2K(P,Q) · q1 · · · qn .
Multiplying we obtain:

(
p1 + q1

2
· · · pn + qn

2
)2 � C2 · 22K(P,Q) · p1 · · · pn · q1 · · · qn . (3)

These two inequalities show that the product of arithmetical means of pi and qi is
not much bigger than the product of their geometrical means, and this is only possible
if pi is close to qi (logarithm is a strictly convex function).

To make the argument precise, recall the bound for the logarithm function:

Lemma 2 For p, q ∈ (0, 1] we have

log
p + q

2
− log p + log q

2
� 1

8 ln 2
(p − q)2

Proof Let us replace the binary logarithms by the natural ones; then the factor ln 2
disappears. Note that the left hand side remains the same if p and q are multiplied by
some factor c � 1 while the right side can only increase. So it is enough to prove this
for p = 1 − h and q = 1 + h for some h ∈ (0, 1), and this gives

− ln(1 − h) + ln(1 + h)

2
� 1

2
h2;

and this happens because ln(1 − h) + ln(1 + h) = ln(1 − h2) � −h2. 	
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For the product of n terms we get the following bound:

Lemma 3 If for p1, . . . , pn, q1, . . . , qn ∈ (0, 1] we have
(
p1 + q1

2
· . . . · pn + qn

2

)2

� cp1 . . . pnq1 . . . qn,

then
∑

i (pi − qi )2 � O(log c), with some absolute constant hidden in O(·)-notation.
Proof Taking logarithms, we get

2
∑

i

log
pi + qi

2
� log c +

∑

i

log pi +
∑

i

log qi ,

and therefore ∑

i

(
log

pi + qi
2

− log pi + log qi
2

)
� 1

2
log c.

It remains to use Lemma 2 to get the desired inequality.
To complete the proof of Lemma 1 it remains to use in inequality (3) Lemma 3 for

c := C2 · 22K(P,Q). 	

Now we prove a strengthening of Theorem 4.

Theorem 7 Let P be a computable measure, let ω be a Martin-Löf random sequence
with respect to P such that d(ω|P) = D.

Then

∑

x is a prefix of ω

(H(0|x) − P(0|x))2 = O((K(P) + D) · 2 3K(P)+D+O(1)
2 ).

Proof Consider Qx (the best distribution) for some x = x1 . . . xn . Then

3K(Qx ) − log Qx (x) � 3K(P) − log P(x). (4)

Since d(ω|P) = D we obtain that

− log P(x) � KM(x) + D. (5)

Therefore,

− log Qx (x) � 3K(P) − log P(x) � 3K(P) + KM(x) + D , so

Qx (x) � M(x) · 2−3K(P)−D and

P(x) � M(x) · 2−D.

We want to estimate
∑n

i=1(Q(0|x1 . . . xi ) − P(0|x1 . . . xi ))2 by Lemma 1. We can
use this lemma for C = 23K(P)+D .
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From (4), (5) and KM(x) � − log Q(x) + K(Q) it follows that

K(Qx ) � 3K(P) + D + O(1)

2
. (6)

Therefore by Lemma 1 we obtain

n−1∑

i=1

(Q(0|x1 . . . xi ) − P(0|x1 . . . xi ))
2 = O(K(P) + D).

In fact, we can not use this lemma for the last term (Q(0|x) − P(0|x))2. This term
we just bound by 1.

So, every probability distribution that is the best for some x “contributes”O(K(P)+
D) in the sum

∑
x is a prefix of ω(H(0|x) − P(0|x))2.

There are at most 2
3K(P)+D+O(1)

2 such distribution by (6), so we obtain the required
estimation. 	


Recall the following well-known statement

Proposition 8 Let P be a computable distribution. Then the P-measure of all
sequences ω such that d(ω|P) � D is not greater than 2−D.

Proof of Theorem 3 Denote by � the set of all infinite sequences with zeros and ones.
Note that

∑

x

P(x)(P(0|x) − H(0|x))2 =
∫

(�,P)

∑

x is a prefix of ω

(H(0|x) − P(0|x))2.

ByTheorem7we can estimate the sum in the integral for sequenceωwith d(x |ω) =
D as O((K(P)+ D) · 2 3K(P)+D+O(1)

2 ). By Proposition 8 the measure of sequences with
such randomness deficiency is at most 2−D . So we can estimate the integral as

∞∑

D=0

O((K(P) + D) · 2 3K(P)+D+O(1)
2 )2−D = O(K(P)2

3K(P)
2 ).

(Recall that the P-measure of sequences that are not Martin-Łöf random with
respect to P is equal to 0, so they do not affect to the integral.) 	


4 Prediction for Enumerable Classes of Hypotheses

Assume that we have some information about distribution P . We know that P belongs
to some enumerable setA of computable distributions, (i.e. there is an algorithm that
enumerate programs that generate distributions from A). For this case it is natural to
consider the following measure of complexity in A:

KA(P) := K(iP ), where i p is the number of P in a computable enumeration of A.
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If P appears multiple times in an enumeration, we select iP with the lowest com-
plexity. (This definition depends on the choice of a computable enumeration, but
the influence of this dependence is constrained by an additive constant.) Clearly,
KA(P) � K(P) + O(1).

We can now extend our prediction method. To predict the next bit of x , we choose
Q ∈ A with the lowest value of 3KA(Q) − log Q(x) and base our next-bit prediction
on Q :

HA(x) := Q(xb)

Q(x)
.

In this section, we demonstrate that if set A possesses certain favorable proper-
ties, analogous results to previous theorems emerge. Furthermore, we can achieve an
improved error estimation.

We assume that enumerable set A has the following property: if P1, . . . , Pk ∈ A
then their mixture P1+...Pk

k belongs to A. Moreover there exists an algorithm that for
given numbers of P1, . . . , Pk (in some enumeration ofA) outputs the number of their
mixture.

Further everywhere A is an enumerable set of computable distributions with this
property.

Remark 2 Consider the following example of set A: the set of all provable (in some
proof system) computable distributions on the binary tree. For every program p ∈
A, there exists a proof that p(x) halts for every x , p(x) = p(x0) + p(x1), and
p(empty word) = 1. We guess that all using in practice computable distributions are
provable computable, so, in some sense we get better error estimation “almost free”.
Our discussion about practice might look unsuitable because our prediction method
is not computable. However, it can be considered as the ideal version of the MDL
principle prediction which is approximated in practice.

Theorem 9 Let P ∈ A be a computable measure, let ω be a Martin-Löf random
sequence with respect to P such that d(ω|P) = D.

Then

∑

x is a prefix of ω

(HA(0|x) − P(0|x))2 = O((KA(P) + D) · poly(KA(P) + D).

Theorem 10 For every computable distribution P ∈ A the following sum over all
binary strings x is finite:

∑

x

P(x)(P(0|x) − H(0|x))2 < poly(KA(P)).

The proofs of these theorems are in general the same as the Proofs of Theorems 7
and 3, however some new tools are added. The difference is that we can get better
estimation on the number of possible best explanations for prefixes of some sequence.
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Lemma 4 Let x be a finite string. Assume that there are 2k probability distributions
Q1, . . . Q2k ∈ A such that for every i it holds KA(Qi ) � a and Qi (x) � 2−b.

Then there is probability distribution Q ∈ A such that
KA(Q) � a − k + O(log(a + k)) and Q(x) � 2−b−k .

Note that 3KA(Q) − log Q(x) � 3 · (a − k) + O(log(a + k)) + b + k � 3 · a − b
for big enough k. This means that string x can not has many “best” explanations.

Proof of Lemma 4 Let enumerate all distributions of A with complexity at most a by
groups of size 2k−1 (the last group can be incomplete). The number of such groups is
O(2a−k). The complexity of every group is at most a − k + O(log(a + k)). Indeed,
to describe a group we need its ordinal number in an enumeration and describe this
enumeration (we need to know k, a and some enumeration of A).

One of these complete group contains some Qi . Define Q as the mixture of the
distributions in this group. Since the group has complexity at most a−k+O(log a+k)
the same estimation holds for the complexity of Q. Since some Qi belongs to the
mixture it holds that Q(x) � 2−b−k+1. Recall that Q belongs to A because every
mixture of distributions from A belongs to A. 	


Also we need the following lemma.

Lemma 5 Let string s be a prefix of string h and let P be a computable distribution
such that d(s |P) = D. Then d(h |P) � D − 2 log D + O(1).

(So, a prefix oconf a string that has small deficiency, has (almost as) small defi-
ciency).

In fact the proof of this lemma is the same as the proof of Theorem 124 in [11].

Proof of Lemma 5 For each k consider the enumerable set of all finite sequences that
have deficiency greater than k. All the infinite continuations of these sequences form an
open set Sk , and P-measure of this set does not exceed 2−k . Now consider the measure
Pk on� that is zero outside Sk and is equal to 2k P inside Sk . That means that for every
set U the value Pk(U ) is defined as 2k P(U ∩ Pk). Actually, Pk is not a probability
distribution according to our definition, since Pk(�) is not equal to 1. However, Pk
can be considered as a lower semi-computable semi-measure, if we change it a bit
and let Pk(�) = 1 (this means that the difference between 1 and the former value of
Pk(�) is assigned to the empty string).

It is clear that Pk is lower semi-computable since P is computable and Sk is enu-
merable.

Now consider the sum

S =
∑

k

1

k(k − 1)
Pk

It is a lower semi-computable semi-measure again Then we have

− log S(x) � − log P(x) − k + 2 log k + O(1)

for every string x that has a prefix with deficiency greater than k. Since S does not
exceed a priori probability (up to O(1)-factor), we get the desired inequality. 	
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Proof of Theorem 9 Part 1. We claim that there are only poly(D + KA(P)) different
distributions that are the best for some prefix of ω.

Let x be a prefix of ω and Q is the best distribution for x . As in the proof of
Theorem 7 (see (6)) we obtain

KA(Q) � 3KA(P) + D + O(1)

2
, (7)

Q(x) � M(x) · 2−3KA(P)−D

and hence
d(x |Q) � 3KA(P) + D. (8)

Let Q1, . . . , Qm be different and the best distribution for prefixes x1, . . . , xm of ω.
We need to prove that m = poly(D + KA(P)).
Fix some natural a and b. Consider all Qi such that K(Qi ) = a and

b � d(xi |Qi ) < 2b.

It is enough to we prove that there are only poly(D + K(P)) best distributions
with the such complexity and randomness deficiency. Indeed, the honest estimation
of m will be multiplied by poly(D+K(P)) because these parameters are bounded by
polynomials by (7) and (8). So, further we consider only Qi with such parameters.

Let xi be the shortest prefix among x1, . . . xm .
By Lemma 5 every Q j is “rather good” distribution for xi : d(xi |Q j ) � 2b +

O(log b) and hence Q j (xi ) � Qi (x) · 2−O(log b). By Lemma 4 there exists a distribu-
tion from R ∈ A such that

KA(R) � a − logm + O(log a + logm) and

R(x) � Qi (x) · 2− logm−O(log b).

Since Q j is not worse distribution then R for x we have:

3 · KA(Qi ) − log Qi (x) � 3 · KA(R) − log R(x).

Therefore:
3a � 3a − 2 logm + O(log b) and hence

logm � O(log b) = O(log(KA(P) + D).

That is proved our claim.
Part 2. To complete the proof we do the same things as in the proof of Theorem 7.
If x = x1 . . . xn is a prefix ofω and Q is the best distribution for x then by Lemma 1

n−1∑

i=1

(Q(0|x1 . . . xi )−P(0|x1 . . . xi ))
2=O(KA(P)+D+K(P, Q)=O(KA(P)+D).
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(In the last equation we use K(P, Q) = O(K(P) + K(Q)) = O(KA(P) +
KA(Q)).) So, every probability distribution that is the best for some x “con-
tributes” O(KA(P) + D) in the sum

∑
x is a prefix of ω(HA(0|x) − P(0|x))2. There

are poly(D + KA(P)) such distributions, so we obtain the required estimation. 	

Proof of Theorem 10 The proof is the same as the proof of Theorem 3 but with using
Theorem 9 instead of Theorem 7. 	


5 Open Questions

A natural question arises: can we get a better estimation in the last theorem than

O(K(P)2
3K(P)

2 )? The exponential (in K(P)) estimation arises from our attempt to
estimate the number of distributions that are optimal for some x . However, the author
is not aware of an example of P-random sequence ω such that there are exponentially
many (in terms of K(P) and d(ω|P)) different best distributions for prefixes of ω.

Algorithmic statistics [1, 11, 14] studies good distributions for strings among dis-
tributions on finite sets. There exists a family of “standard statistics” that cover all the
best distributions for finite strings. It is interesting: are these the same for distributions
on the binary tree?
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