
Theory of Computing Systems (2024) 68:512–528
https://doi.org/10.1007/s00224-024-10166-y

Linear Codes Correcting Repeated Bursts Equipped
with Homogeneous Distance

Pankaj Kumar Das1 · Subodh Kumar2

Accepted: 6 February 2024 / Published online: 6 March 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
The homogeneous weight (metric) is useful in the construction of codes over a ring of
integers Zpl (p prime and l ≥ 1 an integer). It becomes Hamming weight when the
ring is taken to be a finite field and becomes Lee weight when the ring is taken to beZ4.
This paper presents homogeneous weight distribution and total homogeneous weight
of burst and repeated burst errors in the code space of n-tuples over Zpl . Necessary
and sufficient conditions for existence of an (n, k) linear code over Zpl correcting the
error patterns with respect to the homogeneous weight are derived.
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1 Introduction

Fire [5] in 1959 observed that errors in some communication channelswere not random
in nature, they occurred in clustered way, known as burst error. In [5, 13] necessary
and sufficient conditions for existence of a linear code over Galois field GF(q) which
corrects bursts were studied. As the days passed, more and more advanced commu-
nication channels keep on appearing in practice which keep on producing different
types of errors like CT-burst, cyclic burst, periodic error, etc. In 2009, Berardi [3] et
al. observed that the burst error repeats itself in a busy channel which they called as
“2-repeated bursts”. Further, Dass and Verma [4] observed that if the channel becomes
more busy, the frequency of repetition of burst increased and they are referred to as
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“m-repeated bursts”. Such errors occur in the channels like lutamate-injured networks
and glutamate-injured networks [16]. In [4], existence of repeated burst correcting
linear codes over GF(q) was studied.

The homogeneous weight (metric), introduced for integer residue rings in [2] and
extended for finite rings in [6, 7], has been gaining attention in the context of ring-
linear coding. It is an extension of Hamming and Lee weight [9, 10]. It becomes
Hamming weight when the ring taken to be a finite field and becomes Lee weight
when the ring taken to be Z4. Ring of integers Zpl (p prime and l ≥ 1 an integer) is a
generalization ofGF(q). The rich algebraic structure of rings increases the popularity
of linear codes over rings. The homogeneous weight is useful in construction of codes
overZpl (see [18–20]).Many classical results/bounds which were true for linear codes
with Hamming weight are investigated for this homogeneous weight [7, 8, 11, 12, 17].

In [14, 15], Hamming weight distribution of bursts and m-repeated bursts are stud-
ied. In this paper, we present homogeneous weight distribution and total homogeneous
weight of these error patterns. In [17], Temiz and Siap presented necessary condi-
tion only for linear codes over Zpl correcting repeated CT-bursts with homogeneous
weight. In this paper, we present necessary as well as sufficient conditions for lin-
ear codes over Zpl correcting bursts and m-repeated bursts along with homogeneous
weight constraint.

2 Definitions and Notations

Let Zn
pl
denote the code space of all n-tuples over Zpl . Then Z

n
pl
becomes a module

over Zpl .

Definition 1 [17] A subset C of Zn
pl

is called an (n, M) linear block code if C is a

submodule of Zn
pl
of size M . A submodule of Zn

pl
is called an (n, k) linear code if it is

spanned by k elements. Its dual code (C⊥) can be defined in the similar way as linear
code over GF(q).

Note 1 In a linear code overZpl , the rows of the generator matrix would span the code,
but the rows need not be linearly independent. If the rows are linearly independent,
then the code is said to be a free code.

Definition 2 [6] The homogeneous weight whom of an element x ∈ Zpl is defined as

whom(x) =

⎧
⎪⎨

⎪⎩

0 if x = 0

pl−1 if x ∈ (pl−1)\{0}
(p − 1)pl−2 otherwise

,

where (pl−1) denotes the ideal of Zpl generated by pl−1.
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Definition 3 [6] The homogeneous weight of a vector v = (v1, v2, ..., vn) ∈ Z
n
pl

is
defined as

whom(v) =
n∑

i=1

whom(vi ).

Definition 4 [6] The homogeneous distance dhom between any two vectors u =
(u1, u2, ..., un) and v = (v1, v2, ..., vn) in Zn

pl
is defined by

dhom(u, v) = whom(u − v) =
n∑

i=1

whom(ui − vi ).

Remark 1 Since (pl−1) =
{
0, pl−1, 2pl−1, . . . , (p − 1)pl−1

}
, there are p − 1 ele-

ments of homogeneous weight pl−1 and pl − p elements of homogeneous weight
(p − 1)pl−2 in Zpl .

Definition 5 [5] A burst of length b is an n-tuple whose all nonzero components are
confined to some b consecutive components, the first and the last of which are nonzero.

Definition 6 [4] An m-repeated burst of length b is an n-tuple whose only nonzero
components are confined to m distinct sets of some b successive positions, the first
and the last component of each set being nonzero.

(00102002410030103110) is an example of 4-repeated burst of length 3 over GF(5).

Note 2 Since for b = 1,m-repeated bursts of length b turn out to be simplym random
errors, we confine our study to the case b > 1. Further, for l = 1, the ring of integers
Zpl becomes always a field Zp of prime order, so we consider our study to the case
l > 1.

Observation 1 For a burst error of length b (> 1) in Zn
pl

(l > 1) having homogeneous

weightwhom , the minimum value ofwhom is 2(p−1)pl−2, and the maximum value of
whom is bpl−1 for any b. Further, for anm-repeated burst of length b (> 1) inZn

pl
(l >

1) having homogeneous weight whom , the minimum value of whom is 2m(p− 1)pl−2

and the maximum value of whom is mbpl−1.

Now, we quote two results from [1] which give us the order of generator and parity
check matrices of a linear code over Zpl . We shall use the notation and format of the
matrices in our examples.

Theorem 1 [1] A nonzero (n, k) linear code C over Zpl has a generator matrix which
after a suitable permutation of the coordinates can be written in the form

G =

⎛

⎜
⎜
⎜
⎜
⎝

Ik0 A0,1 A0,2 A0,3 . . . A0,l−1 A0,l
0 pIk0 pA1,2 pA1,3 . . . pA1,l−1 pA1,l

0 0 p2 Ik0 p2A2,3 . . . p2A2,l−1 p2A2,l
. . . . . . . . .

0 0 0 0 . . . pl−1 Ik0 pl−1Al−1,l

⎞

⎟
⎟
⎟
⎟
⎠

,
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where the columns are grouped into blocks of sizes k0, k1, ..., kl−1, kl and ki are non-
negative integers adding to n. This means that C consists of all codewords

[v0v1v2...vl−1]G,

where each vi is a vector of length ki with components from Z pl−i so that C contains

pk codewords, where k =
l−1∑

i=0

(l − i)ki .

Theorem 2 [1] The parity check matrix of the code C with generator matrix G given
in Theorem 1 has the form

H =

⎛

⎜
⎜
⎜
⎜
⎝

B0,l B0,l−1 B0,l−2 . . . B0,3 B0,2 B0,1 I
pB1,l pB1,l−1 pB1,l−2 . . . pB1,3 pB1,2 pI 0
p2B2,l p2B2,l−1 p2B2,l−2 . . . p2B2,3 p2 I 0 0

. . . . . . . . . .

pl−1Bl−1,l pl−1 I 0 . . . 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

,

where the column blocks have the same sizes as in G. Then, the dual code contains pk⊥

codewords, where k⊥ =
l∑

i=1

iki . Also |C ||C⊥| = pk+k⊥ = pln, i.e., |C⊥| = pln−k

and (C⊥)⊥ = C.

The two results lead to the following observations:

Observation 2 The orders of G and H are respectively (k0 + k1 +· · ·+ kl−1)× n and
(kl + kl−1 + · · · + k1) × n, where n = k0 + k1 + · · · + kl−1 + kl .

Observation 3 As there are pk codewords in an (n, k) linear code C over Zpl , the

number of available cosets is
(pl)

n

pk
= pnl−k .

3 Results on Bursts

This section provides the total homogeneous weight of all vectors of Zn
pl
having burst

with or without weight constraint. It also gives the necessary and sufficient conditions
for existence of an (n, k) linear code C over Zpl correcting these errors with respect
to homogeneous weight.

Lemma 1 The number of all bursts of length b (> 1) in the code space of n-tuples
over Zpl (l > 1) is given by

A
b
n = (n − b + 1)(pl − 1)2(pl)b−2.
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Proof The burst of length b can start from the 1st to (n − b + 1)th positions, and the
first and the last component in each burst can be any pl − 1 nonzero elements of the
ring Zpl and the other b − 2 components can be any pl elements of the ring. This
follows the lemma. ��
Now, we enumerate the number of bursts with homogeneous weight constraint.

Lemma 2 The number of all burst errors of length b (> 1) having homogeneousweight
whom in the code space of n-tuples over Zpl (l > 1) is equal to

A
b
n(whom) =(n − b + 1)

[ ∑

u0,v0

(
b − 2

u0

)(
b − 2 − u0

v0

)

(p − 1)u0(pl − p)v0+2

+ 2
∑

u1,v1

(
b − 2

u1

)(
b − 2 − u1

v1

)

(p − 1)u1+1(pl − p)v1+1

+
∑

u2,v2

(
b − 2

u2

)(
b − 2 − u2

v2

)

(p − 1)u2+2(pl − p)v2
]

, (1)

where u0, u1, u2, v0, v1, v2 are non-negative integers such that

u0 + v0 ≤ b − 2,

u1 + v1 ≤ b − 2,

u2 + v2 ≤ b − 2,

whom = u0 p
l−1 + (v0 + 2)(p − 1)pl−2,

whom = (u1 + 1)pl−1 + (v1 + 1)(p − 1)pl−2,

whom = (u2 + 2)pl−1 + v2(p − 1)pl−2.

[
Note that the terms, for which homogeneous weight is not equal to whom , are

absent in the formula
]

Proof Since a burst of length b having homogeneous weight whom has nonzero com-
ponents in its first and last positions of the b consecutive positions and there are two
different nonzero homogeneous weights (p − 1)pl−2 and pl−1 in Zpl , we consider
the following three cases.

Case 1: Suppose that both the first and last nonzero components of the burst of
length b are of weight (p − 1)pl−2. Among the in-between b− 2 components, let the
number of components of weight pl−1 is u0 and that of weight (p−1)pl−2 is v0 such
that u0 + v0 ≤ b − 2 and whom = u0 pl−1 + (v0 + 2)(p − 1)pl−2.

Since there are p − 1 elements of weight pl−1 and pl − p elements of weight
(p − 1)pl−2 in Zpl , the number of bursts of length b having homogeneous weight
whom is

(n − b + 1)

(
b − 2

u0

)(
b − 2 − u0

v0

)

(p − 1)u0(pl − p)v0+2.

Case 2: Suppose that one of the first and the last nonzero components of the burst
of length b is of weight pl−1 and the other is of weight (p − 1)pl−2. Let the number
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of components of weight pl−1 is u1 and that of weight (p − 1)pl−2 is v1 such that
u1 + v1 ≤ b − 2 and whom = (u1 + 1)pl−1 + (v1 + 1)(p − 1)pl−2.

Then, the number of components of weight pl−1 is u1 + 1 and the number of
components of weight (p − 1)pl−2 is v1 + 1. So, the number of bursts of length b
having homogeneous weight whom is

2(n − b + 1)

(
b − 2

u1

)(
b − 2 − u1

v1

)

(p − 1)u1+1(pl − p)v1+1.

Case 3: Suppose that both the first and last nonzero components of the burst of
length b are of weight pl−1. Then, we can assume the number of components of
weight pl−1 is u2 and that of weight (p − 1)pl−2 is v2 such that u2 + v2 ≤ b− 2 and
whom = (u2 + 2)pl−1 + v2(p − 1)pl−2.

By the same logic as earlier two cases, the number of bursts of length b having
homogeneous weight whom is

(n − b + 1)

(
b − 2

u2

)(
b − 2 − u2

v2

)

(p − 1)u2+2(pl − p)v2 .

��
In the following two results, we present the total homogeneous weight of all vectors

having burst of length b with and without homogeneous weight constraints. The first
result (Theorem 3) immediately follows from the notations introduced earlier, and the
second one (Theorem 4) is an immediate consequence of Lemma 2.

Theorem 3 The total homogeneous weight of all vectors having burst of length b (> 1)
with homogeneous weight whom or less in the code space of n-tuples over Zpl (l > 1)
is given by

whom∑

i=(p−1)pl−2

iAb
n(i).

Theorem 4 The total homogeneous weight of all vectors having burst of length b (> 1)
in the code space of n-tuples over Zpl (l > 1) is

Wb
n =(n−b + 1)

[ 2∑

i=0

∑

ui ,vi

(
2

i

)(
b − 2

ui

)(
b − 2 − ui

vi

)

(p − 1)ui+i (pl − p)vi−i+2×

[
(ui +i)pl−1+(vi −i+2)(p−1)pl−2

]
]

,

where u0, u1, u2, v0, v1, v2 are non-negative integers such that

u0 + v0 ≤ b − 2,

u1 + v1 ≤ b − 2,

u2 + v2 ≤ b − 2.
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Note: If whom = bpl−1, Theorems 3 and 4 coincide.

Example 1 For p = l = 2, b = 3, whom = 4 and n = 5 in Lemma 2, we enumerate
the number of all bursts of length b having homogeneous weight whom in Z

n
pl

by
finding the non-negative integers u0, u1, u2, v0, v1, v2:

4 = u02 + (v0 + 2),

4 = (u1 + 1)2 + (v1 + 1),

4 = (u2 + 2)2 + v2,

1 ≥ u0 + v0,

1 ≥ u1 + v1,

1 ≥ u2 + v2.

Then, by solving, we get u0 = 1, v0 = 0; u1 = 0, v1 = 1 and u2 = 0, v2 = 0.
Substituting these values into (1) of Lemma 2, we get the following result:

A
3
5(4) = (3)

[(
1

1

)(
0

0

)

(2)2 + 2

(
1

0

)(
1

1

)

(2)2 +
(
1

0

)(
1

0

)

(2)0
]

= 39.

These 39 bursts of length 3 with homogeneous weight 4 in Z5
22

are listed below.

11200 01120 00112 13200 01320 00132 12100 01210 00121

21300 02130 00213 21100 02110 00211 32300 03230 00323

20200 02020 00202 33200 03320 00332 12300 01230 00123

32100 03210 00321 23300 02330 00233 31200 03120 00312

23100 02310 00231.

Now, we count (in the similar way) the number of bursts of length 3 with other
possible homogeneous weights.

The number of bursts of length 3 with homogeneous weight 3 as

A
3
5(3) = 36,

which are listed as

11100 01110 00111 33300 03330 00333 13300 01330 00133

10200 01020 00102 20100 02010 00201 30200 03020 00302

20300 02030 00203 33100 03310 00331 11300 01130 00113

13100 01310 00131 31100 03110 00311 31300 03130 00313.

The number of burst errors of length 3 with homogeneous weight 2 is A3
5(2) = 12

and they are

10100 01010 00101 30300 03030 00303 10300 01030 00103
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30100 03010 00301.

The number of bursts of length 3 with homogeneous weight 6 is A3
5(6) = 3 and

they are

22200 02220 00222.

The number of bursts of length 3 with homogeneous weight 5 is A3
5(5) = 18 and

they are

12200 01220 00122 32200 03220 00322 21200 02120 00212

23200 02320 00232 22100 02210 00221 22300 02230 00223.

Thus, the total homogeneous weight of all bursts of length 3 is

2 × A
3
5(2) + 3 × A

3
5(3) + 4 × A

3
5(4) + 5 × A

3
5(5) + 6 × A

3
5(6) = 396.

This can be verified by Theorem 4. According to Theorem 4, the total homogeneous
weight of all bursts of length 3 in Zn

pl
is given by

W 3
5 = 3

[{(
1

0

)(
1

0

)

(2)22 +
(
1

1

)(
0

0

)

(2)2(4) +
(
1

0

)(
1

1

)

(2)3(3)

}

+ 2

{(
1

0

)(
1

0

)

(2)13 +
(
1

1

)(
0

0

)

(2)1(5) +
(
1

0

)(
1

1

)

(2)2(4)

}

+
{(

1

0

)(
1

0

)

(2)04 +
(
1

1

)(
0

0

)

(2)0(6) +
(
1

0

)(
1

1

)

(2)1(5)

}]

= 3×132 = 396.

Now, we give necessary and sufficient conditions for an (n, k) linear code C over
Zpl that corrects burst of length b with homogeneous weight constraints.

Theorem 5 Anecessary condition for an (n, k) linear codeC overZpl (l > 1) correct-
ing any burst of length b (> 1) with homogeneousweightwhom or less (whom ≤ bpl−1)

is

pln−k ≥ 1 +
whom∑

ρ=2(p−1)pl−2

A
b
n(ρ).

Proof From Lemma 2, the total number of burst errors of length b (> 1) having
homogeneous weight whom or less, including the zero vector, is

1 +
whom∑

ρ=2(p−1)pl−2

A
b
n(ρ).
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The code corrects all bursts of length b with homogeneous weight whom or less, so all
such bursts must be in different cosets. As the total cardinality of cosets of the code is
pln−k , we have

pln−k ≥ 1 +
whom∑

ρ=2(p−1)pl−2

A
b
n(ρ).

��
Theorem 6 The sufficient condition for the existence of an (n, k) linear code C over
Zpl (l > 1) correcting any burst of length b (> 1) with homogeneous weight whom or

less (whom ≤ bpl−1) is given by

pln−k > 1 +
whom∑

ρ=2(p−1)pl−2

A
b
b(ρ) ×

whom∑

ρ=2(p−1)pl−2

A
b
n−b(ρ).

Proof For the existence of the code, we follow the technique of Varshamov-Gilbert-
Sacks Bound [13] where we can keep on adding the columns to the parity check
matrix of the code one after another untill it produces distinct syndromes by the error
patterns. Let us assume that first j − 1 columns of parity check matrix H are added
suitably and the j th column h j to H can be added such that αh j (α ∈ Zpl\{0})
should not be a linear combination of immediate previous b− 1 consecutive columns
having homogeneous weight whom or less, together with a linear combination of b
consecutive columns having homogeneous weight whom or less among the first j − b
columns. That is

αh j �= (α1h j−1 + α2h j−2 + · · · + αb−1h j−b+1)

+ (βi hi + βi+1hi+1 + · · · + βi+b−1hi+b−1), (2)

where i + b− 1 < j − b+ 1; α, αb−1 ∈ Zpl\{0};αi , βi+r ∈ Zpl such that αi ’s along
with α, and βi+r ’s respectively form a burst of length b in a vector of length b and
j − b with homogeneous weight whom or less.
This condition ensures that any two bursts of length b with homogeneous weight

whom or less can not have same syndrome. In other words, they will have distinct
syndromes. We now calculate the number of ways the coefficients α, αi , βi+r can be
chosen.

The number of coefficients α and αi ’s that form a burst of length b with homoge-
neous weight whom or less in a vector of length b (by Lemma 2) is

whom∑

ρ=2(p−1)pl−2

A
b
b(ρ).
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Again, the number of different ways in which the coefficient βi+r ’s can be selected
is (by Lemma 2)

whom∑

ρ=2(p−1)pl−2

A
b
j−b(ρ).

Thus, the total number of linear combinations in Expression (2), including the zero
combination, is

1 +
whom∑

ρ=2(p−1)pl−2

A
b
b(ρ) ×

whom∑

ρ=2(p−1)pl−2

A
b
j−b(ρ).

As the number of available cosets is pnl−k , the number of available distinct syn-
dromes is pnl−k . So, we can add the j th column h j to H provided it produces distinct
syndromes. Therefore, adding of h j is possible provided

pln−k > 1 +
whom∑

ρ=2(p−1)pl−2

A
b
b(ρ) ×

whom∑

ρ=2(p−1)pl−2

A
b
j−b(ρ).

Replacing j by n completes the proof. ��
Example 2 For p = l = 2, b = 3,whom = 4 and n = k0 +k1+k2 = 1+2+5 = 8 in
Theorem 6, we get the inequalities for the non-negative integers u0, u1, u2, v0, v1, v2
as

u02 + (v0 + 2) ≤ 4,

(u1 + 1)2 + (v1 + 1) ≤ 4,

(u2 + 2)2 + v2 ≤ 4,

u0 + v0 ≤ 1,

u1 + v1 ≤ 1,

u2 + v2 ≤ 1.

Then, by solving, we get (u0, v0)=
{
(0, 0), (0, 1), (1, 0)

}
, (u1, v1)=

{
(0, 0), (0, 1)

}
;

and (u2, v2) = (0, 0).
By Lemma 2, we have

whom∑

ρ=2(p−1)pl−2

A
b
b(ρ) =

4∑

ρ=2

A
3
3(ρ) = 29

and
whom∑

ρ=2(p−1)pl−2

A
b
n−b(ρ) =

4∑

ρ=2

A
3
5(ρ) = 3 × 29.
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Therefore, pnl−k > 1 + 29 × 3 × 29 = 2524 implies nl − k ≥ 12 implies k ≤ 4.
This gives rise to a (8, 4) linear code over Z22 , where k = 2k0 + k1 = 4 and k⊥ =
k1 + 2k2 = 12 (see Theorems 1-2). Here k1 + k2 = 7, so the order of the parity check
matrix of the (8, 4) linear code is 7 by 8.

As every parity check matrix of linear code over Zpl can be reduced to the form H
given in Theorem 2, we construct a parity check matrix H7×8 of the (8, 4) linear block
code by adding the columns one after another satisfying Condition (2) andmaintaining
the form given in Theorem 2. The form in Theorem 2 helps us to find the parity check
matrix with less difficulty as we have to look for less number of components in the
matrix. We derive one such parity check matrix H7×8 of the (8, 4) linear block code
as below:

H7×8 =
[

(B0,2)5×1 (B0,1)5×2 I5×5
2(B1,2)2×1 2I 2×2 02×5

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2 1 1 0 0 0 0
0 3 0 0 1 0 0 0
1 0 3 0 0 1 0 0
0 3 1 0 0 0 1 0
1 2 3 0 0 0 0 1
2 2 0 0 0 0 0 0
2 0 2 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We can verify that syndromes of bursts of length 3 with homogeneous weight 4 or less
are all nonzero and distinct (checked by MS-Excel). So, the (8, 4) linear code over
Z22 which is the null space of the matrix H7×8 can correct all such errors.

4 Results onm-Repeated Bursts

This section extends the results of Section 3 for m-repeated bursts. We take m ≥ 2
throughout the section. For m = 1, repeated burst simply becomes a burst. We first
count the number of m-repeated bursts without homogeneous weight constraint.

Lemma 3 The number of all m-repeated bursts of length b(> 1), Am,b
n , in the code

space of n-tuples over Zpl (l > 1) is given by

A
m,b
n =

(
n − m(b − 1)

m

)

(pl − 1)2m(pl)mb−2m . (3)

Proof First, we count the number of m distinct sets of b consecutive positions in a
vector of length n. Let
y1 be the number of positions before 1st set of b consecutive positions,
y2 be the number of positions before 2nd set of b consecutive positions,
...

ym be the number of positions before the mth set of b consecutive positions, and
ym+1 be the number of positions after the mth set of b consecutive positions.

Then
y1 + y2 + · · · + ym+1 = n − mb.
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The number of non-negative integer solutions of the above equation is equal to the
number of m distinct sets of b consecutive positions. This number is given by

(
n − mb + m + 1 − 1

m + 1 − 1

)

=
(
n − m(b − 1)

m

)

.

As the first and last components of each set of m sets of b consecutive positions are
nonzero and the in-between b − 2 components in each set can be any element from
Zpl , the required number of m-repeated bursts in Zn

pl
is given by (3). ��

Lemma 4 The number of all m-repeated bursts of length b(> 1) having homogeneous
weight whom in the code space of n-tuples over Zpl (l > 1) is given by

A
m,b
n (whom) =

(
n − m(b − 1)

m

)

×
2m∑

i=0

∑

ui ,vi

(
2m

i

)(
mb − 2m

ui

)(
mb − 2m − ui

vi

)

× (p − 1)ui+i (pl − p)vi+2m−i ,

where ui + vi ≤ m(b− 2) and whom = (ui + i)pl−1 + (vi + 2m − i)(p− 1)pl−2 for
0 ≤ i ≤ 2m.

Proof For the proof, we need to consider 2m+1 cases depending upon weights of the
first components of each b consecutive positions. We already know by Lemma 3 that
the number of m distinct sets of b consecutive positions is

(n−m(b−1)
m

)
.

Case 1:Assuming all the nonzero components among the first and the last components
in each m distinct sets of b consecutive positions are of weight (p − 1)pl−2, then the
numbers of m-repeated bursts of length b is counted as

(
mb − 2m

u0

)(
mb − 2m − u0

v0

)

(p − 1)u0(pl − p)v0+2m,

where u0 and v0 represent the number of positions having components of weight pl−1

and (p − 1)pl−2, respectively within b − 2 components of each m distinct sets of b
consecutive positions such that u0 + v0 ≤ m(b − 2) and whom = u0 pl−1 + (v0 +
2m)(p − 1)pl−2.
Case 2:Assuming one of nonzero components among the first and the last components
in each m distinct sets of b consecutive positions are of weight pl−1 and all others
are of weight (p − 1)pl−2, we have the numbers of m-repeated bursts of length b for
suitable pairwise (u1, v1) (like Case 1) as

(
2m

1

)(
mb − 2m

u1

)(
mb − 2m − u1

v1

)

× (p − 1)u1+1(pl − p)v1+2m−1,

where u1 + v1 ≤ m(b − 2) and whom = (u1 + 1)pl−1 + (v1 + 2m − 1)(p − 1)l−2.
Case 3: Assuming any two of nonzero components among the first and the last com-
ponents in each m distinct sets of b consecutive positions are of weight pl−1 and
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remaining are of weight (p − 1)pl−2, we have the numbers of m-repeated bursts of
length b for pairwise (u2, v2) as

(
2m

2

)(
mb − 2m

u2

)(
mb − 2m − u2

v2

)

× (p − 1)u2+2(pl − p)v2+2m−2,

where u2 + v2 ≤ m(b − 2) and whom = (u2 + 2)pl−1 + (v2 + 2m − 2)(p − 1)l−2.
Continuing in this way, we get the last (2m + 1)th case.

Case 2m+1: Assuming all nonzero components among the first and the last compo-
nents in eachm distinct sets are of weight pl−1, then the numbers ofm-repeated bursts
of length b for convenient pair (u2m, v2m) is given by

(
mb − 2m

u2m

)(
mb − 2m − u2m

v2m

)

× (p − 1)u2m+2m(pl − p)v2m ,

where u2m + v2m ≤ m(b − 2) and whom = (u2m + 2m)pl−1 + v2m(p − 1)pl−2.
This completes the proof. ��

Next two results give the total homogeneous weight of m-repeated bursts without
and with weight constraint.

Theorem 7 The total homogeneous weight, Wm,b
n , of all m-repeated bursts of length

b (> 1) in the code space of n-tuples over Zpl (l > 1) is given by

W
m,b
n =

(
n − m(b − 1)

m

)

×
2m∑

i=0

∑

ui ,vi

(
2m

i

)(
mb − 2m

ui

)(
mb − 2m − ui

vi

)

×

(p − 1)ui+i (pl − p)vi+2m−i
[
(ui + i)pl−1 + (vi + 2m − i)(p − 1)pl−2

]
,

where ui and vi for 0 ≤ i ≤ 2m are non-negative integers such that ui+vi ≤ m(b−2).

Proof We consider following 2m + 1 cases as Lemma 4.
For 0 ≤ i ≤ 2m, if i numbers of nonzero components among the first and the last

components in each m distinct sets of b consecutive positions are of weight pl−1 and
all others are of weight (p − 1)pl−2 and further if ui and vi are being the number of
components of weight pl−1 and (p−1)pl−2 respectively within the b−2 components
in each set such thatui+vi ≤ m(b−2), then the homogeneousweight of allm-repeated
bursts of length b for each i is

(
2m

i

)(
mb − 2m

ui

)(
mb − 2m − ui

vi

)

(p − 1)ui+i (pl − p)vi+2m−i×
[
(ui + i)pl−1 + (vi + 2m − i)(p − 1)pl−2

]
.
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Therefore, the total homogeneous weight of all m-repeated bursts of length b in Z
n
pl

is

W
m,b
n =

(
n − m(b − 1)

m

)

×
2m∑

i=0

∑

ui ,vi

(
2m

i

)(
mb − 2m

ui

)(
mb − 2m − ui

vi

)

×

(p − 1)ui+i (pl − p)vi+2m−i
[
(ui + i)pl−1 + (vi + 2m − i)(p − 1)pl−2

]
.

��
Theorem 8 The total homogeneous weight of the set of all m-repeated bursts of length
b with homogeneous weightwhom or less in the code space of n-tuples overZpl (l > 1)
is

whom∑

i=m(p−1)pl−2

iAm,b
n (i).

Proof It follows from Lemma 4. ��
Note: If whom = mbpl−1, Theorems 7 and 8 coincide.

Lastly, we give necessary and sufficient conditions for codes over Zpl correcting
m-repeated burst with homogeneous weight at most whom . The necessary condition
follows immediately from Lemma 4.

Theorem 9 An (n, k) linear code C over Zpl (l > 1) that corrects all m-repeated
bursts of length b(> 1) with homogeneous weight at most whom always satisfies

pln−k ≥ 1 +
whom∑

i=2(p−1)pl−2

A
m,b
n (ρ),

where Am,b
n (ρ) is given by Lemma 3.

Theorem 10 A sufficient condition to exist an (n, k) linear code C over Zpl (l > 1)
that corrects all m-repeated bursts of length b (> 1) with homogeneous weight at most
whom (n > 2mb;whom ≤ bpl−1) is

pln−k >1 +
∑

r+s≤2whom ;r≤bpl−1

{ r∑

i=2(p−1)pl−2

A
b
b(i)×

s∑

ρ=2(2m−1)(p−1)pl−2

A
2m−1,b
n−b (ρ)

}

,

where Ab
b(i) and A

2m−1,b
n−b (ρ) are from Lemmas 2 and 4 respectively.

Proof Theproof of this theorem follows the sameprocess asTheorem6.After choosing
the first j − 1 columns of H and the j th column h j can be added provided αh j

(α ∈ Zpl\{0}) should not be a linear combination of immediate previous b − 1
consecutive columns having homogeneous weight r (≤ bpl−1) or less, together with
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a linear combination of (2m−1) sets of previous b consecutive columns among the first
j−b columns, each set having homogeneous weight s or less such that r+s ≤ 2whom .
That is

αh j �= (α1h j−1 + α2h j−2 + · · · + αb−1h j−b+1)

+ (β11hi1 + β12hi1+1 + · · · + β1bhi1+b−1) (4)

+ (β21hi2 + β22hi2+1 + · · · + β2bhi2+b−1)

+
...

+ (β(2m−1)1hi2m−1 + β(2m−1)2hi2m−1+1 + · · · + β(2m−1)bhi2m−1+b−1),

where j − b + 1 > i1 + b − 1; ir > ir+1 + b − 1 (where 1 ≤ r ≤ 2m − 2); α, αi ,
βi, j ∈ Zpl such that α and αi together form a burst of length b with homogeneous
weight at most r and βi, j ’s are such that they form a (2m − 1)- repeated burst of
length b with homogeneous weight at most s in a vector of length j − b such that
r + s ≤ 2whom and r ≤ bpl−1.

This condition ensures that any twom-repeatedbursts of lengthbwithhomogeneous
weight whom or less will have distinct syndromes.

The number of coefficients αi ’s by Lemma 2 is

r∑

i=2(p−1)pl−2

A
b
b(i)

and the number of βi, j ’s by Lemma 4 is

s∑

ρ=2(2m−1)(p−1)pl−2

A
2m−1,b
j−b (ρ).

So, the total number of linear combinations in Expression (4), including the zero
combination, is

1 +
∑

r+s≤2whom ;r≤bpl−1

{ r∑

i=2(p−1)pl−2

A
b
b(i) ×

s∑

ρ=2(2m−1)(p−1)pl−2

A
2m−1,b
j−b (ρ)

}

.

As the available number of distinct syndromes is pnl−k , the j th column h j can be
added to H provided

pln−k >1+
∑

r+s≤2whom ;r≤bpl−1

{ r∑

i=2(p−1)pl−2

A
b
b(i)×

s∑

ρ=2(2m−1)(p−1)pl−2

A
2m−1,b
j−b (ρ)

}

.

Replacing j by n proves the theorem. ��
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Example 3 Let us take p = l = m = 2, b = 3, whom = 4 and n = k0 + k1 + k2 =
4 + 3 + 6 = 13 in the Theorem 10. Then

pln−k > 1 +
2∑

i=2

A
b
b(i) ×

6∑

ρ=6

A
2m−1,b
n−b (ρ)

	⇒ 2ln−k > 1 + A
3
3(2) × A

3,3
10 (6)

	⇒ 2ln−k > 1 + 4 × 4 × 26 = 1 + 210

	⇒ ln − k ≥ 11

	⇒ k ≤ 15.

Considering k = 11, we get a (13, 11) linear code over Z22 where k = 2k0 + k1 = 11
(refer Theorems 1-2). The order of the parity check matrix of the (13, 11) linear code
is 9 by 13 as k1 + k2 = 9. Like Example 2, we construct a parity check matrix H9×13
satisfying Condition (4) and maintaining the format given in Theorem 2 as follows:

H9×13 =
[

(B0,2)6×4 (B0,1)6×3 I6×6
2(B1,2)3×4 2I 3×3 03×6

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 3 2 1 1 1 0 0 0 0 0
2 0 3 2 1 0 2 0 1 0 0 0 0
3 1 0 0 1 2 3 0 0 1 0 0 0
1 0 2 1 3 0 3 0 0 0 1 0 0
2 1 1 2 3 3 1 0 0 0 0 1 0
3 3 1 1 1 1 3 0 0 0 0 0 1
2 0 0 2 2 0 0 0 0 0 0 0 0
2 2 0 0 0 2 0 0 0 0 0 0 0
2 0 2 0 0 0 2 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

All the 576 syndromes of the discussed errors are found to be non-zero and distinct
(checked by MS-Excel). This shows that the (13, 11) linear code over Z22 with parity
check matrix H9×13 corrects all 2-repeated bursts of length 3 having homogeneous
weight at most 4.

5 Conclusion

In this paper, we studied linear codes correcting burst and repeated burst in homo-
geneous metric sense along with its necessary and sufficient conditions. Total
homogeneous weight of these errors with respect to homogeneous metric are also
obtained. The study can further be extended if the errors are confined to a sub-block
of code length. Location of such errors in homogeneous metric sense can also be
investigated.
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