
https://doi.org/10.1007/s00224-023-10154-8

A Closer Look at the Expressive Power of Logics
Based onWord Equations

Joel Day1 · Vijay Ganesh2 · Nathan Grewal2 · Matthew Konefal1 ·
Florin Manea3

© The Author(s) 2023

Abstract
Word equations are equationsα

.= β whereα andβ arewords consisting of letters from
some alphabet� and variables from a set X . Recently, there has been substantial inter-
est in the context of string solving in logics combiningword equations with other kinds
of constraints on words such as (regular) language membership (regular constraints)
and arithmetic over string lengths (length constraints). We consider the expressive
power of such logics by looking at the set of all values a single variable might take
as part of a satisfying assignment for a given formula. Hence, each formula-variable
pair defines a formal language, and each logic defines a class of formal languages. We
consider logics arising from combining word equations with either length constraints,
regular constraints, or both. We also consider word equations with visibly pushdown
languagemembership constraints as a generalisation of the combination of regular and
length constraints. We show that word equations with visibly pushdown membership
constraints are sufficient to express all recursively enumerable languages and hence
satisfiability is undecidable in this case. We then establish a strict hierarchy involving
the other combinations. We also provide a complete characterisation of when a thin
regular language is expressible by word equations (alone) and some further partial
results for regular languages in the general case.

Keywords Word equations · String constraints · String solving · Regular languages ·
Expressibility

1 Introduction

Logical theories based on strings (or words) over a finite alphabet have been an impor-
tant topic of study for decades [39]. Connections to arithmetic (see e.g. [43]) and
interest in fundamental questions from algebra about free groups and semigroups
underpinned interest in theories involving concatenation and equality. These two ele-
ments combined lead to word equations: a word equation is an equality of the form

Extended author information available on the last page of the article

Theory of Computing Systems (2024) 68:322–379

Accepted: 13 November 2023 / Published online: 11 December 2023

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-023-10154-8&domain=pdf

α
.= β, where α and β are terms obtained by concatenating variables and concrete

words over some finite alphabet. For example, if x and y are variables, and our alphabet
is � = {a, b}, then xaby

.= ybax is a word equation. Its solutions are substitutions
for the variables unifying the two sides: x → bb, y → b would be one such solution
in the previous example.

The existential theory of a finitely generated free monoid �∗ consists of formulas
made up of Boolean combinations of word equations. In fact, the problem of deciding
whether a formula in this fragment is true is equivalent to determining satisfiability
of word equations, since any such formula can be transformed into a single word
equation without disrupting satisfiability (see [32, 39]). It was originally hoped that
the problem of deciding if a word equation has a solution could facilitate an undecid-
ability proof for Hilbert’s famous Tenth Problem by providing an intermediate step
between Diophantine equations and the computations of Turing Machines. Famously,
however, this endeavour failed when Makanin showed in 1977 that satisfiability of
word equations can be decided algorithmically [40].

Since then, several improvements to the algorithm proposed byMakanin have been
discovered. Two decades later, Plandowski [42] was the first to show that the problem
could be solved in PSPACE, and this has later been refined to nondeterministic linear
space by Jeż via the Recompression technique [30]. It was shown in [44] and [17] (see
also Chapter 12 of [39]) that the problem remains decidable even when the variables
are constrained by regular languages, limiting the possible substitutions. On the other
hand, if length constraints (requiring that some pairs of variables are substituted for
words of the same length) are permitted, then it remains a long-standing open problem
as to whether or not the problem is decidable. Recalling the earlier example of a word
equation xaby

.= ybax , we might ask whether solutions exist such that x and y have
the same length, which in this case is clearly not possible due to the resulting alignment
of the ab and ba factors.

Word equations and logics involving them (or stringsmore generally) have remained
a topic of interest within the Theoretical Computer Science community, in particular
due to their fundamental role within Combinatorics onWords and Formal Languages,
and more recently due to interest from the Formal Methods community. The latter
can be attributed to increasing popularity and influence of software tools called string-
solvers, which seek to algorithmically solve constraint satisfaction problems involving
strings. In this setting, a string constraint is a property or piece of information about
an unknown string and the string solvers try to determine whether strings exist which
satisfy combinations of string constraints of various types. Word equations, regular
languagemembership, and relations between lengths are all among themost prominent
building blocks of string constraints, and when combined are sufficient to model
several others. For example, the “substring(x, y)” constraint expressing that x occurs
somewhere inside y can be modelled by the word equation y

.= z1xz2, where z1, z2
are additional variables, while the “index_of(x, y)” constraint returning the position

123

Theory of Computing Systems (2024) 68:322–379 323

of an occurrence of x in y can be modelled by using the length of z1 in the previous
equation.

Another application is Database theory where string-solvers are also useful, e.g. for
evaluating path queries in graph databases [7, 21] and in connection with document
spanners [22, 23]. Recently, a finite-model version of the theory of concatenation was
considered in this context [24].

A wealth of string-solvers is now available [1, 2, 8, 10, 31, 33, 41, 46], with a
variety being optimized for specific applications, alongside those intended as being
more general-purpose (see also [6, 26] for an overview). However, the underlying task
of determining the satisfiability of string constraints remains a challenging problem
and implementations rely heavily on search heuristics.

Motivated in part by the applications in string-solving, and by the desire to make
progress on seemingly very difficult open theoretical problems, various results exist
which investigate the computability and/or complexity of the satisfiability problem
for combinations of string constraints. The works [25, 34–37] identify restrictions on
word equationswhich result in a decidable satisfiability problemevenwhen length con-
straints are present. Several furtherways of augmentingword equations (i.e., additional
predicates or constraints on the variables), are discussed and shown to be undecidable
in [11–14, 16, 27, 28]. An immediate consequence of [43] is that allowing arbitrary
existential and universal quantification of variables leads to an undecidable theory,
and in fact this holds even for very restricted cases with a single quantifier alternation
and a constant number of quantifiers (see [19, 20]).

Nevertheless, despite progress on satisfiability problems such as those mentioned
above, and while the expressive power and computational properties of prominent
language classes such as the regular and context free languages are well understood,
little is known about the true expressive power of word equations and of string logics
involvingword equations in conjunctionwith other common types of string constraints.
This is both a barrier to settling open problems involving satisfiability problems, such
as for word equations with length constraints, and also a limit in terms of general
understanding in the context of string solving: often simply finding a solution to one
constraint is not enough and the set of solutions must be considered more generally
in order to account for other constraints which might be present, or to determine that
no solution exists.

In [11, 18], it was shown that, on the one hand, length is not definable using
equality and concatenation alone, and, on the other hand, that if predicates are present
which facilitate the comparison of the number of occurrences of at least two different
letters, then connections to arithmetic over natural numbers and Diophantine sets can
be made which lead to undecidable satisfiability problems. Karhumäki, Mignosi and
Plandowski [32] considered explicitly the question of which formal languages are
expressible as the set of solutions to a word equation, projected onto a single variable.
Their techniques can be used to show that several simple languages like {anbn | n ∈ N}
and {a, b}∗c are not expressible. However, they do not consider additional constraints,
and thus their results in many cases are not directly applicable to our setting.

123

Theory of Computing Systems (2024) 68:322–379324

Our Contributions

We consider the question of expressibility of formal languages in the sense of [32] in
a number of logics, introduced in detail in Section 2, which involve word equations
alongside some of the most commonly associated constraints. The logics, summarised
below are all quantifier-free and consist of the typical Boolean connectives ∧,∨ and
¬, and different combinations of word equations and other kinds of string constraints.

• WE - word equations only
• WE + REG - word equations and regular language membership (regular con-
straints)

• WE+LEN -word equations and linear arithmetic over lengths of variables (length
constraints)

• WE + LEN + REG - word equations, regular language membership, and linear
arithmetic over lengths of variables

• WE + VPL - word equations and visibly pushdown language membership

InSection 3,we consider the relationships between the classes of languages express-
ible in each of the logics listed above. For each logic T, denote the corresponding
classes of languages expressible in that logic by L(T). From existing results we can
infer thatL(WE) ⊂ L(WE+REG),L(WE+LEN). In particular, the tools developed
in [32] are sufficient since this strict inclusion requires showing inexpressibility for
word equations only. Moreover, it is easily seen that L(T) contains only recursively
enumerable languages for each of the listed logics T. In order to settle the other rela-
tionships, we adapt and extend the tools from [32] in order to work in the context of
word equations combined with additional constraints such as regular language mem-
bership and length arithmetic. By doing so, we are able to completely characterise the
relationships and provide the following strict hierarchy, in which L(WE+REG) and
L(WE+LEN) are incomparable:

L(WE) ⊂ L(WE+LEN),

L(WE+REG)
⊂ L(WE+LEN+REG) ⊂ L(WE+VPL) = RE.

The inclusionL(WE+LEN+REG) ⊂ RE is relevant to the open problem regard-
ing the decidability status for satisfiability in this logic, which is of importance in
the field of string solving. In particular, if the inclusion were not strict, but rather
an equality, then satisfiability would necessarily be undecidable. Similarly, there are
many recursively enumerable languages which, if shown to be expressible in WE +
LEN or WE + LEN + REG, would result in the same negative result e.g. by allowing
a reduction from Hilbert’s 10th problem, motivating a need for techniques such as
ours for showing inexpressibility in this case.

The equivalenceL(WE+VPL) = RE is also worthy of further comment. Standard
proofs can be adapted to show that the logic WE + CF combining word equations
with deterministic context free language membership, can express all recursively enu-
merable languages, and it is well known in the string solving community that this
combination induces an undecidable satisfiability problem. This is unsurprising since
intersection-emptiness is undecidable for deterministic context free languages. On

123

Theory of Computing Systems (2024) 68:322–379 325

the other hand, WE + LEN + REG is powerful enough to express many common
string constraint types, but the decidability of satisfiability is unknown. Visibly push-
down languages, although not a class commonly used explicitly in string constraints,
offer an appealing intermediate logic to study. Firstly, when considered in isolation,
they offer very good computational properties: they havemany of the desirable closure
(union, intersection, complement) and algorithmic properties of the regular languages,
in contrast to many other classes of languages falling between regular and context free.
Secondly, they directly generalise the regular languages, but with sufficient memory
capabilities to model length comparisons, and thus when combined with word equa-
tions, directly generalise the combination of length constraints and regular constraints.
Unfortunately, our result is negative in the sense that there is no hope of a decidable
satisfiability problem for word equations with visibly pushdown language member-
ship constraints, as this combination is expressive enough to capture all recursively
enumerable languages. Nevertheless, this result provides a tighter upper limit on the
combinations of constraints for which satisfiability is undecidable, and moreover does
this for a class of language membership constraints for which intersection-emptiness
is decidable.

In addition to the inexpressibility results in Section 3 and the resulting relations
between the classes of expressible languages, we are also able to show undecidability
of the following problem in several cases:

Given a language L expressible in one of the logics T1 listed above, and given a less
expressive logic T2, is L expressible in T2?

In this context, L is given as a formula ψ from T1 and a variable x in ψ . The
question then asks whether ψ can be simplified to a weaker logic (or set of string
constraints) without affecting the set of possible assignments for the variable x . This
problem is therefore of interest in practical string solving applications, where much
of the complexity arises from dealing with complex combinations of constraints, and
removing one type of constraints from a formula can be an effective preprocessing
step.

InSection4weconcentrate again onword equationswhich are not extendedbyother
kinds of constraints, or in other words, on the logic WE. In particular, we consider
the relationship between the class of languages expressible in WE and the class of
regular languages. It was already shown that these classes are incomparable in [32].
We show firstly, and perhaps rather surprisingly, that it is undecidable whether a
language expressed in WE is regular. This provides a negative result in the same vein
as those at the end of Section 3, and related to the simplification problem mentioned
above. It provides some evidence of the complexity of the class of languages expressed
by word equations, or at least of this means of representing them.

We then turn our attention to the converse problem of when a regular language is
expressible. In this case, the representation (i.e. a finite automaton or regular expres-
sion) is arguably much simpler and there is more reason to expect a positive result.
Although we are not able to settle the problem completely, we divide our analysis into
two cases depending on whether or not the language in question is “thin” (so, whether
there is a word which does not appear as a factor of any word in the language). Due to
technical reasons related to possible representations of the language and to the tools

123

Theory of Computing Systems (2024) 68:322–379326

we use to show inexpressibility, the “thin” case seems the easier to address and indeed
we are able to give a complete characterisation of when a thin regular language is
expressible in WE. This in turn gives a positive result for the corresponding decision
problem. When the language is not thin, we are able to provide some partial results
which shed some light on which kinds of languages are (not) expressible in WE, how
techniques for showing inexpressibility can be applied in this general setting, and the
difficulties inherent to settling the problem completely.

This work extends the conference paper [15]. In particular, Sections 1-3 build on
work presented in [15] by adding and updating proofs and explanations which were
omitted partially or entirely in that work. Sections 4.1 and 4.2 are entirely new to the
present work.

2 Preliminaries

Let N = {1, 2, 3, . . .} and N0 = {0} ∪ N. The integers are denoted by Z. An alphabet
� = {a1, a2, . . . , an} is a set of symbols, or letters. We denote by �∗ the set of all
words obtained by concatenating letters from � including the empty word, which we
denote ε. In other words, �∗ is the free monoid generated by � together with the
operation of concatenation. Similarly, �+ is the free semigroup �∗\{ε}. For a word
w = uvx , where u, v, x ∈ �∗, we say that u is a prefix of w, v is a factor of w and
x is a suffix of w. If u (resp. v, x) is not equal to w, then it is a proper prefix (resp.
factor/suffix). The length of a word w is written |w|. For words u, v ∈ �∗ we denote
their concatenation either by u · v or simply as uv. For w ∈ �∗ and i, j satisfying
1 ≤ i ≤ j ≤ |w|, we denote by w[i] the i th letter of w and by w[i : j] the factor
w[i]w[i + 1] . . . w[j − 1]. For 1 ≤ i ≤ |w|, we call i a position of w, and associate
the position with the letter w[i]. We denote n repetitions of a word w by wn . A word
w is primitive if w cannot be written in the form w = xn where x ∈ �+ and n
= 1.
For each word w ∈ �+ there is a unique primitive word u such that w = un for some
n ∈ N. We call u the primitive root of w. Two words w1, w2 ∈ �∗ are conjugate
if there exist u, v ∈ �∗ such that w1 = uv and w2 = vu. The words w1 and w2
commute if w1w2 = w2w1.

Given a set of variables X = {x1, x2, . . .} and an alphabet �, a word equation is a
pair (α, β) ∈ (X ∪ �)∗ × (X ∪ �)∗, usually written as α

.= β. A solution to a word
equation is a substitution of the variables for words in �∗ such that both sides of the
equation become identical. Formally, we model solutions as morphisms. That is, we
say a substitution is a (homo)morphism h : (X ∪ �)∗ → �∗ satisfying h(a) = a
for all a ∈ �, and a solution to a word equation α

.= β is a substitution h such
that h(α) = h(β). We recall the following canonical lemmas concerning simple word
equations. The first follows from the so-calledDefect Theorem (see e.g. Theorem1.2.5
and Corollary 1.2.6 in [38]).

Lemma 1 ([38]) Let x, y be variables and let α, β ∈ {x, y}+ be distinct words. If
h : {x, y}∗ → �∗ is a solution to the word equation

α
.= β,

123

Theory of Computing Systems (2024) 68:322–379 327

then there exists w ∈ �∗ such that h(x), h(y) ∈ {w}∗. Consequently, if h is a solution
to α

.= β then h(x), h(y) commute.

Lemma 2 (Theorem 1.3.4 in [38]) Let x, y, z be variables. Then h : {x, y, z}∗ → �∗
is a solution to the word equation

xz
.= zy

if and only if either h(x) = h(y) = ε or there exist u, v ∈ �∗ and n ∈ N0 such that
h(x) = uv, h(y) = vu and h(z) = u(vu)n.

2.1 Logics Based onWord Equations

We refer to [29] for standard definitions and well-known results from formal language
theory. We denote the classes of regular, decidable (recursive) and recursively enu-
merable languages as REG, REC and RE respectively. Following [32], given a word
equation E and a variable x , the language expressed by x in E is the language {h(x) | h
is a solution to E}. If a language L ⊆ �∗ is expressed by some variable in some word
equation, we say that L is expressible by word equations. Note that the language
expressed is dependent on the underlying alphabet �, which may contain letters other
than those explicitly present in the word equation. Generally, we are interested in a
more general setting in which word equations may occur as atoms in a larger formula,
possibly with other types of atoms providing further constraints on the variable. We
define the following logics based on word equations:

Definition 1 Let WE be the set of formulas adhering to the following syntax:

• A word equation is a WE-formula.
• ForWE-formulas ψ1, ψ2, the Boolean combinations ψ1 ∧ ψ2, ψ1 ∨ ψ2 and ¬ψ1
are allWE-formulas.

Note that formulas inWE are quantifier-free. If quantifiers are permitted in addition,
the resulting logic is often referred to as the theory of concatenation. Formulas in WE
are evaluated using the natural semantics. That is, assignments h map variables to
words in �∗. A subformula consisting of a single word equation E with variables
x1, x2, . . . , xk evaluates to true w.r.t. an assignment h : {x1, x2, . . . , xk} → �∗ if h
extends to a solution to E when interpreted as a substitution. Otherwise the subformula
evaluates to false. Boolean combinations ψ1 ∧ ψ2, ψ1 ∨ ψ2 and ¬ψ1 are all then
evaluated in the usual way according to the truth values for ψ1 and ψ2.

For a WE-formula ψ containing a variable x , the language expressed by x in ψ is
{h(x) | h is a satisfying assignment for ψ}. If a language L ⊆ �∗ is expressed by a
variable in some WE-formula, we say that L is expressible in WE.

Remark 1 The class of languages expressible in WE (as well as classes arising from
logics introduced later) is dependent on the underlying alphabet�. In general, in what
follows we shall assume that � is some fixed, finite alphabet which is “sufficiently
large” in the sense that |�| > c for some constant c. As c need only be large enough
to contain as many distinct letters as we use explicitly in our constructions, it can be
considered “reasonably small” in the sense that the condition |�| > c will typically

123

Theory of Computing Systems (2024) 68:322–379328

be satisfied in practice (for example, in the case of string solvers which operate on a
superset of the characters used in our proofs). In any specific cases where a “small”
alphabet is required for a result to hold, we shall state this explicitly. Note also that
it is often the case that results for larger alphabets � can be adapted also for cases
when � is small, provided |�| ≥ 2. However, for the sake of the exposition we do not
focus on minimising the alphabet size needed for our results to hold.

Wenote the following result, based onwell-known constructions (see e.g. also [38]).

Lemma 3 [32] For any WE-formula ψ whose variables are {x1, x2, . . . , xk}, there
exists a single word equation E containing the variables x1, x2, . . . , xk and pos-
sible further additional variables y1, y2, . . . , y� such that for any assignment h :
{x1, x2, . . . , xk} → �∗, h is a satisfying assignment for ψ if and only if there exists
a solution h′ : {x1, x2, . . . , xk, y1, y2, . . . , y�}∗ → �∗ to E satisfying h(xi) = h′(xi)
for all i, 1 ≤ i ≤ k. Moreover, E can be computed from ψ .

Corollary 1 [32]A language is expressible byword equations if and only if it is express-
ible in WE. Moreover, it follows that languages expressible in WE are closed under
concatenation, union and intersection.

On the other hand, it was also shown in [32] that WE-expressible languages are not
closed under complement. Specifically, in general the language expressed by x in E
is not the complement of the language expressed by x in ¬E due to the fact that
if E contains other variables, then there could exist substitutions h1, h2 satisfying
h1(x) = h2(x) = w where h1 is a solution to E and h2 is not.

Lemma 3 is particularly useful as it allows us to switch between working with a
single word equation or arbitrary WE-formulas depending on which form is more
convenient.

We also define the following extensions of WE to allow two typical additional
constraints occurring alongside word equations. The first adds regular language mem-
bership as atoms:

Definition 2 Let WE + REG be the set of formulas adhering to the following syntax:

• A word equation is a WE + REG-formula.
• For a variable x, x ∈ L is a WE + REG-formula where L is a regular language.
• For WE + REG-formulas ψ1, ψ2, the Boolean combinations ψ1 ∧ ψ2, ψ1 ∨ ψ2
and ¬ψ1 are all WE+REG-formulas.

The semantics of WE + REG extend those of WE by evaluating, for an assignment
h, the subformula x ∈ L as true if h(x) ∈ L and false otherwise. We assume that the
regular languages L are given by any of the typical representation methods: DFAs,
NFAs or regular expressions. Since we do not concentrate on precise computational
complexity in the current work, we can always assume that we can convert from one
to the other where convenient.

The second extension to WE adds constraints on lengths of variables:

Definition 3 For a variable x, we treat |x | as a numerical variable taking values
from N0 representing the length of the word x. Let WE+LEN be the set of formulas
adhering to the following syntax:

123

Theory of Computing Systems (2024) 68:322–379 329

• A word equation is a WE+LEN-formula.
• For any c0, c1, c2, . . . , ck ∈ Z and variables x1, x2, . . . , xk , the linear equality
c0 + ∑

1≤i≤k
ci |xi | = 0 is aWE+LEN formula.

• For WE+LEN-formulas ψ1, ψ2, the Boolean combinations ψ1 ∧ ψ2, ψ1 ∨ ψ2
and ¬ψ1 are all WE+LEN-formulas.

The semantics of WE + LEN extend those of WE by evaluating, for an assignment
h, the subformula c0 + ∑

1≤i≤k
ci |xi | = 0 as true if c0 + ∑

1≤i≤k
ci |h(xi)| = 0 and false

otherwise.

Remark 2 In the definition above, only equality is included syntactically. However, we
simulate a strict inequality c0 + ∑

1≤i≤k
ci |xi | < 0 by introducing new string variables

y, z and including the subformula 1−|y| = 0∧c0+|y|+|z|+ ∑

1≤i≤k
ci |xi | = 0. Since

this subformula enforces |h(y)| = 1 and |h(z)| ≥ 0, it is satisfied by an assignment
h if and only if c0 + ∑

1≤i≤k
ci |h(xi)| < 0. Similarly, we can simulate . . . > 0 by

inverting the constants and . . .
= 0 by a logical negation ¬ (. . . = 0). Consequently,
WE+LEN has the same expressive power as if arbitrary quantifier free Presburger
arithmetic formulas are permitted over the length-variables |x |.

We also extend both WE + LEN and WE + REG by combining them as follows:

Definition 4 Let WE+LEN+REG be the set of formulas adhering to the following
syntax:

• AWE+REG-formula is aWE+LEN+REG formula.
• AWE+LEN-formula is aWE+LEN+REG formula.
• ForWE+LEN+REG-formulasψ1, ψ2, the Boolean combinationsψ1∧ψ2,ψ1∨

ψ2 and ¬ψ1 are all WE+LEN+REG-formulas.

The semantics for WE + LEN + REG formulas follows directly from the seman-
tics from WE + LEN and WE + REG. Generally, since our approach is primarily
oriented around word equations, we shall use the terms length constraints and regu-
lar constraints to refer to subformulas involving the length-variables |x | and regular
language memberships x ∈ L respectively.

We extend the notion of expressibility of languages to the extensions of WE in the
natural way.

Definition 5 (Expressibility of languages) Let T be any of the logical theories WE,
WE+REG, WE+LEN and WE+LEN+REG defined above. For a T-formula ψ

and a variable x occurring in ψ , the language expressed by x in ψ is

L = {h(x) | h is a satisfying assignment to ψ}.
A language L ⊆ �∗ is expressible in T if there exists a T-formula ψ containing a
variable x such that L is expressed by x inψ . We shall use the notationL(T) to denote
the class of languages expressible in T.

123

Theory of Computing Systems (2024) 68:322–379330

It is straightforward that

L(WE) ⊆ L(WE+LEN),L(WE+REG) ⊆ L(WE+LEN+REG).

In addition, we can infer the following directly from known results:

Theorem 2 [32] L(WE) is incomparable to the classes of regular and context free
languages. It is a strict subclass of the decidable (recursive) languages.

From this we can also conclude that L(WE + REG) and L(WE + LEN + REG)
are strict superclasses of the regular languages. The following observation is easily
obtained from the fact that intersection of languages can be modelled using conjunc-
tion, and that intersection of context free languages can be used to describe accepting
computation histories of Turing machines (the idea being to use word equations to
extract the initial part of the computation history corresponding to the input word).

Remark 3 LetWE+CF be the set of formulas obtained by extending regular language
membership in WE+REG to deterministic context free language membership. Then
L(WE+CF) is exactly the class of recursively enumerable languages.

As a result of Lemma 3, Remark 2, and the well-known effective closure properties
of regular languages, we can rewrite anyWE+ LEN+REG-formula in the following
normal form:

Lemma 4 Let ψ be a WE+LEN+REG-formula containing variables X =
{x1, x2, . . . , xk}. Then we can compute from ψ a formula ψ ′ with variables
x1, x2, . . . , xk, y1, y2, . . . , y� such that h : {x1, x2, . . . , xk} → �∗ is a satis-
fying assignment to ψ if and only if there exists a satisfying assignment h′ :
{x1, x2, . . . , xk, y1, y2, . . . , y�} → �∗ to ψ ′ satisfying h(xi) = h′(xi) for 1 ≤ i ≤ k,
and where ψ ′ has the form:

∨

1≤i≤N

(

Ei ∧ ψlen,i ∧
∧

z∈X
z ∈ L(Ai,z)

)

where Ei is a single (positive) word equation, ψlen,i is a quantifier-free Presburger
arithmetic formula whose variables correspond to the lengths |z| of variables z ∈
{x1, x2, . . . , xk, y1, y2, . . . , y�} and Ai,z is a single DFA, such that for any y, z ∈ X
with y
= z, Ai,y and Ai,z do not share any states.

Proof Firstly, rewrite ψ so that it is in disjunctive normal form (DNF). By commuta-
tivity of ∧ we may then assume w.l.o.g. that we have a disjunction of N clauses of the
form: ∧

1≤i≤k1

Êi ∧
∧

1≤i≤k2

L̂i ∧
∧

1≤i≤k3

R̂i

where:

• each Êi is either E or ¬E for some word equation E ,

123

Theory of Computing Systems (2024) 68:322–379 331

• each L̂i is either c0 + ∑

1≤i≤k
ci |xi | = 0 or ¬

(

c0 + ∑

1≤i≤k
ci |xi | = 0

)

, and

• each R̂i is either of the form x ∈ L or ¬ (x ∈ L) for some variable x and regular
language L .

By Lemma 3, we can replace
∧

1≤i≤k1

Êi with a single word equation E . Moreover, we

can assume w.l.o.g. that each regular language is given as a DFA. For each R̂i of the
form ¬ (x ∈ L), we can compute the complement automaton accepting L and replace
it with the subformula x ∈ L . Finally, combinemultiple subformulas involving regular
language membership for the same variable into a single one. Specifically, we replace
x ∈ L1 ∧ x ∈ L2 ∧ . . . ∧ x ∈ Lt by x ∈ L where L = ⋂

1≤i≤t
Li . The corresponding

DFA can be obtained via the product construction, and states renamed appropriately
so that no two automata share any states. By taking ψlen,i = ∧

1≤i≤k2

L̂i we obtain a

formula ψ ′ of the desired form. ��

2.2 Synchronising Factorisations and Inexpressibility forWord Equations

Both in Sections 3 and 4, we shall make use of a framework introduced in [32] for
showing the inexpressibility of languages by word equations. Since we are adapting
and extending this framework in a non-trivial way, it is convenient to recall, and in
some cases rephrase, the technical details. Nevertheless, we encourage the interested
reader to also consult [32] for full technical details and complete proofs where they
are omitted here.

The general approach for showing inexpressibility in [32] is similar in nature to
canonical pumping arguments e.g. for showing a language is not regular. We start with
the assumption that the language L is expressible, and so, in the case of word equations
orWE, that there is a word equation E and variable x expressing L . We then pick some
word w ∈ L , implying the existence of a solution h to E satisfying h(x) = w. Next,
we use some insights into the properties of solutions to word equations to modifyw by
changing some part(s) of it, yielding a new solution h′ where h′(x) = w′. By taking
care to ensure that this process leads to some w′ /∈ L , we arrive at a contradiction to
the assumption that L is expressible.

A fundamental observation which facilitates this reasoning is that while some parts
of a solution to a word equation are fixed (directly or indirectly) by the constants
in the equation, under certain circumstances, parts of a solution might be entirely
independent of any such constants. We shall make a distinction between “anchored”
and “unanchored” parts of the solution. A very simple example can be derived from the
solution h(x) = a, h(y) = h(z) = b to the word equation xz

.= ay. If we change the
first (and only) letter of h(x), we will get a mismatch to the constant a on the right hand
side of the equation, so the first letter of h(x) is fixed by, or anchored to that constant a.
On the other hand the bs in h(y) and h(z) only need to match with each other, and not
to any constant in the equation itself. We could replace the bs in h(y) and h(z) by any
other word w ∈ �∗, and still have a solution to the equation. For example, replacing

123

Theory of Computing Systems (2024) 68:322–379332

b with abc yields a solution h(x) = a, h(y) = h(z) = abc. It is this replacement of
an unanchored factor which will allow us to modify w to obtain a word w′ outside the
language in question. A more complex example involving anchored and unanchored
parts of a solution to a word equation is given in Fig. 2.

Establishing which letters in a solution are fixed or anchored by which (if any)
constants, and how they are fixed relative to each other, is known as the method of
“filling the positions”. However, considering individual letters only is not sufficiently
powerful enough for this technique to be effective. Rather, a key insight in [32] is how
this reasoning can be adapted to work for larger factors of the solution rather than just
letters alone. This is non-trivial to do because factors can overlap and dependencies
can propagate in amore complicated fashion. To keep track of the way in which factors
can overlap, and to limit the resulting complexities, the authors introduce the notion
of a synchronising factorisation, which we now recall.

A factorisation scheme is a mapping F : �∗ → ⋃

k≥0
(�+)k of words w onto tuples

of words (w1, w2, . . . , wk) such that w = w1w2 · · · wk . The tuple (w1, w2, . . . , wk)

is called the F-factorisation of w, and the wi are called the F-factors of w. For
example, one factorisation scheme, Fruns, might divide a word into “runs” or max-
imally long factors comprised of a single letter. In that case, the Fruns-factorisation
of aababaaabbaa would be (aa, b, a, b, aaa, bb, aa). Naturally, we can extend the
notion of an F-factorisation of a word to a substitution h. In this case, we get factorisa-
tions (w1, w2, . . . , wk) for each variable-image h(x). By the F-factors of h, we mean
the union of the sets of factors occurring in the F-factorisation of each variable-image.

Synchronising factorisation schemes adhere to the following definition. Although
technical when written formally, the general concept is natural and straightforward: if
y occurs as a factor of x , then their corresponding F-factorisations must coincide, or
“synchronise”, for all but some constant number of factors on the left and right of y
(see Fig. 1).

Definition 6 (Synchronising Factorisation Scheme [32]) A factorisation scheme F is
synchronising if the following all hold:

• Every word possesses an F-factorisation (it is complete),
• Every word has at most one F-factorisation (it is uniquely deciphering),
• There exist parameters l, r ∈ N0, such that the following “synchronising condi-
tion" is satisfied: for all pairs of words x, y with F-factorisations (x1, ..., xs) and

Fig. 1 Depiction of a synchronising factorisation adapted from a similar figure in [32]. If the factorisation
scheme is synchronising, then the factorisations of a word x and a factor y of x should align exactly after
a fixed number of factors to the left and right

123

Theory of Computing Systems (2024) 68:322–379 333

(y1, ..., yk), if k > l + r and y occurs as a factor of x starting at the i th letter, then
there exist l ′ ≤ l and r ′ ≤ r such that for U = y1 · · · yl ′ and V = yk−r ′+1 · · · yk:
– The positions i +|U | and i +|y|− |V | in x are starting positions of F-factors,

say xp and xq , respectively.
– The sequences of F-factors xp, ..., xq−1 and yl ′+1, ..., yk−r ′ are identical.
– The occurrence of U at position i in x covers at most l − 1 F-factors of x (i.e.

|x1x2 · · · xp−�−1| < i ≤ |x1x2 . . . xp|).
– The occurrence of V at position i+|y|−|V | in x covers at most r−1F-factors

of x (i.e. |x1x2 · · · xq−1| ≤ i + |y| ≤ |x |).
It is easily seen that the factorisation scheme Fruns is synchronising with l = r = 1.

Further examples can be found in [32] and in Section 3 and 4.
For our purposes, we do not actually rely on the precise partition of F-factors

into “anchored” and “unanchored”. Since the full formal definition requires several
further lengthy technical definitions, for simplicity, we omit it and simply observe
formally that F-factors may either be anchored or unanchored (Definition 7 below),
and providing only an informal intuition instead.

Remark 4 In [32], the terminology “anchored” and “unanchored” is not used, but the
factors which can be freely swapped are called “proper” instead. We avoid using the
term “proper” in order to limit confusion with its more common usage for factors not
equal to the whole word.

What we do need is a sufficient condition for unanchored F-factors to exist, along
with the observation that we can swap them for other words to produce new solutions
to an equation. These are given in Lemma 5, which is a rephrasing of Theorems 16
and 17 in [32].

Definition 7 ((Un)anchored Factors) Let F be a synchronising factorisation scheme.
Let E be a word equation and let h be a solution to E. Let u1, u2, . . . , uk be the
F-factors of h. Then each ui can either be anchored or unanchored.

Informally, we can think of unanchored F-factors of a solution h to an equation
U

.= V in terms of how they overlap. In particular, consider the two identical words
h(U) and h(V), factorised by applying a factorisation scheme F to the image of each
symbol in U and then of each symbol in V . This gives us two factorisations of the
solution-word h(U), each uniquely determined by h and the corresponding side of
the equation, U or V (see Fig. 2). We can then, for each factor in these factorisations,
associate an interval [i, j] ⊆ [1, |h(U)|] describing its occurrence in the solution
word h(U). We consider two occurrences of factors to overlap if their intervals have
a non-empty intersection. They partially overlap if they overlap and their intervals
are not identical. They match if the intervals are identical. Informally, we say that a
F-factor u of h is unanchored if it satisfies the following (see also Fig. 2).

(i) It does not overlap any of the constants in the equation, and
(ii) it does not partially overlap any other occurrence of a F-factor of h, and
(iii) it does not overlap or match directly with any anchored F-factors.

123

Theory of Computing Systems (2024) 68:322–379334

Fig. 2 Depiction of anchored and unanchored factors in a solution to a word equation. Specifically, the
word equation E is given by U

.= V where U is x1x2x3x4x2a and V is ax4x3ccx1cax3. The variables
are given by X = {x1, x2, x3, x4} and the constants are given by � = {a, b, c}. The solution h is given
by h(x1) = aaabb, h(x2) = cac, h(x3) = ca, h(x4) = aabb. The division of the variable-images and
constants into their respective Fruns-factorisations is shown using brackets. Overall, there are 5 distinct
Frun -factors occurring, namely a, aa, aaa, bb, c. Only one of these, bb satisfies the criteria for being
unanchored. It is highlighted in grey. The others are all anchored because they have occurrences which do
not align exactly, or which overlap with some constant. Note that the way in which the unanchored factor
bb occurs means that its occurrences can be swapped for any other factor v, to obtain another solution to
E : the “new” occurrences of v will line up exactly, and all other parts of the solution remain unaffected

All occurrences of unanchored factors occur entirely inside the variable-images,
and are only dependent of the other unanchored parts of the solution, meaning that,
like the letter b in the earlier example, they can be exchanged for any other word
without disrupting the overall structure of the solution.

The notation nF(w) is used to indicate the number of distinct F-factors of the word
w. Since our aim is to replace certain F-factors, we also introduce a notation for that.
In particular, for a substitution h : (X ∪ �)∗ → �∗ and a synchronising factorisation
scheme, F, denote by hFu→v the substitution obtained by replacing all occurrences of
u with v in the F-factorisations of the variable-images h(x).

Remark 5 We derive hFu→v from h as follows. For each variable x, firstly divide
h(x) into its F-factorisation (w1, w2, . . . , u, . . . , wi , . . . , u, . . . , wk), replace each
occurrence of u with v to get a tuple (not necessarily a valid F-factorisation)
(w1, w2, . . . , v, . . . , wi , . . . , v, . . . , wk), and then concatenate the resulting factors
to obtain hFu→v(x) = w1w2 · · · v · · · wi · · · v · · ·wk .

Note that since the F-factorisation exists and is unique for any word by definition,
the above procedure is always well-defined and deterministic. Consequently, hFu→v is
always well-defined. In particular, there is no danger of trying to replace overlapping
occurrences of a factor.

The following lemma is a crucial tool for our reasoning, and is adapted from [32]
to allow us to use it as a “black box” in what follows. Most important to us, is that
we can swap out unanchored factors in a solution h, and that we can guarantee their
existence simply by ensuring that there are sufficiently many distinct F-factors in the
F-factorisation of h.

Lemma 5 (Adapted from [32]) Let F be a synchronising factorisation scheme. Let E
be a word equation with variables from X. Then the following hold:

1. There exists a constant c depending only on E and F such that for any solution h
to E, at most c distinct F-factors of h are anchored.

2. Let h be a solution to E. Let u be an unanchored factor in h. For any word v, hFu→v

is well-defined and is also a solution to E.

123

Theory of Computing Systems (2024) 68:322–379 335

The general approach for showing that a language L is not expressible by word
equations (that is, L cannot be expressed inWE) can nowbe described by the following
steps:

• Step 1. Assume that L is expressible, and thus that there exists an equation E and
variable x such that {w | ∃ a solution h to E with h(x) = w} = L .

• Step 2. Pick an appropriate synchronising factorisation scheme F.
• Step 3. For all sufficiently (with respect to the constant from Lemma 5) k ∈ N,
choose a word w ∈ L such that w has more than k distinct F-factors. Note that
w ∈ L implies there exists at least one solution h to E such that h(x) = w, and
by Lemma 5, at least one F-factor is unanchored.

• Step 4. Choose v such that swapping occurrences of u in w yields a word w′ =
hFu→v(x) not belonging to L . By Lemma 5, hFu→v is a solution to E , so w′ ∈ L .

• Step 5. By the assumption that L is expressed by x in E , we have that h′(x) ∈ L ,
a contradiction. Thus L must be inexpressible.

For clarity, we include the following example, adapted from a similar one in [32],
which demonstrates this approach by showing that the (regular) language {a, b}∗c is
not expressible by word equations.

Example 1 (Adapted from [32]) Let L = {a, b}∗c. Suppose (step 1) that L is expressed
by the variable x in some equation (orWE-formula) E. Then there exists a solution h
to E with h(x) = w if and only if w ∈ L. Now (step 2), we consider the factorisation
scheme Fruns, which factorises a word into maximally long sequences of a single letter.

Next (step 3), clearly for any k, the word w = aba2b2 . . . akbkc is in L and has
2k + 1 distinct Fruns-factors. Thus, by Lemma 5, for k large enough, there are at least
two F runs-factors u which are unanchored and can be swapped for any word v while
still retaining membership in L. At least one of these factors will have the form u = ai

or u = bi for some i, 1 ≤ i ≤ k.
(Step 4) let v = c and let w′ = hFu→v(x) be the result of swapping all occurrences

of u with v. Then (Step 5) by our assumptions we should have that w′ ∈ L. However
w′ ∈ {a, b}∗c{a, b}∗c, so w′ /∈ {a, b}∗c = L. This is our contradiction and L cannot
be expressed by word equations.

2.3 Visibly Pushdown Languages

In Section 3 we shall also consider a theory of word equations and visibly pushdown
language membership constraints, which lies between word equations with regular
constraints and word equations with context free constraints. Since visibly pushdown
languages are not as widely known as regular and context free languages, we provide
some further introduction here (see [3–5] for a thorough introduction). A pushdown
alphabet �̃ is a triple (�c, �i , �r) of pairwise-disjoint alphabets known as the call,
internal and return alphabets respectively. A visibly pushdown automaton (VPA) is a
pushdown automaton forwhich the stack operations (i.e. whether a push, pop or neither
is performed) are determined by the input symbol currently being read. In particular,
any transition for which the input symbol a belongs to the call alphabet�c, must push
a symbol to the stack while any transition for which a ∈ �r must pop a symbol from

123

Theory of Computing Systems (2024) 68:322–379336

the stack unless the stack is empty and any transition for which a ∈ �i must leave the
stack unchanged. Acceptance of a word is determined by the state the automaton is in
after reading the whole word. The stack does not need to be empty for a word to be
accepted. A �̃-visibly pushdown language is the set of words accepted by a visibly
pushdown automaton with pushdown alphabet �̃. A language L is a visibly pushdown
language (and is part of the class VPLang) if there exists a pushdown alphabet �̃ such
that L is a �̃-visibly pushdown language. The class VPLang is a strict superset of
the class of regular languages and a strict subset of the class of deterministic context
free languages, which retains many of the nice decidability and closure properties
of regular languages. In particular, it has already been shown in [4] that VPLang is
closed under union, intersection and complement and moreover that the emptiness,
universality, inclusion and equivalence problems are all decidable for VPLang.

Similarly to the logics defined in Section 2.1,we define an extension ofWE allowing
VPL membership constraints. For this logic, we assume an underlying alphabet �

which is a pushdown alphabet, and we treat the partition into �c, �i , �r as constant
--- that is we do not allow different subformulas to refer to visibly pushdown languages
in which the roles of the letters are different.

Definition 8 Let WE+VPL be the set of formulas adhering to the following syntax:

• A word equation is a WE+VPL-formula,
• x ∈ L is aWE+VPL-formula where L is a visibly pushdown language specified
by a visibly pushdown automaton,

• For WE+VPL-formulas ψ1, ψ2, the Boolean combinations ψ1 ∧ ψ2, ψ1 ∨ ψ2
and ¬ψ1 are all WE+VPL-formulas.

3 Classes of Languages Expressible by ExtendedWord Equations

In this section, we consider the relative expressive power of the logics WE, WE +
LEN, WE + REG and WE + LEN + REG in terms of the classes of languages they
can express. It is easily seen that all languages expressible in the most general logic
WE + LEN + REG are all recursively enumerable: given a formula ψ and variable
x , a semi-decision procedure for membership of a word w in the language expressed
by x in ψ can be obtained by simply enumerating through all possible assignments
h satisfying h(x) = w and checking whether each one is satisfying. If at some point
a satisfying assignment is found, then the word belongs to the language. Since there
are only a finite number of variables occurring in ψ , enumerating the substitutions
is possible. The results in [32] are sufficient to directly establish a strict inclusion
between L(WE) and L(WE+REG) while results from [11] can be used to establish
a strict inclusion between L(WE) and L(WE+LEN). Thus, our starting point, prior
to our results in this section, is the following hierarchy:

L(WE) ⊂ L(WE+LEN),L(WE+REG) ⊆ L(WE+LEN+REG) ⊆ RE.

In what follows, our primary aim is to establish strictness for the other inclusions and
incomparability between L(WE+REG) and L(WE+LEN).

123

Theory of Computing Systems (2024) 68:322–379 337

Arguably the most interesting inclusion, in terms of establishing separation is
L(WE+LEN+REG) ⊆ RE, since it is an open problem as to whether satisfiability
(and therefore emptiness for the corresponding class of languages) is decidable for
formulas inWE+LEN+REG. The existence of examples of recursively enumerable
languages which are not expressible is a necessary condition for having a decidable
satisfiability problem, and if wewish to settle this open problemwemust also settle the
existence of such examples. Further, despite being a core class of constraints addressed
by string solvers, the precise expressive power of this logic is not well understood,
so finding examples and classes of languages which are/are not expressible is well
motivated.

Our first main result does precisely this by establishing, with some involved argu-
mentation, a sufficient criterion for languages to not be expressible in WE+LEN+
REG and using it to identify a concrete example which is clearly recursively enumer-
able.

Our approach builds on the general approach from [32] described in Section 2.2.
The difference we face in this context is that when swapping unanchored factors to
derive the contradiction, we need to be able to guarantee that the substitution obtained
after the swap still satisfies the length and regular language membership constraints.

For length constraints, the required adaptation is straightforward: if we simply swap
a factor u for a word v satisfying |u| = |v|, then the lengths of the variable-images
are guaranteed to stay the same, so the length constraints will remain satisfied. For
regular constraints, the simplest approach involves guaranteeing that the factor u to
be swapped is sufficiently long that it can be pumped in accordance with the pumping
lemma for regular languages, and using this pumping to derive the word v. As we shall
see, there are some details which need to be managed which lead to a slightly more
intricate pumping argument, but it can nevertheless still be done.

Unfortunately, however these two adaptations, for length and regular constraints
respectively, are mutually exclusive.We cannot pump factors of a word in a non-trivial
way while maintaining its length. The obvious solution is to try to pump some factors
positively and other factors negatively in order to achieve an overall balance in the
length, however this does not appear always to be possible in this context.

We avoid this problemaltogether by taking a somewhat different approach, based on
the growth rate of a language. This leads to amore involved proof with amore complex
contradiction, but nevertheless provides some insight into the types of languageswhich
cannot be expressed in WE+LEN+REG.

Theorem 3 There exist recursively enumerable languages which are not expressible
inWE+LEN+REG. Thus

L(WE+LEN+REG) ⊂ RE.

Proof Given a language L , we define the counting function #L : N0 → N0 such that
#L(n) is the number of words in L of length n. For example, if L1 = {a, b}∗ and
L2 = {a}∗, then #L1(n) = 2n while #L2(n) = 1. We call #L the growth function of L .
Sometimes this function is also called “combinatorial complexity” in the literature (see
e.g. [45]). In order to describe the asymptotic behaviour of potentially non-monotonic

123

Theory of Computing Systems (2024) 68:322–379338

functions #L , we shall use adaptations of the typical �,	 notations, as in [45], as
follows.

Given a function f : N0 → N0,we say that the growthof L is at least f if there exists
a positive constant C , such that there are infinitely many n such that #L(n) ≥ C f (n),
and we denote this growth as �(f). Similarly, we say the growth of L is at most f if
#L(n) is O(f). Finally, if the growth of L is both �(f) and O(f), then we say it is
	(f). For example, the growth of the language {w ∈ {a, b}∗||w| is even} is 	(2n).

Let � = {a, b, c, d,@, $}. Let πab : �∗ → {a, b}∗ be the projection onto {a, b}∗,
(i.e. πab is the morphism such that πab(a) = a, πab(b) = b and πab(c) = πab(d) =
πab(@) = πab($) = ε). In what follows, we shall show that the following language L
is not expressible by word equations with length constraints and regular constraints:

L = {w = w1@
22

k−1$w2@
22

k−1$. . . $wk@
22

k−1$ |
∀i, j, 1 ≤ i, j ≤ k : wi ∈ {aci−1dk−i , bci−1dk−i }∗

∧ πab(wi) = πab(w j) ∧ |wi | = k2}.

Intuitively, words w in L are determined exactly by a numerical parameter k and a
“base” word wbase ∈ {a, b}k . The “full” word w then consists of k copies of wbase in
succession, separated by the letter $. Ideally, each copy of wbase in w would be over a
distinct alphabet. However the number of copies grows with k, so to achieve this with
only a finite alphabet, we encode the letters a and b in each copy by factors aci−1dk−i

and bci−1dk−i . In other words, for each i , 1 ≤ i ≤ k, the set {aci−1dk−i , bci−1dk−i }
acts as a new copy of the alphabet {a, b}. Moreover, we want the number of possible
base words wbase to be logarithmic with respect to the length of the word overall, so
we pad each one with a large number of @ symbols.

We shall fix a factorisation scheme F so that it divides any word in �∗ into words
of the form (�\{$})∗$, and if necessary adds the final prefix from (�\{$})+. For
any word not containing $, the factorisation is just the word itself. So, for exam-
ple, F(abababa) = (abababa) and F(ab$bbaba$$aba) = (ab$, bbaba$, $, aba).
Clearly, F is synchronising.

Suppose that ψ is a WE+LEN+REG-formula with variables X where for some
x ∈ X , L is expressed by x in ψ . In what follows, we shall use the growing number
of copies of wbase in words w ∈ L to force a sufficiently large number of unanchored
factors with respect to F so that we can apply a swapping argument in the style of [32]
and as discussed in the preliminaries.

We shall then use the logarithmic growth of the number of choices forwbase to enforce,
in a rough sense, a minimum of logarithmic growth in the regular constraints in ψ .
Then, by properties of regular languages, we can extrapolate this logarithmic growth
to linear growth which we can ultimately use to derive nearly-linear growth for the
whole language L , a contradiction to the fact that L clearly has logarithmic growth:

Claim 1 For each n ∈ N, either:

• There exists k such that n = k3 + k22
k
and there are exactly 2k words of length n

in L, or

123

Theory of Computing Systems (2024) 68:322–379 339

• No such k exists and there are no words of length n in L.

Thus the language L has growth 	(log(n)).

Proof Directly from the definitions. ��
By Lemma 4 we can assume w.l.o.g. that ψ is given in the form:

∨

1≤i≤N

(

Ei ∧ ψlen,i ∧
∧

z∈X
z ∈ L(Ai,z)

)

where Ei is a single (positive) word equation,ψlen,i is a Presburger arithmetic formula
whose variables correspond to the lengths |z| of variables z ∈ X and Ai,z is a single
DFA, such that for any y, z ∈ X with y
= z, Ai,y and Ai,z do not share any states.
Clearly L = ⋃

1≤i≤N
L̃i where L̃i is the language expressed by x in Ei ∧ψlen,i ∧ ∧

z∈X
z ∈

L(Ai,z).

Claim 2 There is at least one i such that L̃i has growth 	(log(n)).

Proof Since L has growth 	(log(n)), it has growth O(log(n)). It follows directly
that all the languages L̃i have growth O(log(n)). Moreover, L has growth �(log(n))

so there is a positive constant C and infinitely many n ∈ N0 such that L has at least
C log(n)words of length n. LetC ′ = C

N . For each such n, at least one of the languages

L̃i must have at least C ′ log(n) words. Since there are only finitely many choices of
L̃i , there must be at least one specific choice of L̃i which can be made for infinitely
many of the n. Thus, there are at least C ′ log(n) words in L̃i for infinitely many n and
L̃i has growth �(log(n)). The claim then follows immediately by definition. ��

For the next steps of the proof, we shall concentrate on a single subformula ψ̃ =
Ei ∧ψlen,i ∧ ∧

z∈X
z ∈ L(Ai,z)whose corresponding language L̃i has growth	(log(n)).

For convenience, we drop the index i . Thus, let L̃ = L̃i , E = Ei , Ai,z = Az for
each z ∈ X , and ψlen = ψlen,i . We refer to ψlen as the length constraints, and to∧

z∈X
z ∈ L(Az) as the regular constraints. Denote by Q the set of all states occurring in

one of the DFAs Az . For each z ∈ X , denote by ιz and δ̂z the initial state and extended
transition function of Az respectively. Let δ̂Q = ⋃

z∈X
δ̂z , and note that since the automata

Az do not share states, δQ is a well-defined total function. For each w ∈ L̃ , denote by
hw some satisfying assignment to ψ̃ (note this is then also a satisfying assignment for
ψ as a whole).

Since our aim is to swap some factor(s) of a word w from L while continuing to
have a valid solution, we need a way of keeping track, for a given factor u of w, which
choices of v we may substitute for u without “breaking” the regular constraints and
length constraints. For length constraints, we restrict v so that |v| = |u|. For the regular
constraints, if the corresponding automaton begins reading an occurrence of u in state
p and finishes reading u in state q, then swapping u for a word v which also takes the

123

Theory of Computing Systems (2024) 68:322–379340

automaton from p to q will not disrupt that constraint. However, we need to account
for the fact that there can be multiple occurrences of u which we swap for v, and in the
images of any of the variables. Thus we need to consider the combinations of all states
of all the automata in which an occurrence of u starts/ends in a given solution. For
this reason, we define the following sets
(z, w, u) below (Definition 9). The set of
words v which respect these combinations of states turns out to be a regular language,
which we refer to as LR (Definition 10). An example is given in Fig. 3.

Definition 9 For each z ∈ X, w, u ∈ �∗, we define the following set:

(z, w, u) = {(p, q) | ∃w1, w2. w = w1uw2 ∧ δ̂z(ιz, w1) = p ∧ δ̂z(p, u) = q}.

In other words, (p, q) ∈
(z, w, u) if and only if there is an occurrence of u in w

such that when reading hw(z), Az is in state p just before reading the first letter of that
occurrence of u and is in state q just after reading the last letter of that occurrence of
u.

Fig. 3 Anexample illustratingDefintions 9, 10 andClaim4. Supposewe have a solution h to aword equation
E with variables x and y, which also satisfies some length constraints and some regular constraints given
by DFAs Ax and Ay . Explicit values for Ax , Ay , h(x), and h(y) are given in the figure. Trap states and
associated transitions are omitted for clarity. Let u = aba. Occurrences of u are highlighted, and some of
the states visited in the runs of h(x) on Ax and h(y) on Ay respectively are also indicated. Occurrences
of u start/end in states (p, q) and (q, p) in the run of h(x) on Ax and start/end in states (r , s) in the run
of h(y) on Ay . Let R = ⋃

z∈X

(z, h(z), u) = {(p, q), (q, p), (r , s)}. Note that {v | δ̂x (p, v) = q} = {v |

δ̂x (q, v) = p} = {v ∈ �∗ | |v| is odd} and {v | δ̂y(r , v) = s} = b∗a(ba|ab∗a)∗. Thus LR consists of all
odd-length words in b∗a(ba|ab∗a)∗. Suppose that u is unanchored. Then if we replace each occurrence of
u in (the F-factorisations of) h(x) and h(y) with a word v, we obtain a new assignment h′ which is still a
solution to the word equation E . Moreover, if v ∈ LR , then the sequences of states depicted in the figure
remain the same (although some states “internal” to the u factor which are not depicted might change). Thus
the resulting assignment h′ will also satisfy the regular constraints. Finally, if we choose v such that v ∈ LR
and |v| = |u|, then h′ will also still satisfy the length constraints. For example, taking v = aaa meets all
these conditions and gives a new satisfying assignment h′(x) = abbaaaaaabaaa and h′(y) = baaaaab

123

Theory of Computing Systems (2024) 68:322–379 341

Definition 10 Given R ⊆ Q × Q, let L R be the language

⋂

(p,q)∈R

{v | δ̂Q(p, v) = q}.

Claim 3 LR is always a regular language, and it is accepted by an automaton with at
most |Q||Q|2 states.

Proof For each pair (p, q) ∈ R where p, q belong to an automaton Az , we can
construct an automaton A(p,q) accepting the language {v | δ̂Q(p, v) = q} of words v

for which there is a path from p to q labelled v in Az by simply making p the only
initial state and q the only final state. Then, we can simply use the product automaton
construction to construct an automaton accepting the intersection

⋂

(p,q)∈R
L(A(p,q)).

Since there are at most |Q|2 pairs in R, the product construction is applied to at
most |Q|2 automata. Moreover, there are at most |Q| states in each of the individual
automata. Thus, there are at most |Q||Q|2 states overall. ��

The following claim is the necessary generalisation of 2. from Lemma 5, and
provides the conditions under which swapping an unanchored factor will preserve a
satisfying assignment to our formula ψ̃ . An example demonstrating how Claim 4 can
be used is given in Fig. 3.

Claim 4 Let h be a satisfying assignment to ψ̃ . Let u be an unanchored factor in the
F-factorisation of h. Let R ⊇ ⋃

z∈X

(z, h(z), u). Let v ∈ LR such that |u| = |v|. Then

hFu→v is well-defined and also a satisfying assignment for ψ̃ .

Proof By Lemma 5, hFu→v is well-defined and also a solution to E . In particular,
recall that by definition of an F-factorisation, and since hFu→v is obtained by swap-
ping F-factors in the variable-images h(x), x ∈ X , there is no danger of trying to
simultaneously swap overlapping occurrences of u.

With this in mind, for each z ∈ X , we can write h(z) as w1uw2u . . . uw� such
that hu→v(z) = w1vw2v . . . vw�. By definition, for each i, 1 ≤ i < �, there is a pair
(p, q) ∈ R such that δ̂z(ιz, w1uw2 . . . wi) = p and δ̂z(p, u) = q. Moreover, since v ∈
LR , δ̂z(p, v) = q for each pair (p, q) of states from R. It follows that δ̂z(ιz, h(z)) =
δ̂z(ιz, hFu→v(x)). Thus, since h(z) ∈ L(Az), we may infer that hFu→v(z) ∈ L(Az). This
holds for all z, so hFu→v satisfies all the regular constraints in ψ̃ .

Finally, since |u| = |v| then the lengths of variable-images will not change. That
is, |hFu→v(z)| = |h(z)| for all z ∈ X , so it follows from the fact that h is a satisfying
assignment for ψlen that hFu→v is also a satisfying assignment for ψlen and the length
constraints are also satisfied.

Thus hFu→v satisfies the word equation E , the regular constraints, and the length
constraints and is therefore a satisfying assignment to ψ̃ .

Next, we need to assert that for sufficiently long words in L̃ , there will exist unan-
chored factors which provide candidates for being replaced. This is established by the
following claim.

123

Theory of Computing Systems (2024) 68:322–379342

Claim 5 For each k ∈ N large enough, for every word

w = w1@
22

k−1$w2@
22

k−1$. . . wk@
22

k−1$ ∈ L̃

there is at least one i , 1 ≤ i ≤ k such that wi@22
k−1$ is an unanchored F-factor of a

satisfying assignment hw witnessing w ∈ L̃.

Proof This follows directly from the fact that there is a constant c dependent only on E
and F such that there are at most c F-factors of w which are anchored (see Lemma 5).

By definition of F and L̃ , for any two different values i , the factors wi@22
k−1$ will

be distinct F-factors of hw(x). Thus whenever k > c, there must be one choice of i

such that wi@22
k−1$ is unanchored. ��

Claim 4 gives us a sufficient criterion for performing the previously described
swapping for some factor u of a word w in the language. However, there is not yet
any reason to assume that the set of possible choices v satisfying the conditions of the
claim contains any word other than u itself. In what follows, we shall show firstly that
by the construction of the language L̃ , there are at least logarithmically many choices
for v, and secondly by the properties of regular languages, that this leads to (nearly)
linearly many. By choosing factors u that are sufficiently long, this gives the required
contradictory lower bound on the growth of L̃ .

The following claim establishes the logarithmic number of choices for v.

Claim 6 There exists a constant C0 > 0 and R ⊆ Q × Q such that for infinitely many
k ∈ N:

• there exist at least C0
2k

2|Q|2 distinct (unanchored) factors u of length k2 + 22
k
of

words w ∈ L̃ such that u ∈ LR, and
• there exists at least one word w ∈ L̃ of length n = k3 + k22

k
and an unanchored

factor u of length k2 + 22
k
of w such that R ⊇ ⋃

z∈X

(z, h(z), u), where h is a

satisfying assignment to ψ̃ witnessing w ∈ L̃.

Proof Since each w ∈ L̃ has length k3 + k22
k
for some k, it follows from the fact that

the growth of L̃ is	(log(n)) that there is a constantC0 and infinitely many k such that
there are at least C02k words of length k3 + k22

k
in L̃ . Moreover, each word w ∈ L̃

is fixed exactly by the initial prefix w1@22
k−1$, so this means there must be infinitely

many k for which there are C02k possible choices of the initial prefix w1@22
k−1$ of

some word w ∈ L̃ .
By Claim 5, for any k large enough, for any single word in L̃ , at least one of its

factorswi@22
k−1$ is unanchored. Thus, for k large enough, across all words of length

k3 + k22
k
in L̃ , we must have a combined total of at least C02k distinct unanchored

factors u = wi@22
k−1$.

Each of these u must belong to at least one LR for some R ⊇ ⋃

z∈X

(z, h(z), u)

where h is a satisfying assignment witnessing the corresponding word w ∈ L̃ . Since

123

Theory of Computing Systems (2024) 68:322–379 343

there are only 2|Q|2 possibilities for R, there must be, for each k large enough, at least

one R such that C02k

2|Q|2 of the factors u belong to the same language LR . Moreover,
since there are only finitely many R and infinitely many k, we must have that there is
an infinite subset of the k’s for which the choice of R satisfying the above is the same.
This is enough to prove both statements of the claim. ��

The following claim allows us to translate a logarithmic number of options v for
swapping an unanchored F-factor u into a linear one simply by looking at the possible
growth rates of regular languages. Note that while it is well-known that the growth
rate of a regular language cannot be logarithmic generally, the context here means
we need a more particular version of this statement concentrating just on subsets of
possible lengths.

Claim 7 Let L ′ be a regular language. Suppose there exists a constant C1 and an
infinite subset S of natural numbers such that for each n ∈ S, |L ′ ∩ �n| ≥ C1 log(n).
Then there exists a constant C2 and an infinite subset S′ ⊆ S such that for each n ∈ S′,
| L ′ ∩ �n |≥ C2n.

Proof Suppose L ′, S,C1,C2 satisfy the conditions imposed by the claim. Let A′ be a
DFA accepting L ′. Let Q′ be the set of states of A′. For convenience, we shall consider
runs of words w′ on A′ as words over a combined alphabet � × Q′ and ignoring the
final state (which is uniquely determined by the last letter from�×Q′ in the run since
A′ is a DFA). So e.g. (a, q0), (b, q1), (a, q2) would denote that the word aba, when
read by A′ starts in initial state q0, then goes to state q1 then goes to state q2, before
finishing in some unknown state. Since A′ is a DFA, each word in L ′ has a unique run
written in this form. Moreover, any run ending with a pair (a, q) defining a transition
in A′ to an accepting state necessarily defines a unique word in L ′.

We shall call a word atomic if the corresponding run does not contain any statemore
than once. Clearly, any word/run in L ′ can be reduced to an atomic word by removing
factors corresponding to cycles in A′. We shall call this process “depumping”. More-
over, any word in L ′ can be obtained by taking an atomic word and “repumping” in
factors corresponding to cycles. Note that there are only finitely many atomic words.

It might be that a state q does not belong to the run of some atomic word w′
atom,

but is part of a run of the full word w′ which was depumped. In this case, there is a
cycle starting/ending at some state q ′ in the run of w′

atom visiting q. It is easy to see
that if this is possible, then it is possible for at least one new state q with a cycle which
does not itself have any sub-cycles (i.e. visits each state at most once). Thus, we can
turn w′

atom into a word w′′ of length at most |Q|2 which contains every state reachable
in some cycle from a state in the run of w′

atom. Let Q be the function which maps an
atomic word w′

atom to the length-lexicographically minimal choice of w′′.
For each subset of states Q′′ ⊆ Q′, denote by C(Q′′) the greatest common divisor

of lengths of all cycles starting/ending at states in Q′′.
Next we list several easily proven observations.

• For any Q′′ ⊆ Q′, there is a finite subset of cycles starting/ending at states q ∈ Q′′
whose greatest common divisor is equal to C(Q′′).

123

Theory of Computing Systems (2024) 68:322–379344

• For any word w′ ∈ L ′, if w′
atom is a corresponding atomic word obtained by de-

pumping, then there exists d ∈ N such that |w′| = |w′
atom|+dC(Q′′) where Q′′ is

the set of states occurring in the run ofw′
atom or occurring in a cycle starting/ending

at one of those states. In particular, this is true for w′′ = Q(w′
atom).

• Suppose m1, . . . ,mr are (not necessarily distinct) numbers with r > 1 and
gcd(m1, . . . ,mr) = D. Then any large enough M ∈ N which is divisible by
D can be written as M = a1m1 + a2m2 + . . . armr with ai ∈ N0. Moreover, if
ai , a j are such that i
= j and a j is the largest coefficient, if all other co-efficients
are fixed, there are still at least � a j

mi
� choices for ai , a j such that the same equality

still holds (we can take a′
i = ai + km j and a′

j = a j − kmi for any k satisfying
kmi ≤ a j). For each choice of m1,m2, . . . ,mr , there are �(M) many choices of
ai , a j , since we must have a j ≥ M

mmaxr
where mmax = max{m1,m2, . . . ,mr }.

Now for each n ∈ S we can assign a corresponding w′
atom which is the result of

depumping some word w′ of length n in L ′. Note that w′
atom fixes the set Q′′ of states

occurring in the run of w′
atom or occurring in a cycle starting/ending at one of those

states, as well as andC(Q′′) andw′′ = Q(w′
atom). It also fixes n′ = n−|w′′|. Note that

n′ is divisible by C(Q′′) (since w′′ is obtained from a word w′ of length n by firstly
removing a multiple of C(Q′′) letters to get w′

atom and then re-inserting a multiple of
C(Q′′) letters).

Since there are finitely many possible choices for w′
atom, we can fix one choice for

which there exists an infinite subset S′ ⊆ S containing only n ∈ S to which that choice
w′
atom is assigned such that for all n ∈ S′, there are at least C3 log(n) words w′ ∈ L ′

of length n. Moreover, the C3 log(n) words will all have runs only visiting states from
Q′′. Thus we may w.l.o.g. assume that A′ only has the states Q′′ and possibly some
additional sink state.

We say that two cycles are similar if they (their runs written as words over � × Q)

have conjugate primitive roots. We try to fix a finite set C of cycles starting at states
occurring in the run of Q(w′

atom) such that the following hold:

• the greatest common divisor of the lengths of the cycles is equal to C(Q′′)
• no two cycles in C are similar
• there are at least two cycles in C

Suppose firstly that no such set C exists. Then all cycles in A′ starting and ending in
states from Q′′ are similar. Thus all cycles starting/ending at states in Q′′ are repetitions
of conjugates of a single cycle. This necessarily forces that the automaton A′ is just
a single cycle possibly with some further paths from the initial state which join the
cycle and paths going out which reach a final state or trap state but such that none of
the states on these paths have cycles.

It is straightforward that for an automatonwith this structure, the number ofwords of
length n is bounded by a constant and so cannot have growth�(log(n)), a contradiction
to the initial assumptions of the claim. Thus, C does exist.

Let m1,m2, . . . ,mr be the lengths of the cycles in C. W.l.o.g. suppose there is
an order on the states in Q′′ and that the mi s are ordered w.r.t. the state the cycle
starts/ends at. For all n ∈ S′ large enough, there exist a1, a2, . . . , ar ∈ N such that

123

Theory of Computing Systems (2024) 68:322–379 345

n′ = n − |w′′| = a1m1 + a2m2 + . . . + armr and a pair ai , a j such that a j has size
	(n).

For each state in Q′′, we pick some occurrence of a letter in w′′ corresponding to
that state in the run ofw′′. We re-pumpw′′ to obtain a word of length n by successively
adding in a� copies of the cycle of length m� at the letter associated with the chosen
occurrence of the �th state of Q′′ in w′′, starting at � = 1 and ending with � = r .
Where two cycles are associated with the same state, we repump all occurrences of
the first cycle followed by all occurrences of the second.

There is a constant C2, independent of n, such that there are at least C2n possible
choices for ai and a j if we fix all the other a�s. It remains to show that each resulting
word of length n is different. Suppose to the contrary that two are the same. Then
we get a word w′′′ whose run on A′ can be simultaneously written as w′

1c
ai
1 w′

2c
a j
2 w′

3
where c1 and c2 are the cycles associated with ai and a j , for two different values of
ai and a j (or it might be that ai and a j occur the other way around but the reasoning
works in the same way). However, by cancelling identical prefixes and suffixes, this
implies that cs11 w′

2 = w′
2c

s2
2 for some s1, s2 ∈ N. By Lemma 2 this is only possible if

cs11 and cs22 are conjugate. Since repetitions of two words are conjugate if and only if
their primitive roots are conjugate (see [38], Proposition 1.3.3), c1 and c2 are similar,
This is a contradiction to the definition of C. Thus, we get at least C2n distinct words
of length n in L ′ for all n ∈ S′ large enough. By restricting S′ to contain all n which
are large enough, the conditions of the claim are satisfied. ��

We are now finally ready to directly prove a contradiction about the growth of L̃ and
thus that L is not expressed by ψ and therefore not expressible in WE+LEN+REG.
In particular, we shall show that L̃ , and thus L , has growth at least n

log log(n)
, which is

incompatible with Claim 1.
Let R be as defined in Claim 6. Then there is a constant C1 such that for infinitely

many values n = k3 + k22
k
:

• there are at least C12k words in LR of length n
k = k2 + 22

k
,

• there exists at least one word w ∈ L̃ of length n and an unanchored factor u of
length n

k of w such that R ⊇ ⋃

z∈X

(z, h(z), u), where h is a satisfying assignment

for ψ̃ witnessing w ∈ L̃ .

Note that C12k ∈ 	(log(n)) and n
k ∈ 	

(
n

log log(n)

)
. Since LR is regular, and since

log(n) > log
(

n
log log(n)

)
, by Claim 7, this implies that for some constant C2, there are

infinitely many n such that:

• there are at least C2
n
k words in LR of length n

k ,

• there exists at least one word w ∈ L̃ of length n and an unanchored factor u of
length n

k of w such that R ⊇ ⋃

z∈X

(z, h(z), u), where h is a satisfying assignment

for ψ̃ witnessing w ∈ L̃ .

By Claim 4, for each w ∈ L̃ and corresponding satisfying assignment h, there
is an unanchored factor u and at least C2

n
k words v such that hFu→v is a satisfying

123

Theory of Computing Systems (2024) 68:322–379346

assignment for ψ̃ . By construction, each word w′
v = hFu→v(x) is unique and thus for

infinitely many n, there are at least C2
n
k words in L̃ of length n. The growth rate of

L̃ is therefore �(nk) = �
(

n
log log n

)
. This implies that L also has growth rate at least

�
(

n
log log n

)
. This contradicts Claim 1 so L cannot be expressible. ��

We now turn our attention to weaker combinations of word equations and con-
straints. The case of word equations with length constraints is a straightforward
adaptation of the existing approach from [32]. Since the language L = {vc | v ∈
{a, b}∗} is regular, it is expressible in WE + REG. Thus the following lemma shows
separation of L(WE+LEN) and L(WE+REG) and therefore a strict inclusion
between L(WE+REG) and L(WE+LEN+REG).

Lemma 6 Let a, b, c be distinct letters. Then the language L = {vc | v ∈ {a, b}∗} is
not expressible in WE+LEN.

Proof Suppose to the contrary that L is expressible. Then there exists a formulaψ with
variables X such thatψ consists ofword equations and length constraints, and such that
L is expressed by x in ψ . As in Lemma 4, due to constructions from [32] and using
standard constructions regarding finite automata (for complement and intersection)
and logical formulas (DNF) we can assume w.l.o.g. that ψ is given in the form:

∨

1≤i≤N

(
Ei ∧ ψlen,i

)

where Ei is a single (positive) word equation and ψlen,i is a Presburger arithmetic
formula whose variables correspond to the lengths |z| of variables z ∈ X .

We proceed in a similar manner as for Example 1. For each k, let wk =
aba2ba3b . . . akbc. Let Fruns be the synchronising factorisation scheme introduced
in Section 2. Clearly wk ∈ L for all k. Moreover each wk has exactly k + 2 distinct
F-factors. For each k, there must exist i such that there is a satisfying assignment h
for ψi = Ei ∧ ψlen,i such that h(x) = wk . By Lemma 5, if we take k large enough,
then there is at least one F-factor a j of wk which is unanchored, and thus such that
hF
a j→c j

is a satisfying assignment to Ei . Furthermore, since |a j | = |c j |, the lengths
of the variable-images of hF

a j→c j
are the same as for h, so hF

a j→c j
satisfies ψlen,i .

Thus hF
a j→c j

is a satisfying assignment for ψi and w′ = hF
a j→c j

(x) ∈ L . However,
w′ contains two distinct factors from c+, so is not in L , a contradiction. It follows that
L is not expressible in WE+LEN. ��

Showing that a language is not expressible in WE+REG is slightly more involved
than for WE+LEN, but we have already done most of the work in the proof of
Theorem 3. We provide the following lemma providing a general necessary condition
for a language to be expressible in WE+REG.

Lemma 7 Let F be a synchronising factorisation scheme. L be a language expressible
in WE+REG. Then there exist constants c and d depending only on F and L such
that the following holds. For any word w ∈ L with F-factorisation (u1, u2, . . . , uk),

123

Theory of Computing Systems (2024) 68:322–379 347

if there are at least c distinct factors ui having length ui > d, then there is at least
one, u j , and a word v with |v| < |u j | such that the word obtained by replacing each
occurrence of u j in (u1, u2, . . . , uk) with v yields a word w′ in L.

Proof Let ψ be a WE+REG formula and x a variable in ψ such that L is expressed
by x in ψ . By Lemma 4, we can assume w.l.o.g. that ψ has the form:

∨

1≤i≤N

(

Ei ∧
∧

z∈X
z ∈ L(Ai,z)

)

where Ei is a single (positive) word equation and Ai,z is a single DFA, such that for
any y, z ∈ X with y
= z, Ai,y and Ai,z do not share any states. Clearly L = ⋃

1≤i≤N
L̃i

where L̃i is the language expressed by x in Ei ∧ ∧

z∈X
z ∈ L(Ai,z). Let Q be the set of

all states occurring in any of the DFAs Az .
Let h be a satisfying assignment to ψ witnessing that w ∈ L , so that h(x) = w.

Let d > |Q||Q|. By Lemma 5, there is a constant c, depending on F and L , such that
if there are at least c distinct F-factors ui with |ui | > d, then at least one of them, u j ,
will be unanchored. Set u = u j and let
(z, w, u) for z ∈ X , and LR be defined as in
the proof of Theorem 3, where R = ⋃

x∈X

(x, h(x), u).

Now by Claim 3 in the proof of Theorem 3, the regular language LR is described by
a DFA A with at most d states. Moreover, as a corollary to Claim 4 in the same proof,
for any v ∈ LR , the assignment hFu j→v is also satisfying for ψ (i.e. we can drop the
condition |u| = |v| because we do not have any length constraints), and therefore the
wordw′ = hFu j→v(x) obtained by replacing each occurrence of u j in (u1, u2, . . . , uk)
with v is also in L . It remains to show that v exists such that |v| ≤ d. However, by
definition, u ∈ L(A) = LR so L(A)
= ∅. Moreover, A has at most d states (Claim 3),
so there must be at least one v ∈ L(A) with |v| ≤ d < |u|. This proves the lemma. ��

We can apply Lemma 7 above to obtain the following separation between L(WE+
REG) and L(WE + LEN + REG).

Lemma 8 Let L = {ucv | u, v ∈ �∗ ∧ |u| = |v|}. Then L is not expressible in
WE + REG.

Proof Recall that the factorisation scheme Fruns introduced in Section 2 is synchro-
nising. Suppose for contradiction that L is expressible in WE + REG. Let c, d be the
constants from Lemma 7.

It is a straightforward observation that there exist pairwise distinct numbers
p1, p2, . . . , pc, q1, q2, . . . , qc > d such that

∑
pi = ∑

qi and thus such that
w = a p1bp1a p2bp2 . . . a pcbpccaq1bq1aq2bq2 . . . aqcbqc belongs to L .

The F-factorisation of w consists of 4c distinct factors having length greater than d
(namely a pi , bpi , aqi , bqi for 1 ≤ i ≤ c), so by Lemma 7wemay swap all occurrences
of at least one block u of letters for a strictly shorter word v and obtain another word
in L . However, since each block of letters occurs only once (by the fact that the pi s
and qi s are all pairwise distinct), this would result in a word for which one side of

123

Theory of Computing Systems (2024) 68:322–379348

the central occurrence of c is shorter than the other, and thus not belonging to L , a
contradiction. Thus L cannot be expressible, as required.

Summarising our results so far, we get the following (now strict) hierarchy:

Theorem 4 For T ∈ {WE + LEN,WE + REG}, the following strict inclusions hold:

L(WE) ⊂ L(T) ⊂ L(WE +LEN + REG) ⊂ RE.

Moreover, L(WE + REG) and L(WE + LEN) are incomparable.

Proof All languages expressible in any of the considered theories are recursively enu-
merable because a semi-decision procedure for membership can be obtained by trying
all substitutions (e.g. in increasing length-lexicographic order). The other (non-strict)
inclusions follow by definition. The strictness of the inclusionsL(WE) ⊂ L(T) follow
from [32] and [11]. Lemma 6 gives a regular language not expressible in WE+LEN,
while Lemma 8 gives a language which is clearly expressible in WE+LEN but not in
WE+REG. This establishes incomparability of L(WE+REG) and L(WE + LEN),
and moreover the strictness of the inclusions L(T) ⊂ L(WE + LEN + REG). Theo-
rem 3 establishes the strictness of the inclusion L(WE + LEN + REG) ⊂ RE. ��

We now return to the fact, established in Theorem 3, that not all recursively enumer-
able languages are expressible in WE + LEN + REG. An obvious question remains:
what kinds of constraints can we extend word equations with in order to be able to
express all recursively enumerable languages? We have already noted in Remark 3
that (deterministic) context free language membership constraints are sufficient. As
a result, we can consider the logic WE + CF in which atoms are word equations
or deterministic context free language memberships to be a (strict) generalisation of
WE+ LEN+REG. However, this generalisation is both unsurprising and not partic-
ularly insightful, as the expressive power of intersections of deterministic context free
languages (namely the fact that they can be used to encode computation histories of
Turing machines) is well known.

In contrast, visibly pushdown languages are closed under intersection (as well as
union and complement) and have decidable intersection-emptiness problem. In terms
of both their closure and computability properties, they are much closer to regular
languages than to (deterministic) context free languages. Nevertheless, we have the
following observation that extending word equations with visibly pushdown language
membership constraints generalises both regular language membership and length
constraints.

Lemma 9 Let ψ be a WE+LEN+REG-formula with variables x1, x2, . . . , xk and
underlying alphabet �. Then we construct a visibly pushdown alphabet �̃ and a
WE+VPL-formulaψ ′ with variables x1, x2, . . . , xk, y1, y2, . . . , y� such that for any
assignment h : {x1, x2, . . . , xk} → �∗, h satisfies ψ if and only if there exists a
satisfying assignment h′ : {x1, x2, . . . , xk, y1, y2, . . . , y�} → �̃∗ for ψ ′ such that
h′(xi) = h(xi) for 1 ≤ i ≤ k.

Proof Let ψ be a WE+LEN+REG formula. Let �̃ = (�c, �i , �r) where �c =
�,�i = ∅ and �r = {#} with # /∈ �. We construct ψ ′ from ψ as follows. Firstly, add

123

Theory of Computing Systems (2024) 68:322–379 349

to ψ atoms x ∈ �∗ for every variable x occurring in ψ . Since any regular language
is also visibly-pushdown (for any partition of the alphabet), we can leave unchanged
all atoms in ψ of the form x ∈ L where L is a regular language. Likewise, since word
equations can occur as atoms in both WE+LEN+REG and WE+VPL, we leave
the word equations in ψ unchanged. What remains is to translate each length-atom
having the form

c0 +
∑

1≤i≤k

ci |xi | = 0

into a combination of word equations and visibly pushdown language membership
atoms. Note that it is straightforward to construct a visibly pushdown automaton with
alphabet �̃ for the language Llen = {w#|w| | w ∈ �∗}. We convert the length-atom
above as follows. Firstly rearrange the length-atom above by moving any terms with
negative coefficients to the right hand side. As a result, we get an equality of the form

c0 +
∑

1≤i≤k1

ci |xi | = d0 +
∑

1≤i≤k2

di |zi |

We then replace it with the following formula:

x̂
.= ac0xc11 xc22 . . . x

ck1
k1

∧ ẑ
.= ad0 zd11 zd22 . . . z

dk2
k2

∧ ŷ1 ∈ {#}+
∧ ŷ2

.= x̂ ŷ1 ∧ ŷ3
.= ẑ ŷ1

∧ ŷ2 ∈ Llen ∧ ŷ3 ∈ Llen

where x̂, ŷ, ẑ1, ẑ2, ẑ3 are all newvariables and a ∈ � is chosen arbitrarily. The first two
lines ensure that any satisfying assignment h′ adheres to |h′(x̂)| = c0 + ∑

1≤i≤k1

ci |xi |
and |h′(ẑ)| = d0+ ∑

1≤i≤k2

di |zi |. Thefinal three lines then enforce that |h′(x̂)| = |h′(ẑ)|,
and thus that the original length-atom is satisfied. It follows therefore directly from
our construction that φ′ satisfies the conditions of the lemma. ��

Unfortunately, despite their apparent similarity to regular languages, and the
resulting hope that they might lead to an extension of WE+REG (and indeed
WE+LEN+REG) while sharing the desirable property of having a decidable sat-
isfiability problem, we are able to show that this is not the case: adding the VPL
constraints is already as powerful as adding context free constraints, and satisfiability
is therefore undecidable for WE+VPL.

Our proof follows similar ideas as classical proof that intersection emptiness is
undecidable for context free languages, but with some additional adaptations, neces-
sary as this problem is decidable for VPLs. In the classical proof, two languages L1
and L2 are constructed for a given Turing machine M such that words in L1 are lists
of any number of pairs of consecutive configurations of M stored in a palindromic

123

Theory of Computing Systems (2024) 68:322–379350

manner, and words in L2 contain copies of configurations stored in the same palin-
dromic manner, but offset by one lone configuration at either end. The combination
of these two structures when taking the intersection leads to words which record the
full recursive computations of M --- each pair adhering to the condition imposed by
L1 models a computation step, while each “offset pair” in L2 copies the result over to
the next pair for L1.

For our purposes, simulating computation histories in thismanner is ideal, aswe can
use the presence of word equations to extract the factor corresponding to the original
input word, and thus express the language accepted by M . Doing this for all Turing
machines then expresses the class of recursively enumerable languages. However,
when moving from context free languages to VPLs, there are severe restrictions on
the use of the stack memory which lead to problems in producing the “classical”
versions of the languages L1 and L2. For example, roughly speaking, the pairs in
L1 and L2 must be for configurations encoded as words of the same length, and the
required offset in L2 cannot be achieved in the same way and must be handled instead
by the word equations.

As a result the proof becomes a littlemore technical. Themain intuition nevertheless
remains straightforward: the combination of the (very limited) unbounded memory
and finite state control is still powerful enough to model small, local changes in copies
of a word, so L1-like languages can still be expressed as VPLs. Unlike context free
languages, VPLs do not allow for the kind of information loss induced by copying only
part of a word, which means that the “offset copy language” L2 cannot be expressed
as a VPL. Hence the classical proof of intersection emptiness being undecidable for
context free languages fails for VPLs. Yet, combining VPLs with word equations
reintroduces the possibility of this information loss and allows us, with some care,
to again express languages like L2, which we can then again combine with L1-like
languages to model recursive computations.

Theorem 5 The class of languagesL(WE+VPL) expressible by word equations with
VPL constraints is exactly the class RE of recursively enumerable languages.

Proof Let L ⊆ �∗ be a recursively enumerable language. Then there exists a 1-Tape
deterministic Turing machine M with input alphabet � and states Q accepting L such
that the following all hold:

• M has a semi-infinite tape which is bounded to the left.
• Q contains a single halting (accepting) state q f and a single initial state q0.
• The tape alphabet � includes all symbols from � as well as a “blank” symbol B
and a further symbol $ which shall be used as a delimiter signalling the end of the
tape on the left. Moreover, |�| = O(|�|).

• In the initial configuration, M is in state q0, the tape-head scans the leftmost tape
cell containing the delimiter $, and the input word is written immediately to the
right of $ and all remaining tape cells are blank.

• The delimiter $ cannot be modified, and $ cannot be written on any other cell of
the tape, than the leftmost one (i.e., at any point in the computation, M writes $ if
and only if it has just read the cell that already contains $).

123

Theory of Computing Systems (2024) 68:322–379 351

• M accepts the input word or goes in an infinite loop. Moreover, M accepts only
after making at least one step, and in the last (i.e., accepting) configuration the
tape-head scans the leftmost blank cell of the tape, and the state of M is q f .

• The transition function of M is δ : Q×� → Q×(�\{B})×{R, L} (where R and
L are symbols denoting a left and, respectively, right movement of the tape-head
of M) and δ respects the restrictions imposed above.

We shall write the configurations of M as words of the form u(q, a)vBt , where
a ∈ �, uv ∈ $(� \ {B})∗ such that uavBω is the current content of the tape of the
machine (where Bω means a right-infinite string containing only blanks), q is the
current state of the machine, the tape-head scans the cell containing a, and t ≥ 1.
Note that uavBt is a prefix of the content of the tape, read left to right, including one
or more B symbols. We shall use two distinct letters q1, q2 to encode the states. In
particular, we associate each q ∈ Q with a unique number i ∈ [1, |Q|] and encode q
as qi1q

|Q|−i
2 . The letters q1, q2 and a ∈ � will be part of the call alphabet of our VPLs

in the rest of the proof. For a state q represented as qi1q
|Q|−i
2 , we shall encode the pair

(q, a) as qi1q
|Q|−i
2 a, and we shall use (q, a) as a shorthand for this encoding where

convenient. Note that, importantly, there is more than one representation of the same
configuration of the machine M .

Now, given two words C1 and C2 describing configurations of M , we say that
there is a transition from C1 to C2, denoted C1 � C2, if C2 is a string describing
the configuration in which M transitions from the configuration described by C1 and,
moreover, |C1| = |C2|.

If C describes a configuration of M reached after a finite number k ≥ 1 of steps
by M on the input w, then there exists a sequence of words C0, . . . ,Ck describing
configurations of M such that C0 describes the initial configuration of M for the input
w and C0 � C1 � . . . � Ck = C (meaning in particular that |Ci | = |C j | for all
i, j ∈ {0, . . . , k}, as well): we simply need to choose a representation C0 of the initial
configuration which already contains all the blanks which will be scanned by the
tape-head during the first k computation steps of M on w. A direct consequence of
this is that an accepting computation of M on a word w can always be described by
a sequence C0 � C1 � . . . � Ck of words of equal length encoding the successive
configurations.

We now define a visibly pushdown alphabet �̃ = (�c,�i ,�r) of pairwise-disjoint
alphabets, which stand for the call, internal and return alphabets, respectively, for the
VPAswhichwewill construct from now on. Let�c = �∪{#,@, q1, q2}∪{a | a ∈ �}
and �r = {a′ | a ∈ �c}; that is, �r consists in copies of the letters of the alphabet
�c. Finally, �i = {�}. Let f : �∗

c → �∗
r be the antimorphism defined by f (a) = a′

for all a ∈ �c.
Next, let L1 = {@C1#C2# · · · #Ck#�#′C ′

k#
′ · · · #′C ′

1@
′} where:

• For i ≤ k − 1, Ci is a configuration of M and C ′
i = f (Di), where Ci � Di . In

other words, C ′
i is the image under f of the string describing the configuration

which follows the configuration described by Ci in a computation of M .
• Ck describes a final configuration of M , and we have that C ′

k = f (Ck).

123

Theory of Computing Systems (2024) 68:322–379352

We can show that L1 is accepted by a nondeterministic VPA E . This VPA functions
according to the following algorithm. We shall represent the contents of the stack of
E as a word with the rightmost symbol corresponding to the topmost symbol in the
stack.

1. In the first move, E attempts to read @ and writes @′ on the stack.
2. E then attempts to read a word of the form C1#C2# . . .Ck−1#, k ≥ 1 where each

Ci is a valid representation of a configuration, and while doing so computes the
configurations Di and writes D′

1#
′D′

2#
′ . . . #′D′

k−1#
′ on the stack (further details

on how this is achieved are given below).
3. At some point, after reading a #, E guesses that the next configuration is a final

one and attempts to read a valid representation of a final configurationCk followed
by another #. While doing so, it also writes C ′

k#
′ to the stack.

4. Then E attempts to read�, while not altering the stack contents. It then enters a new
phase where it checks whether f (D1# · · · Dk#) = #′C ′

k#
′ · · · #′C ′

1 by iteratively
popping a symbol from the top of the stack if and only if it matches the current
symbol read on the input tape. E accepts the input if, when the input tape was
completely read, the stack is empty (this can be checked using the fact that the last
symbol popped must be @′).

At any point if E does not successfully read symbols it expects, then it enters a rejecting
state. Since the set of representations of configurations and the set of representations
of final configurations are both easily described as regular expressions, this is easily
handled by the finite state control.

Clearly E only pushes to the stack while reading symbols from �c, only pops
symbols from the stackwhile reading symbols from�r , and leaves the stackunchanged
while reading symbols from �i , so it is a visibly pushdown automaton. What remains
is to describe how E writes D′

i to the stack when reading Ci for 1 ≤ i < k. This
is possible primarily due to the fact that Ci and Di have the same length, and differ
only by a “short” factor which can be recorded/predicted in the finite state control.
Specifically, it can be achieved as follows:

• After reading a #, if E does not guess that the next configuration is final, it non-
deterministically guesses a transition thatM willmakeswhile in this configuration,
and keeps track of this choice in the state.

• If the respective transition is δ(q, a) = (q1, b, L), then Ci = u(q, a)vBt where
u
= ε. In this case, E begins reading from left to right the symbols d ∈ � \ {B}
of Ci and pushes the corresponding primed version directly onto the stack, until
it non-deterministically decides that it has reached the last symbol c of u. It then
reads c and pushes (q1, c)′ onto the stack. E then tries to read (q, a), pushes b′
onto the stack, and continues reading the symbols d of Ci and pushing the primed
versions onto the stack, until it reaches the next #.

• If instead the respective transition is δ(q, a) = (q1, b, R), then E attempts to read
the symbols d ofCi and push their primed versions onto the stack, until it reads the
symbol (q, a). It then pushes b′ onto the stack. It then attempts to read a symbol d
from �, and push (q1, d)′ onto the stack. Finally E continues reading the symbols
of Ci and pushing the primed versions onto the stack, until the next #.

123

Theory of Computing Systems (2024) 68:322–379 353

As before, at any point where E reads a symbol which it does not expect according to
the above process, it simply enters a rejecting state and rejects the input word. Clearly,
by construction, E accepts exactly L1. Further, the language L2 = {z� f (z) | z ∈ �c}
is a typical example of a VPL with alphabet �̃: we simply push the symbols before �
to the stack and then pop them after reading � whilst checking that for each one the
corresponding copy is read in the input. Furthermore, it is immediate that all regular
languages can be accepted by VPAs.

So, we define the following formula ϕ with variables x, y, z, u, v, s1, s2:

x ∈ �∗

∧ s1
.= y�#′u ∧ s1 ∈ L2

∧ v ∈ {B}+
∧ z ∈ (�r \ {#′})∗
∧ s2

.= @(q0, $)xv#y�#′z#′u@′ ∧ s2 ∈ L1.

It remains to show that the language expressed by x is L . From s2
.=

@(q0, $)xv#y�#′z#′u@′ ∧ s2 ∈ L1 we get that

@(q0, $)xv#y = @C1#C2#...#Ck#

and
#′z#′u@′ = #′C ′

k#
′....#′C ′

1@
′

for some configurations C1, . . . ,Ck where Ck is final, C ′
k = f (Ck) and C ′

i = f (Di)

with Ci � Di for 1 ≤ i < k. Moreover, from s1 ∈ L2, x ∈ �∗ and v ∈ {B}+, we
can infer that C1 = (q0, $)x Bt for some t ≥ 1, so C1 must be an initial configuration
of M where x corresponds precisely to the input word. We can also infer that y =
C2# · · ·Ck#. where C2, . . . ,Ck are valid representations of configurations. From z ∈
(�r\{#′})∗ we can also infer that z = C ′

k and u = C ′
k−1#

′ · · · #′C ′
1.

Now, from y�#′u ∈ L2, we get that C ′
i (= f (Di)) = f (Ci+1), for 1 ≤ i < k.

Since f is clearly injective, this implies Di = Ci+1 and thus that Ci � Ci+1 for
1 ≤ i < k. Therefore, C1 � . . . � Ck is an accepting computation of M , so w ∈ L .
Altogether, we see that for any satisfying assignment to ϕ, the value of x is in L .
Moreover, it is straightforward to see that the converse also holds: if w ∈ L , then
there exists a sequence C1 � C2 � . . . � Ck of words representing configurations
of M such that C0 describes the initial configuration of M for the input w and Ck

describes a final configuration. With this in mind, a satisfying assignment can easily
be derived from x = w, v = B|C1|−|w|−1, y = C2# · · ·Ck#, z = f (Ck), and u =
f (Ck)#′ f (Ck−1) · · · #′ f (C2). Our claim now follows, and we have shown that any
recursively enumerable language can be expressed in WE+VPL. ��
Corollary 6 Satisfiability forWE+VPL is undecidable.Moreover, given a singleword
equation E, and for each variable x occurring in E a single visibly pushdown language
Lx , deciding whether E has a solution h satisfying h(x) ∈ Lx for all variables x is
also undecidable.

123

Theory of Computing Systems (2024) 68:322–379354

Remark 6 It is worth pointing out that the formula ϕ in the proof of Theorem 5 only
uses word equations in a very restricted way: to introduce new variables expressing
concatenations of previous variables and constants. Thus, expressibility of RE lan-
guages and all the consequences regarding negative decidability properties can be
inferred for a much weaker set of formulas which only allow conjunctions of atoms
of the form T ∈ L where T is a concatenation of variables and constants and L is a
VPL. Such a set of formulas can be seen as a generalisation of intersection.

Weconclude this section by considering the decision problemofwhether a language
expressed in one logic is expressible in another. In caseswhere thefirst logic expresses a
subclass of languages expressed by the second, this problem is clearly trivial. However
there are clear practical advantages to being able to solve the problem in the other
direction: when asking whether a language (or more generally, a property on words)
expressed by a formula from a more general logic can be rewritten in simpler form in
a more restrictive logic without altering the language or property itself. Unfortunately,
we are able to show that in several cases this is undecidable. We define the decision
problem formally as follows.

Definition 11 (Simplification Problem) Given logical theories T1,T2, such that
L(T1) ⊃ L(T2), and a language L expressible inT1 (given by a formula and variable),
is L expressible in T2?

In the case that T1 = WE+VPL (or any more general logic), Theorem 3 allows
us to directly apply Rice’s theorem.

Corollary 7 Let T2 ∈ {WE+LEN+REG,WE+LEN,WE+REG,WE} (or any
other logic for which the expressible languages are a strict subset of RE). Then the
Simplification Problem for WE+VPL and T2 is undecidable.

Using Greibach’s theorem, below, we are also able to show undecidability in the
case of WE+LEN+REG and WE+REG. Note that due to Theorem 3, we cannot
apply Rice’s theorem in this case.

Theorem 8 (Greibach’s Theorem [29]) Let C be a class of formal languages over an
alphabet � ∪{#} such that each language in C has some associated finite description.
Suppose P ⊂ C such that all the following hold:

1. C and P both contain all regular languages over � ∪ {#},
2. P is closed under quotient by a single letter,
3. Given (descriptions of) L1, L2 ∈ C descriptions of L1 ∪ L2, L1R and RL1 can

be computed for any regular language R ∈ C,
4. It is undecidable whether, given L ∈ C, L = �∗.
Then the problemof determining, for a language L ∈ C, whether L ∈ P is undecidable.

Theorem 9 There is a constant c such that for |�| > c, the Simplification Problem
forWE+LEN+REG and WE+REG is undecidable.

Proof Note that in order to apply Greibach’s theorem, we need a variant of the univer-
sality problem to be undecidable which refers to a sub-alphabet, rather than the whole
alphabet. Thus we define the subset-universality problem as follows:

123

Theory of Computing Systems (2024) 68:322–379 355

Definition 12 Let |�| ≥ 2. Let S ⊂ �. We define the S-universality problem for a
logical theory T as follows: given a formula ψ ∈ T, and a variable x occurring in ψ ,
is the language expressed by x in ψ exactly S∗?

We have the following claim.

Claim 8 There is a constant c such that for S ⊂ � with |S| ≥ c, the S-universality
problem is undecidable for WE+REG.

Proof In [25], the authors show that the “standard” universality problem is undecidable
forWE for sufficiently large alphabets� by constructing, for any 2-counter automaton
M , a WE formula ψM with variable x such that the language expressed by x contains
words over� which are not valid computation histories forM (under some appropriate
encoding). In [25], the construction actually uses an unbounded alphabet in general,
including symbols for each state in a given two-counter automaton. However, the
encoding is easily altered to rely only on a finite alphabet, e.g. by numbering the states
and encoding each state in unary instead. We expect that a two letter alphabet is in
general sufficient, but we do not include a full proof of that in the present work, thus we
instead use an abstract constant c for the number of letters required for this encoding.

Now, if S ⊂ � has enough letters for the encodingof computation histories, defining
ψ ′
M = ψM ∧ x ∈ S∗, we are able to derive an equivalent proof of undecidability

for the S-universality problem. Clearly ψ ′
M is a WE+REG-formula, so the claim

holds. ��

It remains to show that the classes C = L(WE+LEN+REG) and P =
L(WE+REG) satisfy the conditions forGreibach’s theorem to apply.Note thatP ⊂ C
follows fromTheorem4. It is trivial that bothC andP contain all regular languages. For
a regular language R, it is expressed by x in the formula x ∈ R which belongs to both
logics. HenceCondition 1 holds. Let L ∈ P be expressed by x in aWE+REG formula
ψ . Let a ∈ � and letψ ′ = ψ∧ay

.= x where y is a newvariable not already inψ . Then
clearly y expresses the quotient of L by a in ψ ′, so Condition 2 holds. Let L1, L2 ∈ C
be languages expressed by variables x1, x2 in WE+LEN+REG-formulas ψ1, ψ2
respectively, and R be a regular language. W.l.o.g. we may assume that ψ1, ψ2 do
not share variables. Let x, y be variables not already occurring in ψ1 or ψ2. Then
L1 ∪ L2 is expressed by the variable x in the formula ψ1 ∧ ψ2 ∧ (x

.= x1 ∨ x
.= x2).

L1R is expressed by x in the formula ψ1 ∧ x
.= x1y ∧ y ∈ R and RL1 is expressed

by x in the formula ψ1 ∧ x
.= yx1 ∧ y ∈ R. Since all the above formulas belong

to WE+LEN+REG, Condition 3 holds. Finally, Condition 4 holds directly due to
Claim 8, since if |�| = S ∪ {#} with |�| > c, then S ⊂ � with |S| ≥ c. Thus, the
theorem holds as a consequence of Greibach’s theorem. ��

We conclude this section by noting some interesting open cases for the Simplifica-
tion Problem.
Open Problem 1 Is the Simplification Problem decidable for any of the following
pairs of logics?

123

Theory of Computing Systems (2024) 68:322–379356

T1 T2

WE+LEN WE
WE+REG WE
WE+REG WE+LEN

WE+LEN+REG WE
WE+LEN+REG WE+LEN

4 Regular Languages (In)Expressible byWord Equations

In this section we turn our attention to WE, and consider the relationship between
L(WE) and the class of regular languages. Our first result is rather surprising, and can
be seen as evidence of the complexity of WE.

Theorem 10 Given a WE-formula ψ and variable x, it is undecidable whether the
language expressed by x in ψ is regular.

Proof We shall prove the statement by giving a reduction from the problem of deter-
mining whether or not the set of words belonging to 0+ accepted by a 2-Counter
Machine (2CM) is finite. Since we shall use word equations to model computations
of 2CMs, our proof has a similar flavour to the one in [25], but since our aims and
setting are different, the details and our construction are also necessarily different.

A 2CM M is a deterministic finite state machine with 3 semi-infinite storage tapes,
each with a leftmost cell but no rightmost cell. One is the input tape, on which the
input is initially placed. There is a read-only head which can move along the input
tape in both directions but cannot move beyond the input and cannot overwrite the
input. The other two tapes represent counters. They each store a non-negative integer
represented by the position of a head which can move to the left or right. If the head
is in the leftmost position, the number represented is 0, and increments of one are
achieved by moving the head one position to the right. We assume the ends of the
tapes (on the left) are marked by �. We assume the end of the input is indicated by a
blank symbol �.

M can test if each counter is empty but cannot compare directly the stored numbers
for equality. It accepts a word if the computation with that word as input terminates
in an accepting state and such that all tape heads (input and both counters) are at the
leftmost position. Formally, a 2CM is a tuple (Q,�, δ, q0, F) where:

1. Q is a finite set of states, q0 ∈ Q is an initial state and F ⊆ Q is a set of final or
accepting states.

2. � is a finite input tape alphabet.
3. δ : Q × � × {T , F} × {T , F} → Q × {1, 2, 3} × {L, R} is a transition function.
The interpretation of the transition function is as follows: δ(q, a, Z1, Z2) = (q ′, i, D)

if before the transition M is in state q and currently reads letter a on the input tape, and
Z1 and Z2 are T if the first and second counters are 0 respectively and F otherwise,
and after the transition M is in state q ′, D indicates the direction in which one of the
tape heads moves (L for left and R for right), and i determines which tape head moves

123

Theory of Computing Systems (2024) 68:322–379 357

(1 for input head and 2 and 3 for the first and second counters respectively). Since it
is possible to test if the counters are 0, we can assume there are not transitions which
try to decrease the counters when they would become negative as a result. We assume
that if the symbol � is read by the input tapehead (so, if the tapehead tries to move
beyond the limit of the input tape), that it moves to the right in the next transition and
does not change the two counters. Likewise if the input tapehead reads �, it moves
immediately to the left and does not change the counters.

We represent states by encoding them as consecutive non-negative integers
{1, 2, . . . , |Q|} over a unary alphabet {q}. W.l.o.g. we may assume that the initial state
q0 is represented by q. To keep the notation concise, we shall not distinguish between
a state and its representation, so we shall assume Q = {qi | i ∈ {1, 2, . . . , |Q|}. We
may also assume w.l.o.g. that the initial state is not accepting, and thus that a 2CM
will always perform at least one computation step.

We can then represent a configuration of a 2CM at any point in a computation
as a word belonging to Q�∗�a+b+c+ (assuming b, c are new letters such that
{q},�, {b, c} are pairwise disjoint). We take a ∈ � for a technical reason which
becomes clear later in the proof. The prefix from Q records the current state, the fac-
tor from �∗ records the contents of the input tape (so, the input), and the a’s b’s and
c’s denote in unary notation the position of the input tape head and the values of the
two counters. For convenience, we add one to all these values so that the sequences
of a’s, b’s and c’s are all non-empty. An initial configuration on input w ∈ �∗ has the
form qw�abc, and a final configuration belongs to Fw�abc.

A valid computation history of a 2CM M on input word w is a finite word C =
C1C2C3 . . .Cn such that each Ci is a configuration, C1 is the initial configuration
for the input w, Cn is a final configuration, and such that each successive pair of
configurations Ci ,Ci+1 respects the transition function δ of M .

It is well-known that 2CMs can simulate the computations of Turing Machines,
and therefore that they accept the class of recursively enumerable languages. Hence, a
straightforward application of Rice’s theorem yields that it is undecidable whether the
language accepted by a 2CM contains infinitely many words from {0}+ or not, where
0 ∈ �. Moreover, since 2CMs are deterministic, each word accepted by a given 2CM
has exactly one valid computation history. So, it follows that the set of words from
{0}+ accepted by a 2CM M is finite if and only if the set SM = {C | C is a valid
computation history for M on some input word w ∈ {0}+} is finite.

Moreover, the set SM is finite if and only if it is regular. Indeed, if it is finite, it
is trivially regular. For the converse, suppose for contradiction that it is both infinite
and regular. By our assumption that each 2CM performs at least one computation step
on any input, all elements of SM will have a prefix C0C1 consisting of at least two
configurations. Moreover, since SM is infinite, there are infinitely many words in 0+
accepted, and thus the configurations C0,C1, which both contain the input word, can
be arbitrarily long. However, since SM is regular, it is recognised by some DFA with
n states. Now, for an input word from 0+ of length greater than n, we must be able
to “pump” a non-empty factor of the occurrence of the input word in C0, without
changing the occurrence in C1. This yields a word not adhering to the syntax of SM .
Thus SM cannot be regular.

123

Theory of Computing Systems (2024) 68:322–379358

Next, we note that SM is regular if and only if its complement is regular. In what
remains, we shall construct, for any given 2CM M , a WE-formula ψ containing a
variable x such that the language expressed by x in ψ is exactly the complement of
SM . This construction thus facilitates a reduction from the finiteness problemdescribed
at the beginning of the proof to the problem of whether or not the language expressed
by a variable in a WE-formula is regular.

Let � = {q, b, c, 0}. For technical reasons which shall become clear later, we
shall take a = 0. That is, we shall use the same letter for the input words we are
interested in and for the counter for the position of the input tapehead. We shall use
a and 0 interchangeably, in order to highlight the role the letter is intended to play.
Let us fix a 2CM M . We construct the formula ψ as the disjunction of 4 subformulas,
each of which accounts for a particular way in which a word substituted for x could
violate the definition of a valid computation history of M on an input from 0+. Let
x, y1, y2, y3, y4, z1, z2, z3, z4, u, u′, v, v′, v′′, w,w′ be variables.

Throughout the construction we shall repeatedly use the well-known fact, estab-
lished in Lemma 1, that for two words w1, w2, we have w1w2 = w2w1 if and only if
they are repetitions of the same word, that is there exists a word w3 and p1, p2 ∈ N0
such that w1 = w

p1
3 and w2 = w

p2
3 .

Now, ψ is the formula
ψ1 ∨ ψ2 ∨ ψ3 ∨ ψ4

where ψ1, ψ2, ψ3, ψ4 are defined below. The subformula ψ1 will be satisfiable for a
given value of x if x does not belong to q0+�a+b+c+(Q0+�a+b+c+)∗, and thus that
it is not a sequence of configurations of M starting in an initial state. The subformulas
ψ2 and ψ3 will cover the cases when x does not start with an initial configuration
or end with a final configuration respectively. Finally ψ4 will cover the case that two
consecutive configurations in x do not respect the transition relation δ.

Let P be the set of pairs of letters which may not occur consecutively in
(Q0+�a+b+c+)+. That is, P = �2\{00, 0�,�0, 0b, bb, bc, cc, q0, qq, cq}. Note
that P is finite. Note also that x is not in the language q0+�a+b+c+(Q0+a+b+c+)∗
if and only if one of the following hold:

• it is empty, or
• it contains consecutive letters included in P , or
• it contains a factor of the form 0+�0+A for A
= b, or
• it starts with a letter other than q or
• it starts with more than one q, or
• it ends with a letter other than c, or
• it contains more than |Q| consecutive occurrences of q.

Thus the subformula ψ1 is given by:

x
.= ε

∨
∨

AB∈P

x
.= uABv

123

Theory of Computing Systems (2024) 68:322–379 359

∨
⎛

⎝
∨

A∈�\{b}
x

.= u0u′�0v′Av ∧ u′0 .= 0u′ ∧ v′0 .= 0v′
⎞

⎠

∨
∨

A∈�\{q}
x

.= Au

∨ x
.= qqu

∨
∨

A∈�\c
x

.= uA

∨ x
.= uq|Q|+1v.

Withψ2, we want to enforce that it is true only if x has a prefix other than the initial
configuration, namely qw�abc for some w ∈ 0+. We only need to cover cases when
ψ1 is not satisfied (sowemayassume that x belongs toq0+�a+b+c+(Q0+a+b+c+)∗.
Thus ψ2 is given as:

u0
.= 0u ∧

⎛

⎝
∨

A1A2A3A4
=�abc, A1
=0

x
.= quA1A2A3A4v

⎞

⎠ .

In the above formula, u must be the complete sequence of 0s occurring after q.
The cases when the next four letters after u are not �abc are then covered by the
disjunction. The subformula ψ3 can be constructed similarly as follows:

u0
.= 0u ∧

⎛

⎝
∨

A0A1A2A3A4
=0�abc

x
.= vA0A1A2A3A4 ∨

∨

q∈Q\F
x

.= vcqu�abc

⎞

⎠ .

The first of the two disjuncts inside the brackets covers all cases when x does not end
with a configuration of the form qi0∗�abc, or in other words, when all tape heads
have not returned to their leftmost positions. The second disjunct covers the cases
when tape heads are in their leftmost positions but the state is not final.

Finally we construct ψ4 as

∨

q,q ′∈Q
(x

.= uqy1�y2y3y4q
′z1�z2z3z4v

∧(v
.= ε ∨ v

.= qw) ∧ (u
.= ε ∨ u

.= w′c)
∧ y10

.= 0y1
∧ y2a

.= ay2
∧ y3b

.= by3
∧ y4c

.= cy4
∧ z10

.= 0z1

123

Theory of Computing Systems (2024) 68:322–379360

∧ z2a
.= az2

∧ z3b
.= bz3

∧ z4c
.= cz4

∧ (y10u
′ .= z1 ∨ y1

.= z10u
′ ∨

y2aau
′ .= z2 ∨ y2

.= z2aau
′ ∨

y3bbu
′ .= z3 ∨ y3

.= z3bbu
′ ∨

y4ccu
′ .= z4 ∨ y4

.= z4ccu
′ ∨

∨

ψ ′∈D
ψ ′))

where D is a set of formulas describing transitions which are not possible in M , which
is again given below. The first 10 lines of ψ4 enforce that qy1y2y3y4 and q ′z1z2z3z4
are consecutive configurations in x and that q, q ′ represent states, while y1, z1 are
the parts containing 0’s, y2, z2 contain the a’s y3, z3 contain the b’s and y4z4 contain
the c’s. Specifically, assuming that ψ1, ψ2, ψ3 are not satisfied (and so x represents
a sequence of syntactically correct configurations), then for each consecutive pair of
configurationsCiCi+1 in x , there is an assignment for u, v, y1, y2, y3, y4, z1, z2, z3, z4
satisfying lines 1-10 such that each variable represents the appropriate part of one
of the configurations as described above. Moreover, any assignments not satisfying
ψ1, ψ2, ψ3 which satisfy lines 1-10 will adhere to this condition for some consecutive
configurations in x .

The 11th line accounts for when the input word is not correctly copied from the
previous configuration to the next. Specifically, assuming the previously described
parts of the formula are satisfied by some assignment, y1 and z1 must represent the
input word for two consecutive configurations Ci and Ci+1. We have already covered
any cases where the input word for some configuration does not belong to 0+ (namely
throughψ1), so we only need to cover the case that they have different lengths. Assum-
ing y1, z1 ∈ 0+, the subformula y10u′ .= z1 is satisfiable for some u′ if and only if
z1 is longer than y1. The case when z1 is shorter than y1 is handled symmetrically by
y1

.= z10u′.
Line 12 works similarly for the first “counter”, which represents the position of the

head on the input tape. This value (represented by the lengths of y2 and z2) can change
by zero or one between consecutive configurations in a valid computation history.
Thus we need to cover the cases when one of the counters changes length by at least
two. Under the assumption that y2, z2 ∈ a+, y2aau′ .= z2 is satisfiable if and only if
z2 has length at least two more than y2. The case that y2 has length at least two more
than z2 is handled symmetrically by y2

.= z2aau′. The same condition, that the length
cannot change by more than one, is imposed on the second two counters by lines 13
and 14, which work identically to line 12.

We conclude with the subformulas from D, which must be satisfiable when the
input is copied correctly, tapehead positions/counters do not move by more than one,
but the transition is still not valid. The first formula in D is the following, where
B2 = a, B3 = b, B4 = c, which covers the case that two tapeheads/counters move at

123

Theory of Computing Systems (2024) 68:322–379 361

the same time.

∨

i, j∈{2,3,4}∧i
= j

((yi Bi
.= zi ∨ yi

.= zi Bi) ∧ (y j B j
.= z j ∨ y j

.= z j B j))

Next, D contains the following formulas which cover the cases when the input
tapehead reads � or �. Note that � is read when the input tapehead position is 0, so
when y2 = a, and � is read when the input tapehead position is |w| where w is the
input word, so when |y1| = |y2|. Since we can’t directly compare the lengths of two
variables, this is whywe choose a = 0, so comparing the lengths of y1 and y2 becomes
the same as checking their direct equality.

y2
.= a ∧ (z2

.= a ∨ y3
.= z3b ∨ y3b

.= z3 ∨ y4
.= z4c ∨ y4c

.= z4) ∨
y2

.= y1 ∧ (z2
.= y2a ∨ z2

.= y2 ∨ y3
.= z3b ∨ y3b

.= z3 ∨ y4
.= z4c ∨ y4c

.= z4)

The first line above accounts for when the tapehead reads � (so is at the leftmost part
of the input tape) and either one of the two counters changes in the next configuration,
or the tapehead position does not increase in the next configuration. The casewhere the
tapehead position reduces further correspond to when y2 = ε, and are already handled
by ψ1. The second line accounts for when the tapehead reads � (so is at the rightmost
part of the input) and either the tapehead position remains the same, increases, or one
of the two counters changes in the next configuration.

Finally, for every syntactically correct transition not adhering to δ (so every tran-
sition having the correct form but not allowed in the specific 2CM M), D contains
a formula accounting for the case that this transition takes place in the computation
history. Due to previous subformulas we only need to cover transitions where the input
symbol is a 0 and where the states are q, q ′ respectively. Suppose Z1, Z2 ∈ {T , F},
D ∈ {L, R}, i ∈ {1, 2, 3} and such that δ(q, 0, Z1, Z2)
= (q ′, i, D). Then D will
include a formula ψ ′ which is a conjunction of the following:

• if Z1 = T , then y3
.= b and if Z2 = F then y3

.= bbv′,
• if Z2 = T , then y4

.= c and if Z3 = F then y4
.= ccv′′,

• if D = R, then zi+1
.= yi+1Ai , and if D = L then zi+1Ai

.= yi+1,

where A1 = a, A2 = b, A3 = c. For example, if δ(q1, 0, T , F)
= (q2, 1, R), D
would include the subformula

y3
.= b ∧ y4

.= ccv′′ ∧ z2
.= y2a.

By similar arguments as above ψ ′ is satisfiable whenever there are consec-
utive configurations in x which are related according to the (illegal) transition
δ(q1, 0, Z1, Z2) = (q2, i, D).

All together, we have shown a construction for a formula ψ which can be satisfied
for a particular value of x if and only if x is not a valid computation history for M
on input word of the form 0+. In other words, the language expressed by x in ψ is
exactly the complement of SM . Thus it is regular if and only if M accepts only finitely
many words from 0+. This completes the reduction and we conclude that the problem

123

Theory of Computing Systems (2024) 68:322–379362

of deciding whether a formula and variable from WE express a regular language is
undecidable as claimed. ��

One way of explaining Theorem 10 is that although we are checking for a “simple”
property, the (representations of the) objects we are looking at are complicated. An
analogy canbedrawne.g. to checking simple or trivial properties of languages accepted
by Turing machines.

Just as interesting, if not more so, is the converse problem. Unfortunately, we leave
this problem open, however the rest of this section is devoted to providing some further
insights.
Open Problem 2 Is it decidable whether a regular language is expressible by word
equations?

In this case, we are rather asking whether relatively simple objects possess a partic-
ular property. Answering this question in either the positive or negative would provide
some insight as to whether it is the class of languages L(WE) which itself contains
inherent computational complexity, or whether that complexity rather arises more
from the way in which the languages are represented.

Some intuition for Open Problem 2 can be gained by looking at some examples
which are or are not expressible. It is trivial that ∅ and {a} for each a ∈ � are
expressible in WE. All regular languages can be obtained from these languages by
taking closure under union, concatenation and Kleene star. It is also straightforward to
see thatL(WE) is closed under both concatenation and union. However since there are
regular languages which are not expressible (see e.g. Lemma 6), we may directly infer
that L(WE) is not closed under Kleene star. Nevertheless there are some examples of
languages L for which L∗ ∈ L(WE).

Proposition 11 Let w ∈ �+, and E ⊆ N. Let Y = {wi : i ∈ E}. Then the language
Y ∗ is expressible inWE.

Proof If |E | = 0, then Y ∗ = ∅∗ = {ε}, which is finite and thus expressible. So let us
assume hereafter that |E | ≥ 1. We shall make use of the following well-known result:

Theorem 12 (Weakened Schur’s Theorem) Let {m1, ...,mt } ⊂ N be relatively prime.
Then for every sufficiently large n ∈ N, n can be written as a linear combination of
the numbers m1, ...,mt . with non-negative integer coefficients.

Let K = gcd(E). Note that K cannot exceed any i ∈ E . Then for each i ∈ E, we
can write i = ı̃ K for some ı̃ ∈ N. It is clear that the set Ẽ = {ı̃ : i ∈ E} must then
be relatively prime. Let u = wK . Then for each i ∈ E , we have wi = wı̃ K = uı̃ . So
Y = {uı̃ : ı̃ ∈ Ẽ}.

Fix now some j̃ ∈ Ẽ . Let D be the set of divisors of j̃ which are greater than 1. D
must be finite. For every d ∈ D, we must be able to find some j̃d ∈ Ẽ which does not
have d as a divisor. (If we couldn’t find some j̃d , it would contradict the fact that Ẽ is
relatively prime). Then introduce the set J = {j̃} ∪ {j̃d : d ∈ D}. J is then a finite
subset of Ẽ which is relatively prime. (Indeed, its gcd must be a divisor of j̃ , but our
construction rules out every divisor of j̃ which is greater than 1).

We now apply Theorem 12 to the setJ . It tells us that there exists N ∈ N, such that
every integer n > N can be written as a (finite) linear combination n = ∑

ı̃∈J αı̃ ı̃,

123

Theory of Computing Systems (2024) 68:322–379 363

with each coefficient αı̃ ∈ N0. Then for every n > N , we can write the word un in
the (finite) form

un = u(
∑

ı̃∈J αı̃ ı̃) =
∏

ı̃∈J
(uı̃)αı̃ .

Each of the (finitely many) uı̃ in the product here is a member of Y . Therefore, for
every n > N , un ∈ Y ∗.

Thus Y ∗ can be obtained from {u}∗ by the removal of only finitely many words
v1, ...vk . Therefore, by Lemma 1, we can express Y ∗ via the variable y in the WE-
formula:

uy
.= yu ∧ y

.= zm ∧
∧

r∈{1,...,k}
¬(y

.= vr)

where q is the primitive root of u, and u = qm . Specifically, it follows from Lemma 1
that uy

.= yu implies that u, y share a primitive root, which must be q, so y ∈ {q}∗.
The equation y

.= zm similarly implies z has primitive root q, and thus that y ∈
{qm}∗ = {u}∗. It is clear that any y ∈ {u}∗ can be part of a satisfying assignment, and
the final conjunct handles the “removal” of the words v1, ..., vk . ��

On the other hand, it is shown in [32] that if � ⊃ {a, b}, then {a, b}∗ is not
expressible in WE. As we shall later see, similar arguments can be made to show that
S∗ is often not expressible in WE when S contains two words with distinct primitive
roots. We can partition the regular languages into two subclasses based on whether or
not they can be generated by a regular expression which only applies Kleene star to
subexpressions matching the form given in Proposition 11. It follows from closure of
L(WE) under union and concatenation that those which can are expressible in WE.
In what follows, we focus on showing inexpressibility for those which cannot.

As in the previous section, we shall make use of the framework from [32] to show
inexpressibility. This generally involves two distinct challenges: firstly setting up the
conditions to allow a swap of factors to take place, and secondly choosing an appro-
priate factor to swap. The second step is trivial in the case of thin languages, for
which there is a factor not occurring in any word in the language. We therefore handle
thin languages first, where we are able to characterise those regular languages which
are/are not expressible in WE, and look at languages which are dense (i.e. not thin) in
a subsequent section.

Definition 13 (Thin and Dense Languages) A forbidden factor of X ⊆ �∗ is a word
z ∈ �∗ which is not a factor of anyw ∈ X. X is called thin if it has a forbidden factor.
X is called dense if it has no forbidden factor (i.e., if it is not thin).

4.1 (In)Expressibility of Thin Regular Languages

In this section, we provide in Theorem 14 a characterisation of thin regular languages
expressible in WE. Since thin languages have a forbidden factor, Step 4 in the general
approach to showing inexpressibility outlined in Section 2.2 becomes trivial, and we
therefore focusmore on steps 2 and 3.Webegin by introducing a family of factorisation
schemes designed for following step 2 in a general setting. The main aim with these
factorisation schemes is to be able to guarantee a large number of distinct F-factors

123

Theory of Computing Systems (2024) 68:322–379364

flexibly, across a large class of languages. To achieve this, the factorisation schemes
are parametrised by a word u, and informally can be thought of as “splitting” a word
at every point where an occurrence of u occurs as a factor. For instance, if u = aa,
then the corresponding factorisations of the words abaaabbaab, a5 and bbbbbba are
(ab, a, aabb, aab), (a, a, a, aa), and (bbbbbba) respectively. Formally, we define
these factorisation schemes as follows.

Definition 14 For u ∈ �+ and w ∈ �∗, let Iu,w = {i | 1 < i ≤ |w| − |u| + 1 |
w[i : i + |u|] = u}. Let Fu be the factorisation scheme which maps a word w to the
factorisation (w[1 : i1], w[i1 : i2], . . . , w[ik : |w|+ 1]) where Iu,w = {i1, i2, . . . , ik}
with i1 < i2 < . . . < ik .

In other words, the start of w and the start of each occurrence of u in w, are exactly
the positions in w from which Fu-factors of w begin. Note that if w does not contain
the word u, or if u only occurs as a prefix ofw, then the Fu-factorisation ofw is simply
(w). Otherwise, every i j denotes a position in w at which an occurrence of u begins.

Lemma 10 For any u ∈ �+, Fu is synchronising.

Proof Let u ∈ �+. It is immediate from the definition thatFu is complete and uniquely
deciphering.We shall now show that Fu satisfies the synchronising condition for l = 2
and r = |u| + 1. Let us take l ′ = 1 ≤ l and r ′ = 1 ≤ r . Let x1, ..., xs and y1, ..., yk
be the Fu-factorisations of some arbitrary words x, y ∈ �∗, respectively, and let
U = y1 . . . y�′ and V = yk−r ′+1 . . . yk . Suppose that k > l + r = |u| + 3, and that
y occurs in x at position i . Note that this implies that y (and therefore also x) both
contain at least one occurrence of u. We now show that this choice of l ′, r ′ makes all
four criteria of the “synchronising condition" hold. Indeed,

• At the position |y1| in y, the Fu-factor y2 begins. Hence the factor u occurs in y in
its position |y1|. Hence the factor u occurs in x in its position i + |y1| = i + |u|.
Hence anFu-factor xp of x begins at position i+|U | of x . Similarly, at the position
|y|−|yk | in y, theFu-factor yk begins. Hence the factor u occurs in y at the position
|y|−|yk |.Hence the factor u occurs in x at the position i+|y|−|yk | = i+|y|−|V |.
Hence an Fu-factor xq of x begins at the position i + |y| − |V | of x .

• Since xp · · · xq−1 and y2 · · · yk−1 are factors starting and ending in the same posi-
tions in x , we necessarily have that xp · · · xq−1 = y2 · · · yk−1. Moreover, since
u occurs in y at position |y| − |yk |, and since yk is a suffix of y, we necessarily
have |yk | ≥ |u|. Thus, (since y is a factor of x) both x and y extend for at least
|u| letters after the ends of the factors xp · · · xq−1 and y2 · · · yk−1, respectively.
Hence the positions within xp · · · xq−1 and y2 · · · yk−1 corresponding to positions
in x and y where the factor u occurs will be identical. It follows that the sequences
of Fu-factors xp, ..., xq−1 and y2, ..., yk−1 = (yl ′+1, ..., yk−r ′) are also identical.

• Suppose for contradiction that the occurrence of U at position i in x covers more
than one Fu-factor of x . Then there is some “splitting point" of x properly within
the occurrence of U . Then the factor u begins in x somewhere properly within
the occurrence of U . But then the factor u must begin in y somewhere properly
between its positions 0 and |y1|. (y cannot end before this factor u completes, since
y contains a full occurrence of the factor u at its later position |y1|). So a “splitting

123

Theory of Computing Systems (2024) 68:322–379 365

point" exists in y somewhere properly between its positions 0 and |y1|. This is
a contradiction, as y did not get split at such a position. So by contradiction, the
occurrence of U at position i in x covers at most 1 = l − 1 Fu-factor of x .

• Suppose for contradiction that the occurrence of V at position i + |y| − |V | in x
covers more than |u| Fu-factors of x . Then there are more than |u| − 1 “splitting
points" of x which are properly within the occurrence of V . Now let ι be the
position in x of the leftmost “splitting point" in x which is properly within the
occurrence of V . Because of how the “splitting points" are chosen, the factor u
must begin in x at its position ι. But because there are so many “splitting points"
to the right of ι within the occurrence of V , this instance of the factor u must also
end before V does. Then there is an occurrence of the factor u properly contained
within the Fu-factor yk of y. This is a contradiction, and so our assumption must
have been incorrect: the occurrence of V at position i + |y| − |V | in x can cover
at most |u| = r − 1 Fu-factors of x .

The entire definition is satisfied, and so Fu-factorisation is synchronising. ��
An intuitive reason why Lemma 10 holds is that the “splitting points" in the Fu-

factorisation procedure are defined locally. Hence the “splitting points" --- and thus
the Fu-factors of a factor y of a word x will coincide after only a small (bounded by
|u|) number of letters (and therefore factors). The following example demonstrates
how we can use this family of synchronising F-factorisations in line with the general
approach from [32].

Example 2 Let us show that L = {ab, ba}∗ is inexpressible in WE. Suppose for
contradiction that L is expressed by a variable x in some word equation E. By Lemma
10, the factorisation scheme Faa is synchronising. We shall apply Lemma 5. Let c be
the constant referenced by the lemma. Then consider the word

w =
∏

j∈(1,...,c)

(
ba · (ab) j

)
∈ L.

Let h be a solution to E such that h(x) = w. Clearly, nFaa (w) = c + 1 > c, and so
by Lemma 5, there is at least one Faa-factor u of w which is unanchored in h. Thus,
for v = aaa, we also have w′ = hFaa

u→v(x) ∈ L. However aaa is a factor of w′, so
w′ /∈ L, a contradiction. The assumption that L was expressible in WE must have
been incorrect, so L is inexpressible inWE.

Notice in the previous example, that by carefully choosing the word u on which
the factorisation scheme Fu is based, we are able to produce a family of words w ∈ L
with arbitrarily many Fu factors. Since the language {ab, ba}∗ is thin, having e.g. aaa
as a forbidden factor, the rest of the proof then becomes straightforward.

In our next main result, Theorem 13, we generalise this reasoning to work for all
thin sets of the form Y ∗, and thus provide greater insight into when languages obtained
by an application of Kleene star are expressible in WE. Cases where Y contains only
repetitions of a single word w are covered already by Proposition 11. Thus we focus

123

Theory of Computing Systems (2024) 68:322–379366

on cases where Y contains words w1, w2 which do not share a primitive root. For the
more general case, we shall consider the Fwi

1
-factorisation of words

w =
∏

j∈J

wi
1(w2w1)

jw2w
i
1 ∈ L.

for some suitably chosen tuple J ⊂ N.

As we show in Lemma 11, (w1w2w1) is never a factor of wi
1 when w1, w2 don’t

share a primitive root. This allows us to keep track precisely of where the splitting
points occur, and thus see that as j grows, there must exist longer and longer Fwi

1
-

factors of w. It is this reasoning that will permit us to conclude that nF
wi
1
(w) > c for

whatever value of c arises from Lemma 5.

Lemma 11 Given words w1, w2 ∈ �+, either

(1) ∃u ∈ �+, ∃p1, p2 ∈ N such that w1 = u p1 and w2 = u p2 , (so w1, w2 share a
primitive root and thus commute), or

(2) w1w2w1 is not a factor of ui for all i ∈ N

Proof Let u be the primitive root ofw1.We shall assume (2) does not hold. In particular,
we let i ∈ N and assume that w1w2w1 is a factor of ui . Then there exists a prefix U
and a suffix V of ui such that

Uuw2uV = ui .

It follows that U = uru′ where u′ is a proper prefix of u and r ∈ N0. Let u′′ be the
corresponding suffix of u, so u = u′u′′. Cancelling ur from both sides yields that u′u
is a prefix of ui−r . Clearly, uu′ is also a prefix of ui−r and both have the same length,
we must have u′u = uu′. However since u is primitive, by Lemma 1, u′ = ε. Hence
U ∈ {u}∗. A symmetrical argument means that V ∈ {u}∗ also holds. By cancelling
the prefix Uu and suffix uV , we get that w2 ∈ {u}∗. Thus (1) holds. ��

Our next lemma provides the analysis of the Fwi
1
-factors occurring in the word

w = ∏
j∈J wi

1(w2w1)
jw2w

i
1 which will form the basis of what follows.

Lemma 12 Let w1, w2 ∈ �+ be words which do not commute. Let i ∈ N such
that |wi

1| > |w1w2w1|. Let J be a finite tuple of integers greater than 2, and let
w = ∏

j∈J wi
1(w2w1)

jw2w
i
1. Then there exist v, v′ ∈ �∗ such that:

• v is a prefix of w1w2, and
• v′ is a suffix of w2w1, and
• for each j ∈ J , j ≥ 2, wi

1v
′(w2w1)

j−2v is an Fwi
1
-factor of w, and

• all other Fwi
1
-factors of w have length at most |wi

1|.

Proof Let w1, w2, i, J , w be defined according to the lemma. Let F = Fwi
1
. For each

j ∈ J , consider the factors Wj = wi
1(w2w1)

jw2w
i
1 of w.

123

Theory of Computing Systems (2024) 68:322–379 367

Let v be the shortest prefix of w1w2 such that there is an occurrence of wi
1 starting

at position |Wj |−|w1w2w
i
1|+|v|+1 inWj . Let v′ be the shortest suffix ofw2w1 such

that there is an occurrence of wi
1 starting at position |w1w2| − |v′| + 1 in Wj . Notice

that v, v′ are well-defined because there are occurrences of wi
1 starting at positions 1

and |Wj | − |wi
1| + 1, and notice also that v, v′ will be the same for all j .

By Lemma 12, no occurrence of wi
1 can have w1w2w1 as a factor, so every occur-

rence of wi
1 inWj must start in a position no greater than |w2w1| ofWj , or no smaller

than |W |− |w1w2wi |+1 ifWj . It follows thatwi
1v

′(w2w1)
j−2v is a F-factor ofw for

all j . It also follows that all other F-factors are contained entirely within an occurrence
of wi

1 in w. Thus, all four conditions of the lemma are satisfied.

Armed with Lemma 12, we are now ready to prove our theorem regarding express-
ibility of thin languages Y ∗.

Theorem 13 Let Y ⊂ �+ such that Y ∗ is thin. Then Y ∗ is expressible in WE if and
only the words in Y are pairwise commutative.

Proof The “if” direction follows directly from Proposition 11. Thus we shall con-
centrate on the “only if” direction, for which we prove the contrapositive. To that
end, suppose that Y contains a pair of words w1, w2 which do not commute. Note
that w = ∏

j∈J wi
1(w2w1)

jw2w
i
1 belongs to Y

∗. Suppose for contradiction that Y ∗ is
expressed by a variable x in some word equation E .

Let i be the smallest integer such that |wi
1| ≥ |w1w2w1|. Let us take F to be the

Fwi
1
-factorisation of words from �∗. We have shown this F to be synchronising in

Lemma 10. Hence we can apply Lemma 5. Let c be the constant provided by this
lemma. Let J = (3, 4, . . . , c+ 3). Lemma 12 tells us that there exist w′, w′′ such that
for each j ∈ J , the word u j = wi

1w
′′(w2w1)

j−2w′ is an F-factor of w. Since the u j

all have different lengths, they are all distinct. There are c + 1 such factors u j , and
hence we must have nF

wi
1
(W) > c.

Recall that since W ∈ Y ∗ and Y ∗ is expressed by x in E , there is a solution h to E
satisfying h(x) = W . By Lemma 5, there is at least one u j which is unanchored w.r.t.
h. Since Y ∗ is thin, by definition, there exists v ∈ �∗, such that no word from Y ∗ has
v as a factor. However, by Lemma 5,w′ = hFu j→v(x) is also in the language expressed
by x in E , and so is in Y ∗. However w′ has v as a factor. This is a contradiction, and
hence our assumption that Y ∗ was expressible must have been wrong, and Y ∗ is indeed
inexpressible in WE.

Notice that, in the above theorem, there is no requirement on Y being finite. On
the other hand, Y ∗ being thin precludes the possibility that Y = �. In particular �∗
is an example of a WE-expressible language of the form Y ∗ where Y does contain a
pair of non-commuting words. Theorem 13 provides a full characterisation of when
the Kleene star of a set Y is expressible in WE in the case that Y ∗ is thin. We now
turn our attention to extending this result to all thin regular languages. To do so, it is
convenient to consider regular expressions. For the sake of clarity and completeness,
we recall the definition here.

123

Theory of Computing Systems (2024) 68:322–379368

Definition 15 (Regular Expressions) ∅, ε and every a ∈ � is a regular expression.
Moreover, for regular expressions e1, e2, each of the following is also a regular
expression:

• e1e2,
• e1|e2,
• (e1),
• e∗

1 .

For a regular expression e, we denote by L(e) the (regular) language generated by e.

Since regular expressions capture the regular languages directly as a result of their
closure properties, and since we also investigate the WE-expressible languages from
this perspective, it is convenient to use regular expressions in our later characterisation
ofwhen a thin regular language is expressible inWE (Theorem14). Todo so,we restrict
slightly the form of the regular expressions that we consider. We therefore provide the
notion of well-formed regular expressions below.

Definition 16 (Well-formed regular expressions) Let e be a regular expression. We say
that e is well-formed if one of the following two conditions holds:

• e = ∅ (and therefore L(e) = ∅), or
• e does not contain the symbol ∅.

Remark 7 Since we allow ε as a regular expression, it is easily shown that well-formed
regular expressions still generate the full class of regular languages.

Before proving Theorem 14, we need the following lemma.

Lemma 13 Let e be a well-formed regular expression. Then L(e) is thin if and only if,
for every subexpression Y ∗ of e, L(Y ∗) is thin.

Proof For the “if” direction, the contrapositive follows straightforwardly from the
definitions: if e is a well-formed regular expression with some subexpression Y ∗
where L(Y)∗ is not thin (and therefore dense), then every possible word can occur as
a factor of the subexpression Y ∗, and thus of a word in L(e). It follows that L(e) is
also dense.

Consider now the “only if” direction. In the degenerate case e = ∅, the statement
is trivial. For cases when e
= ∅, we proceed by induction. Suppose that, for every
subexpression Y ∗ L(Y)∗ is thin, and that for all subexpressions of e, the statement of
the lemma holds, and thus that the language of each subexpression is also thin. The
base cases are e = ε and e = a ∈ �. Clearly in these cases, L(e) is finite, and thus
thin. Otherwise, we have three cases as follows.

• Suppose that e = (e′)∗, for a well-formed regular expression e′. By our assump-
tions, we know that L(e′) is thin and moreover that L(e′)∗ is thin. Thus L(e) =
L((e′)∗) = L(e′)∗ is thin and the statement of the lemma holds.

• Suppose that e = e1|e2, forwell-formed regular expressions e1, e2. Byour assump-
tions, L(e1) and L(e2) are both thin. Thus, there exists u1 ∈ �∗ which is not a
factor of any word w ∈ L(e1), and u2 ∈ �∗ which is not a factor of any word
w ∈ L(e2). It follows that u1u2 is not a factor of any w ∈ L(e), so L(e) is thin
and the statement of the lemma holds.

123

Theory of Computing Systems (2024) 68:322–379 369

• Suppose that that e = e1e2, for regular expressions e1, e2. By our assumptions,
L(e1) and L(e2) are both thin, so there exists u1 ∈ �∗ which is not a factor of
any w ∈ L(e1), and u2 ∈ �∗ which is not a factor of any w ∈ L(e2). It follows
that u1u2 is not a factor of any w ∈ L(e), so L(e) is thin and the statement of the
lemma holds.

In all cases, if the statement of the lemma holds for subexpressions, it holds for the
whole expression too and by induction, it holds in general. ��

We are now able to give the characterisation of when a thin regular language is
expressible inWE. As one might expect, it involves incorporating our characterisation
for languages of the form Y ∗ into the structure of well-formed regular expressions.
Formally, the statement is given as follows.

Theorem 14 Let L ⊆ �∗ be regular and thin. Let e be a well-formed regular expres-
sion for L. Then L is expressible in WE if and only if, for every subexpression Y ∗ of
e, the words of L(Y) are pairwise commutative.

Proof We begin with the “if” direction. Let e be a well formed regular expression
and suppose that, for every subexpression Y ∗ of e, the words in L(Y) are pairwise
commutative. By Lemma 13, for every subexpression Y ∗ of e, L(Y)∗ is also thin.
Consequently, by Theorem 13, for every subexpression Y ∗ of e, (L(Y))∗ = L(Y ∗) is
expressible in WE. Now L(e) can be produced by applying the operations of concate-
nation and union to:

• the languages L(Y ∗) for subexpressions Y ∗ of e
• the languages ∅, {ε}, and {a} ⊆ �,

It is already shown in [32] that every finite language is expressible in WE, and that
the WE-expressible languages are closed under union and concatenation. We have
already concluded that L(Y ∗) for each subexpression Y ∗ is also expressible, therefore
L(e) = L is also expressible.

For the “only if” direction, we prove the contrapositive. The proof follows similar
lines to that of Theorem 13. Suppose that e is a well-formed regular expression gener-
ating a thin regular language L = L(e), and that there exists a subexpression Y ∗ of e,
and two words w1, w2 ∈ L(Y) which do not commute. Clearly, L must be nonempty,
since e is well-formed and contains symbols other than ∅. Let us now assume for
contradiction that L is expressible in WE. In particular, by Lemma 3, we may assume
that L is expressed by a variable x in a single word equation E .

Let i be the smallest integer such that |wi
1| ≥ |w1w2w1|. Let F = Fwi

1
and

recall from Lemma 10 that F is synchronising for some constants r , �. Let c be
the constant provided by Lemma 5, and let J = (3, 4, . . . , c + r + � + 3). Let
W = ∏

j∈J wi
1(w2w1)

jw2w
i
1. Then W ∈ L(Y ∗), and thus W is a factor of some

word in L . That is to say, there exists U , V ∈ �∗ such that W = UWV ∈ L .
By Lemma 12, there exist w′, w′′ such that for each j ∈ J , the factor u j =

wi
1w

′′(w2w1)
jw′ is an F-factor of W . Consequently, since each u j has a different

length, there are at least |J | = c + r + � + 1 distinct factors u j . By definition of a
synchronising factorisation scheme, since W is a factor ofW , there are at most r + �

123

Theory of Computing Systems (2024) 68:322–379370

F-factors u j of W which are not F-factors ofW . Thus there are at least c + 1 distinct
F-factors of W .

Consequently, we can follow the same steps as usual to obtain a contradiction:
firstly, we conclude by the above described analysis that nF(W) > c. Moreover, since
W ∈ L , there exists a solution h to the equation E such that h(x) = W . Thus, by
Lemma 5, there is at least one F-factor which is unanchored in h. Since L is thin, there
exists v ∈ �∗ such that no z ∈ L has v as a factor. On the other hand, by Lemma 5,
W ′ = hFu→v(x) has v as a factor but should also belong to L .

This is a contradiction, and hence our assumption that L was expressible must be
wrong and L is indeed inexpressible as required. ��

It is not difficult to see that it is decidable whether or not a regular language L
contains two words which do not commute: it is enough to first check emptiness, and
if the language is not empty, to find at least one word w in the language, compute the
primitive root u of w, and check whether L ⊆ {u}∗. All of these things can be done
using standard techniques for finite automata.

As a consequence, the condition given in Theorem 14 is decidable, allowing us to
provide the opposite result to Theorem 10 for the dual problem of deciding whether a
regular language is expressible in WE in the thin case.

Corollary 15 Given a thin regular language L (as a regular expression or finite
automaton), the property “L is expressible inWE" is decidable.

This provides a partial answer to Open Problem 2. Unfortunately, we leave the
remaining case of dense regular languages open in general. However, in next section
we provide some further results covering specific cases.

4.2 (In)Expressibility of Dense Regular Languages

One challenge we face when considering dense languages is that while for thin regular
languages L , WE-expressibility can be checked via a purely syntactic condition on
(nearly) any regular expression generating L (due to Theorem 14), for dense regular
languages this seems unlikely to still be the case e.g. due to the following example.

Example 3 Let � = {a, b}. In this example it is important that we restrict the under-
lying alphabet of the logicWE to be {a, b}. If we considerWE with respect to a larger
alphabet, e.g. {a, b, c}, then in fact the language L is thin, and Theorem 14 does apply
to the regular expression e, and tells us that the language is not expressible.

Let e be the regular expression

(aa | ab | aba | ba | bb | bba | baa | bab)∗

and let L = L(e). Clearly L does not satisfy the conditions from Theorem 14 to be
expressible inWE. However since e = Y ∗ such that Y contains every word over {a, b}
of length two, L is dense, so Theorem 14 does not apply in this case and we cannot
use it to determine WE-expressibility one way or the other.

123

Theory of Computing Systems (2024) 68:322–379 371

In fact, the denseness of L allows us to represent L in an entirely different way,
using a seemingly unrelated regular expression e′. To see why, note firstly that all
words of even length belong to L(e). Moreover, if a word w ∈ �∗ has odd length and
contains ba as a factor, then w = u1cbau2 or w = u1bacu2 where c ∈ {a, b} and
u1, u2 have even length. Thus all such words also belong to L(e). Finally, note that
if w has odd length and does not contain ba as a factor, then w /∈ L(e). Thus, L(e)
contains all words which either contain ba as a factor, or have even length and belong
to a∗b∗. Consequently, L = L(e′) where e′ is given by

(a | b)∗ ba (a | b)∗ | (aa)∗ (ε | ab) (bb)∗.

The subexpression e′
1 = (aa)∗ (ε | ab) (bb)∗ on the right does satisfy the

conditions of Theorem 14, and so L(e′
1) is expressible in WE. The subexpression

e′
2 = (a | b)∗ ba (a | b)∗ on the left is a special case: although it contains two subex-
pressions of the form Z∗ where Z contains two non-commuting words, in both cases,
we have Z = �, and it is easily seen that�∗ is expressible inWE (e.g. by x in x

.= x).
It therefore follows by the fact that WE-expressible languages are closed under con-
catenation that L(e′

2) is expressible in WE, and since WE-expressible languages are
also closed under union, that L is also expressible in WE.

Generalising the previous example, we can derive the following sufficient condition
for a dense regular language to be expressible in WE. Due to the example above, this
condition is rather a condition on the language itself, and is not seemingly related to
the syntactic properties of any given regular expression generating it.

Proposition 16 Let L ⊆ �∗ be a language which can be obtained as L(e) for at least
one well-formed regular expression e such that for every subexpression Y ∗ of e, either
L(Y) = � or the words in L(Y) are pairwise commutative. Then L is expressible in
WE.

Proof Suppose the conditions of proposition are met. Then L can be obtained by
applying the operations of union and concatenation successively to languages of the
form:

• {ε} and {a} for a ∈ �

• �∗
• X∗ where the words in X are pairwise commutative.

It is straightforward that {ε}, {a} and �∗ are all expressible in WE. Moreover, if the
elements of X pairwise commute and X
= ∅, there exists E ⊆ N and w ∈ �+ such
that X = {wi | i ∈ E}. It follows by Proposition 11 that X∗ is also expressible in
WE. Finally, we recall that it was shown in [32] that languages expressible in WE are
closed under union and concatenation. Thus, due to these closure properties, we may
conclude that L is expressible in WE. ��

While we are unable to extend the previous sufficient condition into a characteristic
one, we shall focus for the rest of this section on examples of inexpressible dense
regular languages (i.e. on necessary conditions). Dense languages also pose more of

123

Theory of Computing Systems (2024) 68:322–379372

a challenge when showing WE-inexpressibility, in part due to the inherent role in the
main technique(s) of relying on swapping factors to arrive at a contradiction (Steps 4
and 5 in the general approach outlined in Section 2.2). Nevertheless, we have already
in the proof of Theorem 3 shown, in a sense, how this reasoning can be modified and
extended to produce other types of contradiction. In what follows we investigate some
classes of dense regular languages which are not expressible in WE. By focusing on
codes, we have some additional “control” in the absence of forbidden factors. We
briefly recall some definitions from the theory of codes (see e.g. [9]).

Definition 17 A code is a non-empty set Y of words which does not satisfy a non-trivial
relation. In other words, every word in Y ∗ has a unique decomposition into words from
Y . Furthermore, Y is uniform if all words in it have the same length. A code Y is bifix
if for every pair y1, y2 of words in Y , y1 is neither a prefix nor suffix of y2. Two codes
Z ⊆ �+

1 and Y ⊆ �+
2 are composable if there is a bijection b̂ : �1 → Y . The

composition Z ◦ Y is given by {b̂(z) | z ∈ Z} where b̂ : �1
∗ → Y ∗ is obtained by

extending b̂ to be a morphism. It follows that (Z ◦Y)∗ ⊆ Y ∗ and Z ◦Y is also a code.

Givenour interest beyondexpressibility inWE to e.g.WE+LENandWE+LEN+
REG, it makes sense to consider dense languages with properties associated with the
lengths of words. For example, we might ask whether the set of even length words is
expressible in WE, or more generally the set of words of length 0 (mod n) for some
arbitrary n ∈ N, n > 1. More generally, we might ask about the expressibility of sets
Y ∗ where Y is a uniform code (setting Y = �n yields the set of words of length 0
(mod n)). More generally still, we consider languages X∗ where X is a code obtained
via composition with a uniform code. In this case, we obtain the following characteri-
sation. Note that Proposition 17 is the only time we consider an infinite alphabet. The
set Z and only Z may be taken to have a countably infinite alphabet in this setting.
This allows us to provide a more general class of languages X∗. An example of how an
infinite alphabet may be used in the context of Proposition 17 is given in Example 4.

Proposition 17 Let Y ⊂ �+ be a code, and let Z be a uniform code over a finite or
countably infinite alphabet, whose words each have length p > 1. Suppose that X
may be obtained as a composition Z ◦ Y . Then X∗ ⊆ �∗ is expressible inWE if and
only if at least one of |Y | = 1 or |Z | = 1 holds.

Proof For the “if” direction, note firstly that |X | = |Z |, so if |Z | = 1 then |X | = 1.
Moreover, by definition X ⊆ Y+ so if |Y | = 1 then the elements of X pairwise
commute. In both cases, X∗ is expressible by Proposition 11.

The rest of the proof concerns the “only if” direction.We shall prove the contrapos-
itive. To that end, let Y and Z both contain at least two elements. By the definition of a
code, we know that these two elements do not commute. It follows that |X | = |Z | > 1
and X is also a code. Thus, there exist distinct words w1, w2 ∈ X which do not com-
mute. Let i be the smallest integer such that |wi

1| ≥ |w1w2w1| and let F = Fwi
1
. Recall

from Lemma 10 that F is synchronising.
Let us now suppose for contradiction that X∗ is expressed by a variable x in

some word equation E . Let c be the constant provided by Lemma 5. Note that
since Y contains a pair of non-commuting elements, we must have |�| > 1. Let

123

Theory of Computing Systems (2024) 68:322–379 373

J = (3, 4, . . . , 3 + c + |�|i |w1| + 1). Let W = ∏
j∈J wi

1(w2w1)
jw2w

i
1. Note that

W ∈ X∗. By Lemma 12, since there are at most |�|i |w1|+1 F-factors ofW of length at
most |wi

1|, there will be at least c + 1 F-factors of W having length greater than |wi
1|

which contain wi
i as a prefix and which occur only once in W . By Lemma 5, at least

one of these “long” F-factors, u, of W is unanchored in h, where h is some solution
to E such that h(x) = W .

Let y ∈ Y and let v be the result of inserting an occurrence of y between two
consecutive occurrences of w1 in u. Let W ′ = hFu→v(x).

Then by Lemma 5, W ′ belongs to the language expressed by x in E , and thus
W ′ ∈ X∗. Moreover, since X∗ ⊆ Y ∗, we get W ,W ′ ∈ Y ∗. Consequently, W and W ′
both admit unique decompositions into elements ofY . However, sinceW is constructed
explicitly as a sequence of w1s and w2s, and since w1, w2 ∈ X , and since X ⊆ Y+,
it follows that the decomposition of W into elements of Y can be obtained by first
decomposing W into the factors w1 and w2 and then further decomposing each w1 or
w2 into elements of Y . Consequently, by construction, the decomposition of W ′ has
precisely one more element than the decomposition of W does.

However, for everyword in X∗, the number of elements fromY in the decomposition
must be divisible by p. Since p > 1, it is impossible that bothW ∈ X∗ andW ′ ∈ X∗.
Thus we have a contradiction, and may conclude that X∗ is inexpressible. ��
Example 4 (See Example 3.3.9 in [9]) Consider the code Y = {wba|w| : w ∈ �∗}
over the alphabet � = {a, b}. Let � be an infinite alphabet, comprising a letter �w

for each w ∈ �∗. Then let Z = �2\{�a�aa}. Z is a uniform code over the alphabet
�. It comprises most, but not all words of length two, and so Z∗ contains most, but
not all words of even length. Define a bijection b̂ : � → Y in the natural way: so that
b̂(�w) = wba|w| for all w ∈ �∗. Using b̂, we can define the composition X = Z ◦ Y ,
given by

X = {w1ba
|w1|w2ba

|w2| : w1, w2 ∈ �∗ ∧ (w1, w2)
= (a, aa)}.

X is clearly dense, meaning that X∗ is also dense. Consequently, the results of Section
4.1 cannot be used to determine the expressibility of X∗. Nevertheless, from Proposi-
tion 17, it follows that X∗ is inexpressible inWE.

Corollary 18 Let Y ⊂ �+ be a code, and let X = Y p for some p > 1. Then X∗ is
expressible in WE if and only if |Y | = 1.

Our next proposition has a similar flavour to Proposition 17, again considering
languages X∗ where the lengths of words are restricted, but with a less technical
condition. The reasoning is very similar but note that the classes of languages addressed
are incomparable. In particular, we are able to drop the condition that the underlying
set X is a code.

Proposition 19 Let X ⊂ �+ satisfy gcd({|w| : w ∈ X}) = p > 1. Then X∗ is
expressible in WE if and only if the elements of X are pairwise commutative.

Proof The “if” direction is covered by Proposition 11. The rest of the proof focuses
on the “only if” direction. Specifically, we prove the contrapositive. To that end, let

123

Theory of Computing Systems (2024) 68:322–379374

X contain non-commuting words w1, w2, and let us assume for contradiction that the
resulting language X∗ is expressed by a variable x in some word equation E . Let i
be the smallest integer such that |wi

1| ≥ |w1w2w1| and let F = Fwi
1
. Recall from

Lemma 10 that F is synchronising. Let c be the constant provided by Lemma 5. Let
J = (3, 4, . . . , 3 + c + |�|i |w1|+1). Let W = ∏

j∈J wi
1(w2w1)

jw2w
i
1. Note that

W ∈ X∗. By Lemma 12, since there are at most |�|i |w1|+1 F-factors ofW of length at
most |wi

1|, there will be at least c + 1 F-factors of W having length greater than |wi
1|

and which occur only once in W . By Lemma 5, at least one of these “long” F-factors,
u, of W is unanchored in h, where h is some solution to E such that h(x) = W . Let
W ′ = hFu→au(x). Then by Lemma 5,W ′ belongs to the language expressed by x in E ,
and thus W ′ ∈ X∗. However, this implies that both |W | and |W ′| should be divisible
by 1. By construction, |W ′| = |W |+1. Since p > 1, this is a contradiction, and hence
we can conclude that X∗ is inexpressible.

In Proposition 19, we did not require the set X to be a code. It would be nice to
remove the analogous requirement for Y to be a code from Corollary 18. However, it
is worth pointing out that this cannot be done without further modification to the state-
ment. Indeed, setting� = {a, b}, Y = {a, b, ba} and X = Y 2, we obtain the language
X∗ = {aa, ab, aba, ba, bb, bba, baa, bab, baba}∗ considered in Example 3. Then
the elements of Y ⊂ �+ are not pairwise commutative. However, we have already
shown in Example 3 that X∗ is indeed expressible in WE.

Our final result in this section provides a third class of potentially dense languages
X∗ for which we can characterise expressibility in WE.

Theorem 20 Let X ⊂ �+ contain two distinct words w, each of which satisfies the
condition:

∀x ∈ X\{w}, {w, x} is a bifix code.
Then X∗ is expressible inWE if and only if � ⊆ X.

Proof Suppose first that� ⊆ X . Then clearly X∗ = �∗, so X∗ is expressible. Suppose
instead that there is some a ∈ �\X . Let w1, w2 be two distinct words satisfying the
criterion from the lemma. Let us assume for contradiction that the resulting language
X∗ is expressible. Note that w1, w2 cannot commute. If they did, then they would be
two powers of the same primitive root, and {w1, w2} would not be a bifix code.

Let us assume for contradiction that the resulting language X∗ is expressed by a
variable x in some word equation E . Let i be the smallest integer such that |wi

1| ≥
|w1w2w1| and let F = Fwi

1
. Recall from Lemma 10 that F is synchronising. Let c

be the constant provided by Lemma 5. Let J = (3, 4, . . . , 3 + c + |�|i |w1|+1). Let
W = ∏

j∈J wi
1(w2w1)

jw2w
i
1. Note that W ∈ X∗. By Lemma 12, since there are at

most |�|i |w1|+1 F-factors of W of length at most |wi
1|, there will be at least c + 1

F-factors ofW having length greater than |wi
1|which containwi

i as a prefix and which
occur only once in W . By Lemma 5, at least one of these “long” F-factors, u, of W is
unanchored in h, where h is some solution to E such that h(x) = W .

Let W ′ be obtained from W by inserting a into the single occurrence of u in W ,
between two factors w1. That is, let v = u1w1aw1u2 where u = u1w1w1u2 and

123

Theory of Computing Systems (2024) 68:322–379 375

let W ′ = hFu→v(x). Then by Lemma 5, W ′ ∈ X∗. Moreover, it follows from the
conditions of the theorem that

• no proper prefix of w1 or w2 is in X ,
• no proper suffix of w1 or w2 is in X ,
• no words in X have w1 or w2 as a proper prefix,
• no words in X have w1 or w2 as a proper suffix.

Thus, we can “strip" the factors w1 and w2 from each end of W ′, whilst retaining the
resulting word’s membership of X∗. The result of iterating this process is that a ∈ X∗.
However this implies a ∈ X , which is a contradiction. Hence we can conclude that
X∗ is inexpressible. ��

We conclude this section, and the main technical content of the paper with the
following immediate consequence of Theorem 20.

Corollary 21 Let X ⊂ �+ be bifix. Then X∗ is expressible inWE if and only if X = �

or |X | ≤ 1.

Acknowledgements We would like to express our gratitude to the anonymous referees of this paper for
their careful reviews many helpful comments and suggestions which have undoubtedly improved the final
version. In particular, we thank them for the suggestions simplifying the technical analysis in Lemma 12 and
as a result several proofs in Sections 4.1 and 4.2. The work of Florin Manea was supported by the German
Research Foundation (Deutsche Forschungsgemeinschaft, DFG), by the project with number 466789228.

Author Contributions All authors contributed to the main content/ideas. J.D. prepared the final manuscript,
with Section 4 adapted from an earlier draft prepared by M.K and other sections based on prior versions to
which all authors contributed. All authors reviewed the manuscript.

Declarations

Competing Interests The authors declare no competing interests.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abdulla, P.A., Atig, M.F., Chen, Y.F., Diep, B.P., Dolby, J., Janku, P., Lin, H.H., Holík, L., Wu, W.-C.,
: Efficient handling of string-number conversion. In: Donaldson A.F., Torlak, E. (eds.) Proceedings of
the 41st ACM SIGPLAN International Conference on Programming Language Design and Implemen-
tation, PLDI 2020, London, UK, June 15-20, 2020. pp. 943–957. ACM, (2020)

2. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Holík, L., Rezine, A., Rümmer, P., Stenman, J. : Norn: An SMT
solver for string constraints. In: Kroening, D., Pasareanu, C.S. (eds.) Computer Aided Verification -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings,
Part I, volume 9206 of Lecture Notes in Computer Science. pp. 462–469. Springer, (2015)

123

Theory of Computing Systems (2024) 68:322–379376

http://creativecommons.org/licenses/by/4.0/

3. Alur, R., Kumar, V., Madhusudan, P., Viswanathan, M. : Congruences for visibly pushdown languages.
In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) Automata, Languages
and Programming, 32nd International Colloquium, ICALP 2005, Lisbon, Portugal, July 11-15, 2005,
Proceedings, volume 3580 of Lecture Notes in Computer Science. pp. 1102–1114. Springer, (2005)

4. Alur, R., Madhusudan, P. : Visibly pushdown languages. In: Babai, L. (ed.) Proceedings of the 36th
AnnualACMSymposiumonTheory of Computing, Chicago, IL, USA, June 13-16, 2004. pp. 202–211.
ACM, (2004)

5. Alur, R., Madhusudan, P. : Adding nesting structure to words. J. ACM, 56(3):16:1–16:43, 2009
6. R. Amadini: A survey on string constraint solving. ACM Comput. Surv., 55(1), 2021
7. P. Barceló, P. Muñoz : Graph logics with rational relations: The role of word combinatorics. ACM

Trans. Comput. Log., 18(2):10:1–10:41, 2017
8. Barrett, C.W. , Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T., Reynolds, A., Tinelli,

C. : CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided Verification - 23rd International
Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume 6806 of Lecture
Notes in Computer Science. p. 171–177. Springer, (2011)

9. Berstel, J., Perrin, D., Reutenauer, C. : Codes and automata, volume 129. Cambridge University Press,
(2010)

10. Berzish, M., Kulczynski, M., Mora, F., Manea, F., Day, J.D., Nowotka, D., Ganesh, V. : An SMT solver
for regular expressions and linear arithmetic over string length. In: Silva, A., Rustan, K., Leino, M.
(eds) Computer Aided Verification - 33rd International Conference, CAV 2021, Virtual Event, July
20-23, 2021, Proceedings, Part II, volume 12760 of Lecture Notes in Computer Science. pp. 289–312.
Springer, (2021)

11. Büchi, J.R., Senger, S.: Definability in the existential theory of concatenation and undecidable exten-
sions of this theory. Math. Log. Q. 34(4), 337–342 (1988)

12. Chen, T., Chen, Y., Hague, M., Lin, A.W., Wu, Z. : What is decidable about string constraints with the
replaceall function. Proc. ACM Program. Lang., 2(POPL):3:1–3:29, (2018)

13. Chen, T., Flores-Lamas, A., Hague, M., Han, Z., Hu, D., Kan, S., Lin, A.W., Rümmer, P., Wu, Z.
: Solving string constraints with regex-dependent functions through transducers with priorities and
variables. Proc. ACM Program. Lang., 6(POPL):1–31, (2022)

14. Chen, T. , Hague,M., Lin, A.W., Rümmer, P.,Wu, Z. : Decision procedures for path feasibility of string-
manipulating programs with complex operations. Proc. ACM Program. Lang., 3(POPL):49:1–49:30,
(2019)

15. Day, J.D. , Ganesh, V., Grewal, N., Manea, F. : On the expressive power of string constraints. In: Proc.
ACM Program. Lang. ACM, (2023)

16. Day, J.D., Ganesh, V., He, P., Manea, F., Nowotka, D. : The satisfiability of word equations: Decidable
and undecidable theories. In: Potapov, I., Reynier, P.-A. (eds) Reachability Problems - 12th Interna-
tional Conference, RP 2018, Marseille, France, September 24-26, 2018, Proceedings, volume 11123
of Lecture Notes in Computer Science. pp. 15–29. Springer, (2018)

17. Diekert, V., Gutiérrez, C., Hagenah, C.: The existential theory of equations with rational constraints in
free groups is pspace-complete. Inf. Comput. 202(2), 105–140 (2005)

18. Durnev, V.G.: On equations in free semigroups and groups. Matematicheskie Zametki 16, 717–724
(1974). (In Russian; English translation: Math. Notes of the Acad. of Sci. of the USSR 16 (1975)
1024–1028)

19. Durnev,V.G.:Undecidability of the positive∀∃3-theory of a free semi-group. SibirskyMatematicheskie
Jurnal 36(5), 1067–1080 (1995). (In Russian; English translation: Sib. Math. J., 36(5), 917–929,
1995)

20. Durnev, V.G. : Studying algorithmic problems for free semi-groups and groups. In: Adian, S., Nerode,
A. (eds) Proceedings of the 4th International Symposium on Logical Foundations of Computer Science
(LFCS’97), Yaroslavl, Russia, July 6–12, 1997, volume 1234. pp. 88–101, (1997)

21. Figueira, D., Jeż, A., Lin, A.W. : Data path queries over embedded graph databases. In: Libkin, L.,
Barceló, P. (eds) PODS ’22: International Conference onManagement of Data, Philadelphia, PA, USA,
June 12 - 17, 2022. pp. 189–201. ACM, (2022)

22. Freydenberger, D.D.: A logic for document spanners. Theory Comput. Syst. 63(7), 1679–1754 (2019)
23. Freydenberger, D.D., Holldack, M.: Document spanners: From expressive power to decision problems.

Theory Comput. Syst. 62(4), 854–898 (2018)
24. Freydenberger, D.D., Peterfreund, L. : The theory of concatenation over finite models. In: Bansal, N.,

Merelli, E., Worrell, J. (eds) 48th International Colloquium on Automata, Languages, and Program-

123

Theory of Computing Systems (2024) 68:322–379 377

ming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs.
pp. 130:1–130:17. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, (2021)

25. Ganesh, V., Minnes, M., Solar-Lezama, A., Rinard, M.C. : Word equations with length constraints:
What’s decidable? In: Biere, A., Nahir, A., Vos, T.E.J. (eds) Hardware and Software: Verification and
Testing - 8th International Haifa Verification Conference, HVC 2012, Haifa, Israel, November 6-8,
2012. Revised Selected Papers, volume 7857 of Lecture Notes in Computer Science. pp. 209–226.
Springer, (2012)

26. Hague, M.: Strings at MOSCA. ACM SIGLOG News 6(4), 4–22 (2019)
27. Halfon, S., Schnoebelen, P., Zetzsche, G. : Decidability, complexity, and expressiveness of first-order

logic over the subword ordering. In: 32nd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017. pp. 1–12. IEEE Computer Society, (2017)

28. Holík, L., Janku, P., Lin, A.W., Rümmer, P., Vojnar, T.: String constraints with concatenation and
transducers solved efficiently. Proc. ACM Program. Lang. 2(POPL), 4:1-4:32 (2018)

29. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory. Addison-Wesley, Languages and Com-
putation (1979)

30. Jeż, A.: Word equations in non-deterministic linear space. J. Comput. Syst. Sci. 123, 122–142 (2022)
31. Kan, S., Lin, A.W., Rümmer, P., Schrader, M.: Certistr: a certified string solver. In: Popescu,

A.,Zdancewic, S. (eds) CPP ’22: 11th ACM SIGPLAN International Conference on Certified Pro-
grams and Proofs, Philadelphia, PA, USA, January 17 - 18, 2022. pp. 210–224. ACM, (2022)

32. Karhumäki, J., Mignosi, F., Plandowski, W.: The expressibility of languages and relations by word
equations. J. ACM 47(3), 483–505 (2000)

33. Kiezun, A., Ganesh, V., Guo, P.J., Hooimeijer, P., Ernst, M.D. : HAMPI: a solver for string constraints.
In: Rothermel, G., Dillon, L.K. (eds) Proceedings of the Eighteenth International Symposium on
Software Testing and Analysis, ISSTA 2009, Chicago, IL, USA, July 19-23, 2009. pp. 105–116. ACM,
(2009)

34. Le, Q.L., He, M. : A decision procedure for string logic with quadratic equations, regular expressions
and length constraints. In: Ryu, S. (ed) Programming Languages and Systems-16th Asian Symposium,
APLAS 2018, Wellington, New Zealand, December 2-6, 2018, Proceedings, volume 11275 of Lecture
Notes in Computer Science. pp. 350–372. Springer, (2018)

35. Liang, T., Tsiskaridze, N., Reynolds, A., Tinelli, C., Barrett, C.W. : A decision procedure for regular
membership and length constraints over unbounded strings. In: Lutz, C., Ranise, S. (eds) Frontiers of
Combining Systems-10th International Symposium, FroCoS 2015, Wroclaw, Poland, September 21-
24, 2015. Proceedings, volume 9322 of Lecture Notes in Computer Science. pp. 135–150. Springer,
(2015)

36. Lin A.W., Majumdar, R. : Quadratic word equations with length constraints, counter systems, and
presburger arithmetic with divisibility. In: Lahiri, S.K., Wang, C. (eds) Automated Technology for
Verification andAnalysis-16th International Symposium,ATVA2018, LosAngeles, CA,USA,October
7-10, 2018, Proceedings, volume 11138 of Lecture Notes in Computer Science. pp. 352–369. Springer,
(2018)

37. Lin,A.W.,Barceló, P. : String solvingwithword equations and transducers: towards a logic for analysing
mutation XSS. In: Bodík, R., Majumdar, R. (eds) Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA,
January 20-22, 2016. pp. 123–136. ACM, (2016)

38. Lothaire,M.: Combinatorics onwords, 2nd edn.CambridgeUniversity Press, CambridgeMathematical
Library (1997)

39. Lothaire, M.: Algebraic combinatorics on words. Cambridge University Press (2002)
40. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Mathematics of the

USSR-Sbornik 32(2), 129 (1977)
41. Mora, F., Berzish, M., Kulczynski, M., Nowotka, D., Ganesh, V. : Z3str4: A multi-armed string solver.

In: Huisman, M., Pasareanu, C.S., Zhan, N. (eds.) Formal Methods-24th International Symposium,
FM 2021, Virtual Event, November 20-26, 2021, Proceedings, volume 13047 of Lecture Notes in
Computer Science. pp. 389–406. Springer, (2021)

42. Plandowski, W. : Satisfiability of word equations with constants is in PSPACE. In: 40th Annual Sym-
posium on Foundations of Computer Science, FOCS ’99, 17-18 October, 1999, New York, NY, USA.
pp. 495–500. IEEE Computer Society, (1999)

43. Quine, W.V.: Concatenation as a basis for arithmetic. The Journal of Symbolic Logic 11(4), 105–114
(1946)

123

Theory of Computing Systems (2024) 68:322–379378

44. Schulz, K.U. : Makanin’s algorithm for word equations - two improvements and a generalization.
In: Schulz, K.U. (ed.) Word Equations and Related Topics, First International Workshop, IWWERT
’90, Tübingen, Germany, October 1-3, 1990, Proceedings, volume 572 of Lecture Notes in Computer
Science. pp. 85–150. Springer, (1990)

45. Shur, A.M. : Combinatorial complexity of regular languages. International Computer Science Sympo-
sium in Russia. pp. 289–301. Springer (2008)

46. Trinh, M.-T., Chu, D.-H., Jaffar, J. : Progressive reasoning over recursively-defined strings. In: Chaud-
huri, S., Farzan, A. (eds) Computer Aided Verification-28th International Conference, CAV 2016,
Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part I, volume 9779 of Lecture Notes in Com-
puter Science. pp. 218–240. Springer, (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Joel Day1 · Vijay Ganesh2 · Nathan Grewal2 ·Matthew Konefal1 ·
Florin Manea3

Vijay Ganesh
vijay.ganesh@uwaterloo.ca

Nathan Grewal
negrewal@uwaterloo.ca

Matthew Konefal
M.Konefal-20@student.lboro.ac.uk

Florin Manea
florin.manea@informatik.uni-goettingen.de

1 Loughborough University, Loughborough, UK

2 University of Waterloo, Waterloo, ON N2L, Canada

3 Universität Göttingen, Göttingen, Germany

123

Theory of Computing Systems (2024) 68:322–379 379

	A Closer Look at the Expressive Power of Logics Based on Word Equations
	Abstract
	1 Introduction
	Our Contributions

	2 Preliminaries
	2.1 Logics Based on Word Equations
	2.2 Synchronising Factorisations and Inexpressibility for Word Equations
	2.3 Visibly Pushdown Languages

	3 Classes of Languages Expressible by Extended Word Equations
	4 Regular Languages (In)Expressible by Word Equations
	4.1 (In)Expressibility of Thin Regular Languages
	4.2 (In)Expressibility of Dense Regular Languages

	Acknowledgements
	References

