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Abstract
Frei et al. (J. Comput. Syst. Sci. 123, 103–121, 2022) show that the stability, vertex
stability, and unfrozenness problems with respect to certain graph parameters are
complete for�P

2 , the class of problems solvable in polynomial time by parallel access
to an NP oracle. They studied the common graph parameters α (the independence
number), β (the vertex cover number), ω (the clique number), and χ (the chromatic
number). We complement their approach by providing polynomial-time algorithms
solving these problems for special graph classes, namely for graphs with bounded
tree-width or bounded clique-width. In order to improve these general time bounds
even further, we then focus on trees, forests, bipartite graphs, and co-graphs.

Keywords Graph theory · Stability · Vertex stability · Unfrozenness · Robustness ·
Tree-width · Clique-width · Colorability · Clique · Independent set · Vertex cover

1 Introduction

Frei et al. [1] comprehensively studied the problem of how stable certain central graph
parameters are when a given graph is slightly modified, i.e., under operations such
as adding or deleting either edges or vertices. Specifically, they consider the four
graph parameters independence number α, vertex cover number β, clique number ω,
and chromatic number χ (to be formally defined in Section 2). Given such a graph
parameter ξ , they introduce the problems ξ -Stability, ξ -VertexStability, and
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ξ -Unfrozenness and show that they are, typically, �P
2-complete,1 that is, they are

complete for the complexity class known as “parallel access to NP,” which was intro-
duced by Papadimitriou and Zachos [2] and intensively studied by, e.g., Wagner [3, 4],
Gottlob [5], Eiter and Lukasiewicz [6], Lukasiewicz and Malizia [7], Hemaspaandra
et al. [8–12], and Rothe et al. [13].2 In their survey, Hemaspaandra et al. [15] discuss
the question of whether �P

2-completeness provides any more insight into the inherent
hardness of a problem than NP-hardness, and argue that the answer crucially depends
on the computational model used.

Furthermore, Frei et al. [1] prove that somemore specificversions of these problems,
namely k-χ -Stability and k-χ -VertexStability, are NP-complete for k = 3 and
DP-complete for k ≥ 4, respectively, where DP was introduced by Papadimitriou and
Yannakakis [16] as the class of problems that can be written as the difference of NP
problems, a. k. a. the second level of the boolean hierarchy (for more background on
this hierarchy, see [17, Section 5.1]).

Overall, the results of Frei et al. [1] indicate that these problems are rather intractable
and, assuming P �= NP (which, of course, is equivalent to P �= �P

2), there exist no
efficient algorithms solving them exactly. Considering the large number of real-world
applications for those problems mentioned by Frei et al. [1], these results are rather
disappointing and unsatisfying.

This obstacle motivates us to study, from a purely theoretical point of view, whether
there are scenarios that allow for efficient solutions to these problems that, assuming
P �= NP, are intractable. Our work is based on the assumption that most of the real-
world applications of stability of graph parameters do not use arbitrarily complex
graphs but may often be restricted to certain special graph classes. Consequently,
our studies show that—despite the completeness results by Frei et al. [1]—there are
tractable solutions to these problems when one limits the scope of the problem to a
special graph class.

We start by analyzing these problems for graphswith bounded tree-width (T Wk) or
bounded clique-width (CWk),making use of known results for computing the common
graph parameters α (the independence number), β (the vertex cover number), ω (the
clique number), andχ (the chromatic number) in such graphs. In order to improve these
general time bounds even further, we then focus on four classes of special graphs: trees
(T ), forests (F), bipartite graphs (B), and co-graphs (C). For each such class of graphs,
we study twelve different problems: stability, vertex-stability, and unfrozenness for
the four graph parameters α, β, ω, and χ .

Note This paper extends a preliminary version that appeared in the proceedings of
the 22nd Italian Conference on Theoretical Computer Science (ICTCS 2021) [18]. In

1 More precisely, Frei et al. [1] prove that ξ -Stability, ξ -VertexStability, and ξ -Unfrozenness are
�P
2 -complete for each of these four graph parameters, except β-VertexStability, which is in P, and

χ -Unfrozenness, whose complexity is unknown.
2 �P

2 is contained in the second level of the polynomial hierarchy and contains the problems that can be
solved in polynomial time by an algorithm that accesses its NP oracle in parallel (i.e., it first computes all its
queries and then asks them all at once and accepts its input depending on the answer vector). Alternatively,
�P
2 = PNP[O(log n)] (this equality is due to Hemaspaandra [14]) can be viewed as the class of problems

solvable in polynomial time via adaptively accessing its NP oracle (i.e., computing the next query depending
on the answer to the previous query) logarithmically often in the input size.
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particular, Sections 4.1 and 4.2 about graphs of bounded tree-width and clique-width
are new to the present version, which also contains many more details (e.g., specific
running times), arguments, and discussion.

2 Preliminaries

We follow the notation of Frei et al. [1] and briefly collect the relevant notions here
(referring to their paper [1] for further discussion). Let G be the set of all undirected,
simple graphs without loops. For G ∈ G, we denote by V (G) its vertex set and by
E(G) its edge set; by G its complementary graph with V (G) = V (G) and E(G) =
{{v,w} | v,w ∈ V (G) ∧ v �= w ∧ {v,w} /∈ E(G)}. For v ∈ V (G), e ∈ E(G), and
e′ ∈ E(G), let G − v, G − e, and G + e′, respectively, denote the graphs that result
from G by deleting v (and its incident edges), deleting e, and adding e′ (between any
two vertices of G). Unless stated otherwise, we always use m to refer to the number
of edges, m to refer to the number of nonedges of a graph, and we use n to refer to its
number of vertices, i.e., m = |E(G)|, m = |E(G)|, and n = |V (G)|.

A graph parameter is amap ξ : G → N. As Frei et al. [1], we focus on the following
four prominent graph parameters:

• the independence number α, i.e., the size of amaximum independent set—a subset
of the vertices such that no two of them are connected by an edge,

• the vertex cover number β, i.e., the size of a minimum vertex cover—a subset of
the vertices that contains at least one vertex of each edge,

• the clique number ω, i.e., the size of a maximum clique—a subset of the vertices
such that any two of them are connected by an edge, and

• the chromatic number χ , i.e., the minimum number of colors needed to color the
vertices of a graph so that no two adjacent vertices have the same color.

For a graph parameter ξ , an edge e ∈ E(G) is said to be ξ -stable if ξ(G) = ξ(G−e),
i.e., ξ(G) remains unchanged after e is deleted from G. Otherwise (i.e., if ξ(G) is
changed by deleting e), e is said to be ξ -critical. Stability and criticality are defined
analogously for a vertex v ∈ V (G) instead of an edge e ∈ E(G).

A graph is said to be ξ -stable if all its edges are ξ -stable. A graph whose vertices
(instead of edges) are all ξ -stable is said to be ξ -vertex-stable, and ξ -criticality and
ξ -vertex-criticality are defined analogously. Obviously, each edge and each vertex is
either stable or critical, yet a graph might be neither.

Traditionally, the analogous terms for stability or vertex stability when an edge or
a vertex (together with an arbitrary neighborhood) is added rather than deleted are
unfrozenness and vertex unfrozenness: They too indicate that a graph parameter does
not change by this operation. And if, however, a graph parameter changes when an
edge or vertex is added (not deleted), the notions analogous to criticality and vertex
criticality are simply termed frozenness and vertex frozenness. Again, each edge and
each vertex is either unfrozen or frozen, but a graph might be neither.

For any given graph parameter ξ , define the problem ξ -Stability to be
the set of all ξ -stable graphs; and analogously so for the sets (problems) ξ -
VertexStability, ξ -VertexCriticality, ξ -Unfrozenness, ξ -Frozenness, and
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ξ -VertexUnfrozenness. These are the decision problems studied by Frei et al. [1]
for general graphs in terms of their computational complexity. We will study them
when restricted to the special graph classes mentioned in the introduction, and to be
formally defined in Section 4.

A graph class J ⊆ G is closed under (induced) subgraphs if for every G ∈ J , it
holds that all (induced) subgraphs H of G satisfy H ∈ J .

Perfect graphs were originally introduced by Berge [19] in 1963 (for more back-
ground, see also the book by Golumbic [20]): A graph G is called perfect if for all
induced subgraphs H of G, we have χ(H) = ω(H). Note that G is also an induced
subgraph of itself.

We assume familiarity with the standard complexity classes P and NP. For more
background on computational complexity (e.g., regarding the complexity classes DP
and �P

2 mentioned in the introduction; note that P ⊆ NP ⊆ DP ⊆ �P
2 by definition),

we refer to the textbooks by Papadimitriou [21] and Rothe [17].
For the sake of self-containment, we here state a well known result of Gallai [22],

which is used to obtain several of our results.

Lemma 2.1 (Gallai [22]) For every graph G ∈ G, it holds that

n = α(G) + β(G).

3 General Stability and Unfrozenness Results

In this section, we provide general results that hold for specific graph classes satisfying
special requirements. These results can be used to easily show that some stability or
unfrozenness problems are tractable for various graph classes. As is common, we say
a problem (a function) is tractable if it can be solved (computed) deterministically in
polynomial time.

Theorem 3.1 Let J ⊆ G be a graph class closed under induced subgraphs, and let
ξ be a tractable graph parameter for J ; say, ξ(G) can be determined in time O(nc)
for G ∈ J and c ∈ N. Then ξ -VertexStability can be solved in time O(nc+1) for
G ∈ J .

Proof Let G ∈ J and compute ξ(G). For all v ∈ V (G), we have G − v ∈ J , since J
is closed under induced subgraphs. Hence, for all v ∈ V (G), we can compute ξ(G−v)

efficiently and compare it to ξ(G). If there is no vertex such that the values differ, G
is ξ -vertex-stable. Thus, for all G ∈ J , ξ -VertexStability can be solved in time
O(n · nc). 	


Since every graph class that is closed under subgraphs is also closed under induced
subgraphs, Corollary 3.2 is a simple consequence of the previous theorem. Slightly
abusing common notation, we write “for all graphs in a class J , some graph problem
� is in P” to mean that�|J is in P, where�|J denotes the graph problem� restricted
to graphs from the class J .

Corollary 3.2 Let J ⊆ G be a graph class closed under subgraphs and ξ a tractable
graph parameter for J . Then, for all graphs in J , ξ -VertexStability ∈ P.
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The first theorem made a statement related to vertex stability about graph classes
closed under induced subgraphs. Theorem 3.3 is related to (edge) stability instead.
The easy proof of Theorem 3.3 is analogous and thus omitted (see also the technical
report [23]).

Theorem 3.3 Let J ⊆ G be a graph class closed under subgraphs, and let ξ be a
tractable graph parameter for J ; say, ξ(G) can be determined in time O(nc) for
G ∈ J and c ∈ N. Then ξ -Stability can be solved in time O(m · nc) for G ∈ J .

Some of the graph classes we study are classes of perfect graphs, which is why we
now provide some results on vertex stability for perfect graphs.

Theorem 3.4 A perfect graph G is ω-vertex-stable if and only if G is χ -vertex-stable.

Proof LetG be aperfect graph.Wehaveχ(G) = ω(G) and for every vertexv ∈ V (G),
it holds thatχ(G−v) = ω(G−v), asG−v is an induced subgraph ofG. Consequently,
we have

G ∈ ω-VertexStability ⇔ ∀v ∈ V (G) : ω(G − v) = ω(G)

⇔ ∀v ∈ V (G) : χ(G − v) = χ(G)

⇔ G ∈ χ -VertexStability.

This completes the proof. 	

The next corollary follows immediately from this result.

Corollary 3.5 Let J ⊆ G be a class of perfect graphs. Then, for all graphs in J , we
have χ -VertexStability = ω-VertexStability.

While the above results are related to the concepts of stability and vertex stability,
the next two results address the property of unfrozenness.

Theorem 3.6 Let J ⊆ G be a graph class closed under complements and subgraphs.
If α is tractable for J , then for all graphs in J , ω-Unfrozenness belongs to P.

Proof Let us assume that we can efficiently compute α(G) for all G ∈ J . Since
J is closed under subgraphs, applying Theorem 3.3 yields that for all graphs in J ,
α-Stability belongs to P. Let G ∈ J be a graph. AsJ is closed under complements,
G also belongs toJ . Consequently, we can efficiently computeα(G). It is known from
Frei et al. [1, Proposition 34(1)] that α-Stability = {G | G ∈ ω-Unfrozenness}.
Hence, if G is α-stable, it immediately follows that G is ω-unfrozen. Therefore, for
graphs in J we can decide efficiently whether they are ω-unfrozen, so for all graphs
in J ω-Unfrozenness belongs to P. 	


Note that this theorem makes use of a relation between α-Stability and ω-
Unfrozenness that analogously holds for β-Stability and ω-Unfrozenness via
Lemma 2.1. The next theorem follows by a similar approach but exploits a relation
between ω-Stability and both α-Unfrozenness and β-Unfrozenness.
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Theorem 3.7 Let J ⊆ G be a graph class closed under complements and subgraphs.
If ω is tractable for J , then α-Unfrozenness and β-Unfrozenness ∈ P for all
G ∈ J .

Proof The argumentation is similar to that in the proof of Theorem 3.6. We know that
J is closed under subgraphs and we can efficiently compute ω(G) for all G ∈ J .
Consequently, by Theorem 3.3 it follows that for all graphs inJ ,ω-Stability belongs
to P. Further, it is known from a result by Frei et al. [1, Proposition 34(2)] that

α-Unfrozenness = β-Unfrozenness = {G | G ∈ ω-Stability}.

Let G ∈ J be a graph. As J is closed under complements, G is in J , too. Now,
efficiently decide whether G is ω-stable. If that is the case, it immediately follows that
G is α-unfrozen and β-unfrozen. Hence, for all graphs in J , both α-Unfrozenness
and β-Unfrozenness, belong to P. 	


4 Tractability Results for Special Graph Classes

Ahead of our results for the individual graph classes, we provide two observations,
which we will use multiple times in the upcoming proofs.

Observation 4.1 χ -VertexStability ⊆ χ -Stability.

Proof Let G be any graph in χ -VertexStability. That is, G is χ -vertex-stable, i.e.,
every vertex v ∈ V (G) is χ -stable. Frei et al. [1, Observation 3] observed that if
e = {u, v} is an edge in a graph and u or v are χ -stable, then so is e. Hence, it follows
immediately that every edge e ∈ E(G) is χ -stable, since all its incident vertices are
χ -stable. If all edges of G are χ -stable, it follows that G is χ -stable and thus G is in
χ -Stability. 	

Observation 4.2 Let G be a graph. If an edge {u, v} ∈ E(G) is β-critical, then u and
v are β-critical, too.

Weomit the proof of Observation 4.2, as it is basically the same as that given by Frei
et al. [1, Observation 2] for the analogous claim about χ -critical edges and vertices.

With these two observations we can now inspect several graph classes. In the fol-
lowing subsections we study the problems ξ -Stability, ξ -VertexStability, and
ξ -Unfrozenness with ξ ∈ {α, β, ω, χ}, restricted to special graph classes. Frei et
al. [1] showed that for ξ ∈ {α,ω, χ} we have ξ -VertexUnfrozenness = ∅ as well
as β-VertexUnfrozenness = {(∅,∅)}, where (∅,∅) is the null graph, i.e., the graph
without vertices or edges (which we will not further consider in this paper). This is
why we do not study problems related to vertex unfrozenness, as all related questions
are already answered.

4.1 Graphs of Bounded Tree-Width

We start with a famous, well-studied class of graphs: those having bounded tree-width.
The notion of tree-width was defined in the 1980s by Robertson and Seymour [24] as
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stated inDefinition 4.1. First,we introduce the followingwell-knowngraph-theoretical
notions. A graph G is said to be a tree if G is connected and has no cycles. Let T
denote the class of all trees. G is said to be a forest if there exist vertex-disjoint trees
G1, . . . ,Gt such that G = G1 ∪ · · · ∪ Gt . Let F denote the class of all forests.

Definition 4.1 (tree-width; Robertson and Seymour [24]) A tree decomposition of a
graph G is a pair (X , T ), where T is a tree and X = {Xu | u ∈ V (T )} is a family
of subsets Xu ⊆ V (G), one for each vertex u of T , such that the following three
conditions hold true:

1.
⋃

u∈V (T ) Xu = V (G).
2. For every edge {v1, v2} ∈ E(G), there is some vertex u ∈ V (T ) such that

v1 ∈ Xu and v2 ∈ Xu .
3. For every vertex v ∈ V (G) the subgraph of T induced by the vertices

u ∈ V (T ) with v ∈ Xu is connected.

The width of a tree-decomposition (X = {Xu | u ∈ V (T )}, T ) is

max
u∈V (T )

|Xu | − 1.

The tree-width of a graph G, tw(G) for short, is the smallest integer k such that
there is a tree-decomposition (X , T ) for G of width k.

We denote the class of all graphs of tree-width at most k by T Wk . Next, we list
some useful, well-known facts about graphs of bounded tree-width that can be found
in the survey of Bodlaender [25, Theorem 65 and Lemma 11].

Proposition 4.3 (Bodlaender [25]) T W1 is equal to the class of all forests, i.e.,
T W1 = F .

Lemma 4.4 (Bodlaender [25]) Let G be a graph and H be a subgraph of G. Then, it
holds that tw(H) ≤ tw(G).

Lemma 4.5 Let G be a graph and e ∈ E(G). Then, it holds that tw(G+e) ≤ tw(G)+1.

Proof We can obtain a tree-decomposition for G+e from a tree-decomposition (X =
{Xu | u ∈ V (T )}, T ) for G by adding one of the two end vertices of e into every set
Xu . 	


Determining whether the tree-width of some given graph is at most some given
value is NP-complete even for bipartite graphs (to be discussed in Section 4.3) and
complements of bipartite graphs [26].

Theorem 4.6 (Bodlaender [27])There is an algorithm that, given a graph G, computes
a tree-decomposition of G of width k = tw(G) in time 2O(k3) · n.

Thus, for every fixed positive integer k, one can determine in linear time whether
the tree-width of a given graph G is at most k, and if so, find a tree-decomposition of
width at most k.
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Theorem 4.7 (Hliněný et al. [28])Determining the size of a largest independent set in
a graph G of tree-width at most k, assuming a tree-decomposition of G is given, can
be done in time O(2k · n).

By Lemma 2.1, we can compute β from α, which leads to the following results.

Corollary 4.8 Determining the size of a smallest vertex cover for a graph G of tree-
width at most k, assuming a tree-decomposition of G is given, can be done in time
O(2k · n).

By storing information about cliques instead of independent sets, the solution given
by Hliněný et al. [28, Algorithm 1.2] can be suitably modified to show the next result.

Theorem 4.9 Determining the size of a largest clique in a graph G of tree-width at
most k, assuming a tree-decomposition of G is given, can be done in time O(2k · n).

The following result due to Cygan et al. [29, Theorem 7.10.] gives a different time
bound for the chromatic number.

Theorem 4.10 (Cygan et al. [29]) Determining the chromatic number of a graph G
of tree-width at most k, assuming a tree-decomposition of G is given, can be done in
time kO(k) · n.

Next, we give stability, vertex stability, and unfrozenness results for graphs of tree-
width at most k. Regarding stability and vertex stability, Corollaries 4.11 and 4.12
follow immediately from Theorems 3.3, 4.7, 4.9, and 4.10, Corollary 4.8, and
Lemma 4.4.

Corollary 4.11 For every graph in T Wk , assuming a tree-decomposition of width at
most k is given, ξ -Stability can be solved in time O(2kmn) for all ξ ∈ {α, β, ω}
and χ -Stability can be solved in time O(kO(k)mn). Thus, for every fixed positive
integer k, these problems belong to P.

Corollary 4.12 For every graph in T Wk , assuming a tree-decomposition of width at
most k is given, ξ -VertexStability can be solved in time O(2kn2) for all ξ ∈
{α, β, ω} and χ -VertexStability can be solved in timeO(kO(k)n2).Thus, for every
fixed positive integer k, these problems belong to P.

Our unfrozenness results in the next theorem can also be easily shown.

Theorem 4.13 For every graph in T Wk , assuming a tree-decomposition of width at
most k is given, ξ -Unfrozenness can be solved in timeO(2kn3) for all ξ ∈ {α, β, ω}
andχ -Unfrozenness can be solved in timeO(kO(k)n3). Thus, for every fixed positive
integer k, these problems belong to P.

Proof LetG ∈ T Wk and compute ξ(G) by Theorem 4.7, Corollary 4.8, Theorem 4.9,
or Theorem 4.10. For all e ∈ E(G), we have G + e ∈ T Wk+1 by Lemma 4.5. Thus,
for all e ∈ E(G), we can compute ξ(G + e) efficiently and compare it to ξ(G). If
there is no e ∈ E(G) such that the values differ, G is ξ -unfrozen. 	


123

82 Theory of Computing Systems (2024) 68:75–102



4.2 Graphs of Bounded Clique-Width

Next, we turn to graphs of bounded clique-width. Clique-width measures the difficulty
of decomposing a graph into a special tree structure. The clique-width of graphs has
been defined by Courcelle and Olariu [30] as follows.

Definition 4.2 (clique-width; Courcelle and Olariu [30]) The clique-width of a graph
G is the minimum number of labels needed to define G using the following four
operations:

1. Creation of a new vertex v with label a (denoted by a(v)).
2. Disjoint union of two labeled vertex-disjoint graphsG and H (denoted byG∪H ).
3. Inserting an edge between every vertex with label a and every vertex with label b

(a �= b, denoted by ηa,b).
4. Changing label a into label b (denoted by ρa→b).

We denote the class of all graphs of clique-width at most k by CWk .
An expression using these four operations and at most k different labels is called a

k-expression. Thus the clique-width of graph G, cw(G) for short, is the least integer
k such that there is a k-expression for G. Let graph(X) be the graph defined by k-
expression X .

Example 4.1 (k-expression) The expression

X = η2,3(ρ3→2(ρ2→1(η2,3(η1,2(1(v1) ∪ 2(v2)) ∪ 3(v3)))) ∪ 3(v4))

is a 3-expression and graph(X) is a path on four vertices, i.e., P4 ∈ CW3.

By this definition, every graph of clique-width at most k can be represented by a tree
structure, denoted as k-expression-tree. The leaves of the k-expression-tree represent
the vertices of the graph and the inner vertices of the k-expression-tree correspond
to the operations applied to the subexpressions defined by the subtrees. Using the k-
expression-tree numerous hard problemshave been shown to be solvable in polynomial
time when restricted to graphs of bounded clique-width [31–33].

Note that graphs of bounded clique-width generalize co-graphs, which we will
define and study in Section 4.5, denoting by C the class of co-graphs.

Proposition 4.14 (Courcelle and Olariu [30]) CW2 is equal to the class of all co-
graphs, i.e., CW2 = C.

Next, we list some further useful, well-known facts about graphs of bounded clique-
width.

Theorem 4.15 (Corneil and Rotics [34]) Every graph of tree-width at most k has
clique-width at most 3 · 2k−1.

As CW1 = I (the class of empty graphs consisting of only isolated vertices and
no edges) and CW2 = C (the class of co-graphs), it follows that for k ≥ 1, CWk is
not closed under complementation. By the following result, however, complementing
graphs can only double their clique-width.
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Lemma 4.16 (Courcelle and Olariu [30]) For every graph G, cw(G) ≤ 2 · cw(G),
and for a given k-expression X for G, one can compute a 2k-expression for G in time
O(|X |).

As every complete graph Kn is in CW2, it follows that for k ≥ 2, CWk is not closed
under subgraphs; it is closed, however, under induced subgraphs.

Lemma 4.17 Let G be a graph and H be an induced subgraph of G. Then cw(H) ≤
cw(G).

Lemma 4.18 (Gurski [35]) Let G be a graph and e ∈ E(G) and e′ ∈ E(G). Then
cw(G − e) ≤ cw(G) + 2 and cw(G + e′) ≤ cw(G) + 2.

Determining whether the clique-width of some given graph is at most some given
value is NP-complete [36].

There are graph classes for which we can compute a clique-width expression in
linear time. This has been shown by Courcelle and Olariu [30] for co-graphs which
have clique-width at most 2 and by Golumbic and Rotics [37] for distance-hereditary
graphswhich have clique-width atmost 3, and it is also known for several graph classes
allowing only a few P4, such as for (q, q−4)-graphs which have clique-width at most
q and for P4-tidy graphs which have clique-width at most 4, as shown by Courcelle
et al. [38].

In order to obtain an expression for general graphs, a useful result of Oum and
Seymour [39] allows to approximate clique-width expressions defined by a rank-
decomposition, with the drawback of a single-exponential blow-up on the parameter.

Theorem 4.19 (Oum [40]) There is an algorithm that computes, given a graph G of
clique-width k, a clique-width (8k − 1)-expression for G in time O(n3).

Now we turn specifically to the graph parameters studied in this paper.

Theorem 4.20 (Gurski [41]) Finding the size of a largest independent set in a graph
G of clique-width at most k, assuming a clique-width k-expression of G is given, can
be done in time O(22k · n).

By Lemma 2.1 we can compute β from α, which leads to the following results.

Corollary 4.21 Finding the size of a smallest vertex cover of a graph G of clique-width
at most k, assuming a clique-width k-expression of G is given, can be done in time
O(22k · n).

Theorem 4.22 (Gurski [41])Finding the size of a largest clique in a graph G of clique-
width at most k, assuming a clique-width k-expression of G is given, can be done in
time O(22k · n).

A different time bound is known for the chromatic number.

Theorem 4.23 (Kobler and Rotics [33]) Finding the chromatic number in a graph G
of clique-width at most k, assuming a clique-width k-expression of G is given, can be
done in time O(23k · k2 · n22k+1+1).
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Nextwe give stability, vertex stability, and unfrozenness results for graphs of clique-
width at most k.

Theorem 4.24 For every graph in CWk , assuming a clique-width k-expression is
given, ξ -Stability can be solved in time O(22kmn) for all ξ ∈ {α, β, ω} and χ -
Stability can be solved in time O(23kk2mn2

2k+5+1). Thus, for every fixed positive
integer k, these problems belong to P.

Proof Given a graph G ∈ CWk , compute ξ(G) by Theorem 4.20, Corollary 4.21,
Theorem 4.22, or Theorem 4.23. For all edges e ∈ E(G), we have G − e ∈ CWk+2
by Lemma 4.18. Thus, for all e ∈ E(G), we can compute ξ(G − e) efficiently and
compare it to ξ(G). If there is no e ∈ E(G) such that the values differ,G is ξ -stable. 	


The next result follows from Theorems 3.1, 4.20, 4.22, and 4.23, Corollary 4.21,
and Lemma 4.17.

Corollary 4.25 For every graph in CWk , assuming a clique-width k-expression is
given, ξ -VertexStability can be solved in time O(22kn2) for all ξ ∈ {α, β, ω}
and χ -VertexStability can be solved in time O(23kk2n2

2k+1+2). Thus, for every
fixed positive integer k, these problems belong to P.

Theorem 4.26 For every graph in CWk , assuming a clique-width k-expression is
given, ξ -Unfrozenness can be solved in timeO(22kn3) for all ξ ∈ {α, β, ω} and χ -
Unfrozenness can be solved in timeO(23kk2n2

2k+5+3). Thus, for every fixed positive
integer k, these problems belong to P.

Proof Given a graph G ∈ CWk , compute ξ(G) by Theorem 4.20, Corollary 4.21,
Theorem 4.22, or Theorem 4.23. For all edges e ∈ E(G), we have G+e ∈ CWk+2 by
Lemma4.18. Thus, for all e ∈ E(G), we can compute ξ(G+e) efficiently and compare
it to ξ(G). If there is no e ∈ E(G) such that the values differ, G is ξ -unfrozen. 	


Summing up our results so far, we have shown that even though the twelve problem
variants we investigate—Stability, VertexStability, and Unfrozenness for the
four graph parameters α, β, ω, and χ—are hard to solve in general by the results of
Frei et al. [1], they can each be solved in polynomial time when restricted to graphs of
bounded tree-width or clique-width. However, the specific time bounds obtained by
these general results may still be improvable. Therefore, in the following sections we
will have a closer look at some other special graph classeswhich, as alreadymentioned,
are contained in T Wk and CWk : trees and forests, and co-graphs. In each case, we
will seek to provide better time bounds for the above-mentioned problems than those
given in the previous sections. Before doing so, however, we have a closer look at
another interesting class of graphs, the bipartite graphs.

4.3 Bipartite Graphs

G = (V1 ∪ V2, E) is a bipartite graph if V1 ∩ V2 = ∅ and E ⊆ {{u, v} | u ∈ V1 ∧ v ∈
V2}. Since bipartite graphs in particular contain grid graphs, they do not have bounded
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tree-width or bounded clique-width. Denote the class of all bipartite graphs by B.
We begin with two simple observations. Observation 4.27 is so evident that we omit
providing a proof.

Observation 4.27 Let G be a bipartite graph. Then χ(G) = ω(G) = 1 if E(G) = ∅,
and χ(G) = ω(G) = 2 if E(G) �= ∅.

Consequently, we can efficiently compute χ and ω for all bipartite graphs.
The proof of the next observation provides a method to efficiently compute α and

β for bipartite graphs as well, by making use of the algorithm due to Hopcroft and
Karp [42] and the result of Kőnig [43].3

Observation 4.28 For each bipartite graph G, we can compute α(G) and β(G) in
time O(n2.5).

Furthermore, as the class of bipartite graphs is closed under subgraphs and induced
subgraphs, the following corollary follows from Theorems 3.3 and 3.1.

Corollary 4.29 For every ξ ∈ {α, β, ω, χ} and all bipartite graphs the problems ξ -
Stability and ξ -VertexStability are in P. In particular, for bipartite graphs and
ξ ∈ {α, β}, ξ -Stability can be solved in timeO(n2.5m) and ξ -VertexStability in
time O(n3.5).

Note that specific time bounds for ξ -Stability and ξ -VertexStability
with ξ ∈ {ω, χ} are implied later on by Propositions 4.31 and 4.33 and by Theo-
rems 4.32 and 4.34.

Next, we discuss approaches for how to decide whether a bipartite graph is stable.
If a bipartite graph G has no edges, it is trivial to handle [23]. For bipartite graphs
with one edge, we have the following simple result.

Proposition 4.30 Let G be a bipartite graph with m = 1 edge. Then G is neither
ξ -stable nor ξ -vertex-stable for ξ ∈ {α, β, ω, χ}.
Proof Denote G’s only edge by e = {u, v} for u, v ∈ V (G). Then G is neither
α-stable nor α-vertex-stable, as we have α(G) = n − 1, yet α(G − e) = n and
α(G − w) = n − 2 for w ∈ V (G) \ {u, v}. Consequently, G is neither β-stable,
which follows from a result by Frei et al. [1, Proposition 34], nor β-vertex-stable
because of β(G) = 1 and β(G − u) = 0. Furthermore, we have ω(G) = 2 as
well as ω(G − e) = ω(G − u) = 1, so G is neither ω-stable nor ω-vertex-stable.
Lastly, χ(G) = 2 but χ(G − e) = χ(G − u) = 1, so G is neither χ -stable nor
χ -vertex-stable. 	


We now provide results for bipartite graphs with more than one edge.

Proposition 4.31 Every bipartite graph G with m ≥ 2 edges is ω-stable.

3 Note that Observation 4.28 is an exercise in the book by Cormen et al. [44] (of course, using improved
matching algorithms for bipartite graphs such as that of Alt et al. [45] would improve the running time even
further).
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Proof For all e ∈ E(G), we have ω(G − e) = 2 = ω(G), as E(G − e) �= ∅, so G is
ω-stable. 	


Furthermore, we can also characterize ω-vertex-stability.

Theorem 4.32 Let G be a bipartite graph with m ≥ 2 edges. G is ω-vertex-stable if
and only if for all v ∈ V (G), it holds that deg(v) < m.

Proof Assume that G is ω-vertex-stable. That is, for all v ∈ V (G), it holds that
ω(G − v) = 2 = ω(G). If there were one v ∈ V (G) with deg(v) = m, we would
have ω(G − v) = 1 as E(G − v) = ∅, a contradiction to G’s ω-vertex-stability.
Conversely, assume that deg(v) < m for all v ∈ V (G). Then, for all v ∈ V (G), it
follows that E(G − v) �= ∅. Consequently, ω(G) = 2 = ω(G − v) and, hence, G is
ω-vertex-stable. 	


The proof of the following proposition is similar to that of Proposition 4.31.

Proposition 4.33 Every bipartite graph G with m ≥ 2 edges is χ -stable.

Proof Let e ∈ E(G) be an arbitrary edge of G. Since E(G − e) �= ∅, it holds that
χ(G − e) = 2 = χ(G) and, thus, G is χ -stable. 	


Lastly, we can characterize χ -vertex-stability.

Theorem 4.34 Let G be a bipartite graph with m ≥ 2 edges. G is χ -vertex-stable if
and only if for all v ∈ V (G), it holds that deg(v) < m.

Proof Assume G to be χ -vertex-stable. Furthermore, as we assume that m ≥ 2, it
holds that χ(G) = 2. Then there cannot exist a vertex v ∈ V (G) with deg(v) = m, as
such a vertex would be χ -critical, since χ(G − v) = 1 because of E(G − v) = ∅. For
the opposite direction, assume that deg(v) < m for all vertices v ∈ V (G). Hence, no
matter what vertex v ∈ V (G) we remove from G, it always holds that E(G − v) �= ∅,
so χ(G − v) = 2 = χ(G) and, thus, G is χ -vertex-stable. 	


Besides these (vertex) stability characterizations for bipartite graphs, we now
address unfrozenness for them.

Theorem 4.35 Let G be a bipartite graph. G is χ -unfrozen if and only if G possesses
no P3 as an induced subgraph.

Proof First, assume that G is χ -unfrozen but contains P3 as an induced subgraph.
Write V (P3) = {v1, v2, v3} and E(P3) = {{v1, v2}, {v2, v3}} for the corresponding
vertices and edges. Then e = {v1, v3} ∈ E(G) is not an edge in G. However, adding
e to G we obtain χ(G) = 2 < 3 = χ(G + e), as P3 + e forms a 3-clique in G,
a contradiction to the assumption that G is χ -unfrozen. Conversely, assume that G
possesses no P3 as an induced subgraph but is not χ -unfrozen. Hence, there must exist
a nonedge e = {u, v} ∈ E(G) such that χ(G + e) = 3 > 2 = χ(G). Denote the two
disjoint vertex sets of G by V1∪V2 = V (G). Obviously, u ∈ V1 and v ∈ V2 cannot be
true, since then χ(G + e) = 2 would hold. Therefore, without loss of generality, we
may assume that u, v ∈ V1. Adding e to G must create a cycle of odd length in G, as
cycles of even length as well as paths can be colored with two colors. Consequently,
G + e possesses a cycle Cn with n = 2k + 1 ≥ 3 vertices, k ∈ N, as a subgraph. This
implies that G must possess P3 as an induced subgraph, again a contradiction. 	
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Slightly modifying (the direction from right to left in) the previous proof yields
Corollary 4.36. This time, adding e to G must create a 3-clique in G.

Corollary 4.36 Let G be a bipartite graph. G is ω-unfrozen if and only if G possesses
no P3 as an induced subgraph.

Both results show that ω- and χ -Unfrozenness can be solved in time O(n) and
thus belong to P for bipartite graphs. For the proof of Theorem 4.38, which establishes
the same result for β-Unfrozenness, we need the following lemma.

Lemma 4.37 Let G be a bipartite graph and u ∈ V (G). Then, β(G − u) = β(G) − 1
if and only if there exists some vertex cover V ′ ⊆ V (G)with u ∈ V ′ and |V ′| = β(G).

Proof Denote by V ′′ ⊆ V (G − u) a minimum vertex cover for G − u with |V ′′| =
β(G − u) and write V ′ = V ′′ ∪ {u}. Then |V ′| = β(G − u) + 1 = β(G) and
E(G − u) ∪ {e ∈ E(G) | e ∩ {u} �= ∅} = E(G). As V ′′ is a minimum vertex
cover for G − u, all edges in E(G − u) are covered by V ′′. All remaining edges in
{e ∈ E(G) | e ∩ {u} �= ∅} are covered by u, so that V ′ covers all edges in E(G) and
is a vertex cover of G.

Conversely, let V ′ ⊆ V (G) with u ∈ V ′ be a minimum vertex cover for G,
i.e., |V ′| = β(G). Removing u from G also removes all edges incident to u from
E(G); hence, V ′ \ {u} is a minimum vertex cover for G − u. Consequently, we have
β(G − u) = |V ′| − 1 = β(G) − 1. 	

Theorem 4.38 For all bipartite graphs, β-Unfrozenness can be solved in time
O(n4.5) and thus belongs to P.

Proof Let G be a bipartite graph with V (G) = V1 ∪ V2 and V1 ∩ V2 = ∅. Then
we have E ⊆ {{u, v} | u ∈ V1 ∧ v ∈ V2} and, according to Observation 4.28, we
can compute β(G) in time O(n2.5). For any nonedge e = {u, v} ∈ E(G), either
(1) e ∈ {{u, v} | u ∈ V1 ∧ v ∈ V2} or (2) e ∈ {{u, v} | u ∈ Vi ∧ v ∈ Vi }, i ∈ {1, 2},
must hold. We study both cases separately:

Case 1: If e ∈ {{u, v} | u ∈ V1 ∧ v ∈ V2}, then G + e is a bipartite graph, so we
can efficiently compute β(G + e) and compare it with β(G) to determine whether
e is β-unfrozen or β-frozen.
Case 2: Without loss of generality, assume e ∈ {{u, v} | u ∈ V1 ∧ v ∈ V1}. Then
two cases are possible:

Case 2.a: G + e is bipartite by a modified vertex partition V (G) = V ′
1 ∪ V ′

2.
This is possible if and only if χ(G + e) = 2, which can be checked efficiently.
In this case, we can compute β(G + e) efficiently to determine whether e is
β-unfrozen or β-frozen.
Case 2.b: G + e is not a bipartite graph since it contains a cycle of odd length
as a subgraph. In this case, we check with Lemma 4.37 for u, and afterwards
for v, whether there exists some minimum vertex cover V ′ ⊆ V (G) for G
with u ∈ V ′ or v ∈ V ′, respectively. If one of these two checks is positive,
we know that β(G + e) = β(G) holds and hence, e is β-unfrozen. Otherwise,
β(G + e) = β(G) + 1 must hold, so e is β-frozen.
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Doing so, we can check every nonedge e ∈ E(G) efficiently for β-unfrozenness. Since
there areO(n2) nonedges and we can compute β(G) in timeO(n2.5), the running time
follows. 	


The proof of Theorem 4.38 allows for every nonedge of a bipartite graph to decide
whether or not it is β-unfrozen, so β-Frozenness too is in P (with the same running
time of O(n4.5)) for bipartite graphs. By Lemma 2.1, α-Unfrozenness is in P for
bipartite graphs as well, again with the same running time of O(n4.5).

Corollary 4.39 For all bipartite graphs, α-Unfrozenness and β-Frozenness can be
solved in time O(n4.5) and they thus belong to P.

4.4 Trees and Forests

We now investigate trees and forests. While each tree is a forest, each forest is a
bipartite graph and a graph of tree-width 1 (Proposition 4.3). Thus all results of
Sections 4.3 and 4.1 also hold for trees and forests, but some running times can be
improved as follows.

For every tree T , it holds that m = n − 1 (see, e.g., Bollobás [46]). So, we have
ω(T ) = χ(T ) = 2 if n > 1, and ω(T ) = χ(T ) = 1 if n = 1.

Also, there exist algorithms to determine α(T ) for trees T in time O(n) (see, e.g.,
[47, Section 10.2]). Then, using Lemma 2.1, we can compute β for trees in timeO(n).
Summing up, all four graph parameters α, β, ω, and χ are computable in time O(n)

for trees.
Now, let F with F = T1 ∪ · · · ∪ Tt and Ti ∈ T , 1 ≤ i ≤ t , be a forest. It is easy

to check that α(F) = ∑t
i=1 α(Ti ), β(F) = ∑t

i=1 β(Ti ), ω(F) = max1≤i≤t ω(Ti ),
and χ(F) = max1≤i≤t χ(Ti ). Thus even for forests, all four graph parameters α, β,
ω, and χ are computable in time O(n). Furthermore, the class of forests F is closed
under subgraphs and induced subgraphs. From these observations and Theorems 3.3
and 3.1 we have the following results.

Theorem 4.40 Let ξ ∈ {α, β, ω, χ} be a graph parameter. For all forests, the problems
ξ -Stability and ξ -VertexStability can be solved in time O(n2) and thus belong
to P.

For the two parameters ω and χ , we have even better running times for bipartite
graphs by Propositions 4.31 and 4.33 and Theorems 4.32 and 4.34, which immediately
also hold for the special case of forests.

Corollary 4.41 Let ξ ∈ {ω, χ} be a graph parameter. The problem ξ -Stability can
be solved in time O(1) and the problem ξ -VertexStability can be solved in time
O(n) for all forests.

The next two corollaries follow immediately since each tree is a forest.

Corollary 4.42 For all trees and for each ξ ∈ {α, β, ω, χ}, the problems ξ -Stability
and ξ -VertexStability can be solved in time O(n2) and thus belong to P.
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Corollary 4.43 Let ξ ∈ {ω, χ} be a graph parameter. The problem ξ -Stability can
be solved in time O(1) and the problem ξ -VertexStability can be solved in time
O(n) for all trees.

We now focus on the unfrozenness problems. All trees and forests with fewer than
three vertices are trivial to handle (see the technical report [23] for details). It remains
to study trees and forests with at least three vertices. Let Pi denote the path with i
vertices.

Proposition 4.44 Every tree T with n ≥ 3 vertices is neither ω- nor χ -unfrozen.

Proof With n ≥ 3 and m = n − 1 it follows that T must contain P3 as an induced
subgraph. Denote the corresponding vertices by v1, v2, and v3, so we have edges
{v1, v2} and {v2, v3} in T . Being a tree, T does not contain any cycle of length greater
than or equal to three, so e = {v3, v1} cannot be an edge of T . Adding e to T creates
the 3-clique with vertices v1, v2, v3 in T + e, so we obtain

ω(T ) = 2 < 3 = ω(T + e).

Hence, e is ω-frozen and thus T cannot be ω-unfrozen. A similar argument yields that
T cannot be χ -unfrozen. 	


Based on this result we can deduce whether forests areω- or χ -unfrozen. As forests
without edges are empty graphs, we study forests with at least one edge.

Theorem 4.45 If F ∈ F contains P2 but no P3 as induced subgraphs, F is ω- and
χ -unfrozen. If F contains P3 as an induced subgraph, F is neither ω- nor χ -unfrozen.

Proof We prove both statements separately. If F contains P2 but no P3 as an induced
subgraph, we have ω(F) = χ(F) = 2. Let e = {u, v} ∈ E(F) be a nonedge of F .
Both vertices u, v of e satisfy one of two cases: Either the vertex is isolated or part
of some P2 in F . In both cases, adding e to F does not create a 3-clique, such that
ω(F + e) = χ(F + e) = 2 still holds and e is ω- and χ -unfrozen. Since that holds
for all nonedges of F , it follows that F is ω- and χ -unfrozen. On the other hand, if
F contains P3 as an induced subgraph, we can follow the same arguments as in the
proof of Proposition 4.44 to see that F is neither ω- nor χ -unfrozen. 	


Theorem 4.45 allows to decide whether a forest is ω- or χ -unfrozen by considering
the vertex degrees.

Theorem 4.46 Let ξ ∈ {ω, χ} be a graph parameter. For all forests, the problem
ξ -Unfrozenness can be solved in time O(n) and thus belongs to P.

Finally, the next corollary follows by Corollary 4.39, T ⊆ F ⊆ B, and the fact that
for trees and forests we can compute β in time O(n).

Corollary 4.47 For all trees and forests, the problems α-Unfrozenness and β-
Unfrozenness as well as the problem β-Frozenness can be solved in time O(n3)
and thus belong to P.
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4.5 Co-Graphs

First of all, we recursively define co-graphs, using a slightly adapted definition by
Corneil et al. [48].

Definition 4.3 (co-graph; Corneil et al. [48]) The graph G = ({v},∅) is a co-graph. If
G1 and G2 are vertex-disjoint co-graphs, then G1 ∪ G2 and G1 + G2 are co-graphs,
too.

We denote the class of all co-graphs by C and use the operators ∪ and + as is
common (see, e.g., [1]).

Since every co-graph is a graph of clique-width at most 2 (Proposition 4.14) all
results of Section 4.2 also hold for co-graphs, but some running times can be improved
as follows.

We will use the following result by Corneil et al. [48].

Theorem 4.48 (Corneil et al. [48]) Co-graphs are (i) closed under complements and
(ii) closed under induced subgraphs, but (iii) not closed under subgraphs. Further-
more, G is a co-graph if and only if G possesses no P4 as an induced subgraph.

Property (iii) has not been explicitly proven by Corneil et al. [48]. However,C4 (the
cycle on four vertices) is an easy example since C4 is a co-graph (see Example 4.2
below), and removing one edge yields P4. Since every co-graph can be constructed
by ∪ and +, we can represent a co-graph by its co-expression.

Example 4.2 (co-expression) The co-expression X = (v1 ∪ v3) + (v2 ∪ v4) describes
the graph C4 = ({v1, v2, v3, v4}, {{v1, v2}, {v2, v3}, {v3, v4}, {v4, v1}}).

Obviously, we can build a binary tree for every co-graph via its co-expression.
The tree’s leaves correspond to the graph’s vertices and the inner vertices of the tree
correspond to the expression’s operations. For example, the tree in Fig. 1 corresponds
to the co-expression from Example 4.2 and, thus, describes a C4. Such a tree is called
a co-tree. To prove our results regarding stability, vertex stability, and unfrozenness
of co-graphs, we need the following result of Corneil et al. [49].

Theorem 4.49 (Corneil et al. [49])For every graph G, in timeO(n+m)we can decide
whether G is a co-graph and, if so, provide a corresponding co-tree.

Combining the previous results with the next one by Corneil et al. [48], we can
efficiently determine a co-graph’s chromatic number.

Fig. 1 Co-tree for C4
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Theorem 4.50 (Corneil et al. [48]) Let G ∈ G be a co-graph and T the corresponding
co-tree. For a vertex w of T , denote by G[w] the graph induced by the subtree of T
with root w. To every leave v of T we add as a label χ(G[v]) = 1. For every inner
vertex w of T , we add, depending on the inner vertex’s type, the following label: (1) If
w is a ∪-vertex with children v1 and v2, χ(G[w]) = max{χ(G[v1]), χ(G[v2])}, and
(2) if w is a +-vertex with children v1 and v2, χ(G[w]) = χ(G[v1]) + χ(G[v2]). If
r is the root vertex of T , then it holds that χ(G[r ]) = χ(G).

A result similar to the previous one for the independence number α was given by
Corneil et al. [48] as well.

Remark 4.1 We label all leaves of T with α(G[v]) = 1. Each inner vertex w of T
with children v1 and v2 is labeled by α(G[w]) = max{α(G[v1]), α(G[v2])} if w

contains the + operation, and by α(G[w]) = α(G[v1]) + α(G[v2]) if w contains the
∪ operation. For the root r of T , it then holds that α(G[r ]) = α(G).

Note that the formulas for computing χ and α, which are stated in Theorem 4.50
andRemark 4.1, are not limited to co-graphs but also hold for general graphs; however,
we will apply them only to co-graphs.

By Remark 4.1, we can efficiently compute α for co-graphs and thus obtain the
following results.

Theorem 4.51 For every co-graph, χ -VertexStability can be solved in timeO(n2)
and thus is in P.

Proof Let G be a co-graph. According to Theorem 4.49, we can compute the graph’s
co-tree T in timeO(n +m). Now, compute χ(G) according to Theorem 4.50 in time
O(n). Since co-graphs are closed under induced subgraphs, G − v is a co-graph, too,
for every v ∈ V (G). Thus we can compute χ(G − v) for every v ∈ V (G) in time
O(n). If there is a vertex v ∈ V (G) such that χ(G − v) < χ(G), we immediately
know that G is not χ -vertex-stable. Otherwise, if χ(G−v) = χ(G) for all v ∈ V (G),
it directly follows that G is χ -vertex-stable. Consequently, for every co-graph, we can
decide whether it is χ -vertex-stable or not in time O(n2 + m) ⊆ O(n2). 	


With a similar proof as for the previous theorem, we obtain the next result.

Theorem 4.52 For every co-graph, α-VertexStability can be solved in timeO(n2)
and thus is in P.

Proof Let G be a co-graph. According to Theorem 4.49, we can compute the graph’s
co-tree T in time O(n + m). Compute α(G) according to Remark 4.1 in time O(n).
Now, for every v ∈ V (G), we compute α(G − v) as previously described in time
O(n). If there exists at least one vertex v ∈ V (G) such that α(G − v) �= α(G), it
follows immediately that G is not α-vertex-stable. Otherwise, G is α-vertex-stable.
Hence, α-VertexStability can be solved in time O(n2 + m) ⊆ O(n2) and thus is
in P for co-graphs. 	


We can use the same proof as for Theorem 4.52 to obtain the next corollary. How-
ever, this time we additionally use Lemma 2.1 to compute β from α for G and all
induced subgraphs of G with one vertex removed.
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Corollary 4.53 For every co-graph, β-VertexStability can be solved in timeO(n2)
and thus is in P.

Now, Corollary 4.54 follows from a result due to Frei et al. [1, Proposition 34(5)]
because α-VertexStability = {G | G ∈ ω-VertexStability} and co-graphs are
closed under complements.

Corollary 4.54 For every co-graph, ω-VertexStability can be solved in timeO(n2)
and thus is in P.

Proof Let G be a co-graph. Then its complement G is a co-graph, too. Hence, we can
exploit the fact thatω(G) = α(G) and re-use the same idea as in the proof of Theorem
4.52 to decide whether G is ω-vertex-stable. 	


Next, let us study the edge-related stability problems for co-graphs. To obtain our
results, we need the following two auxiliary propositions.

Proposition 4.55 Let G be a co-graph with n > 1 and let u ∈ V (G) be χ -critical
for G. There exist two co-graphs G1,G2 such that G = G1 ∪ G2 or G = G1 + G2.
Assuming, without loss of generality, that u ∈ V (G1), u is χ -critical for G1.

Proof If G = G1 ∪ G2, we have χ(G) = max{χ(G1), χ(G2)}. Furthermore, if u is
χ -critical for G, then χ(G − u) = χ(G) − 1. As we assume u ∈ V (G1), the removal
of u from G only affects G1, i.e., G − u = (G1 − u) ∪ G2. Therefore, χ(G) =
χ(G1) > χ(G2) must hold, as otherwise the removal of u would not affect χ(G).
Consequently, χ(G1 − u) = χ(G1) − 1 is true, so u is χ -critical for G1.

If G = G1 + G2, we have

χ(G − u) = χ(G) − 1

⇒ χ((G1 − u) + G2) = χ(G1) + χ(G2) − 1

⇒ χ(G1 − u) + χ(G2) = χ(G1) + χ(G2) − 1

⇒ χ(G1 − u) = χ(G1) − 1,

so u is χ -critical for G1. 	

Proposition 4.56 Let G be a co-graph and let e = {u, v} ∈ E(G). If u and v are
χ -critical for G, then e is χ -critical for G as well.

Proof Let G be a co-graph and let e = {u, v} ∈ E(G) be an edge with two χ -critical
vertices u, v ∈ V (G). First, we study the case that G = G1 + G2, where u ∈ V (G1)

and v ∈ V (G2). Afterwards, we explain how to cover the other cases.
From Proposition 4.55 we know that u is χ -critical for G1 and v is χ -critical

for G2. As noted by Frei et al. [1, Observation 4],4 there exists an optimal coloring
c1 : V (G1) → N for G1 such that for all ũ ∈ V (G1) \ {u} it holds that c1(ũ) �= c1(u).
In other words, there is a coloring c1 for G1 such that u is the only vertex in G1

4 Which says that a vertex is critical in a graph exactly if there is an optimal coloring of the graph assigning
one color to this vertex alone.
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of its color. A similar optimal coloring c2 must exist for G2 with respect to v. For
the combined graph with e removed, i.e., G − e, again as noted by Frei et al. [1,
Observation 1],5 it must hold that χ(G − e) ∈ {χ(G) − 1, χ(G)}. Consequently, we
can re-use c1 and c2 from G1 and G2, assuming distinct colors sets for c1 and c2, to
obtain a legal coloring of G with χ(G) colors. However, we can color u with the same
color as v, c2(v), and thus obtain a legal coloring for G − e with χ(G) − 1 colors.
This is possible because

1. u is the only vertex in G1 colored in c1(u) by definition of c1,
2. no vertex ũ ∈ V (G1) \ {u} is colored with c2(v), as c1(V (G1))∩ c2(V (G2)) = ∅,

and
3. v is the only vertex in G2 with this color, by definition of c2, and there is no edge

between u and v.

Consequently, after removing e from G, we can color G − e with one color less than
before such that χ(G − e) = χ(G) − 1 holds and e is χ -critical.

Initially, we assumed that G = G1 + G2 with u ∈ V (G1) and v ∈ V (G2) holds.
If G = G1 ∪ G2, there cannot exist any edge between vertices from G1 and G2.
Hence, the only cases left are G = G1 + G2 or G = G1 ∪ G2 with both vertices
in either G1 or G2. Without loss of generality, assume that both vertices are in G1.
From Proposition 4.55 we know that both vertices are χ -critical for G1, as they are
χ -critical for G. When we can show that e is χ -critical for G1, it immediately follows
that e is also χ -critical for G. That is so because if G = G1 + G2 and e is χ -critical
for G1, we have χ(G1 − e) = χ(G1) − 1 such that

χ(G − e) = χ(G1 − e) + χ(G2) = χ(G1) − 1 + χ(G2) = χ(G) − 1,

so e is χ -critical for G in this case.
If G = G1 ∪ G2, there is one more argument to add. We know that u and v are

χ -critical for G and G1. Consequently, χ(G1) > χ(G2) must hold, as otherwise u
or v cannot be χ -critical for G, since χ(G) = max{χ(G1), χ(G2)}. But then, it is
enough to show that e is χ -critical for G1, since reducing χ(G1) by one via removing
e also causes a reduction of χ(G) by one and, hence, e is χ -critical for G, too.

At some point, we must arrive in the case that one vertex is in G1 and the other
vertex is in G2 and G = G1 + G2 holds, since the + operation is the only possibility
to add edges between vertices in co-graphs. 	


Having these results, we are now able to provide our stability-related results.

Theorem 4.57 For co-graphs, χ -Stability can be solved in time O(nm) and thus is
in P.

Proof Let G be a co-graph. According to Theorem 4.49, we can compute the graph’s
co-tree T in time O(n + m). We can compute χ(G) according to Theorem 4.50 in
time O(n) and, according to [1, Observation 1], for every edge e ∈ E(G) and for

5 Which says that deleting an edge or a vertex either decreases the chromatic number by exactly one or
leaves it unchanged.
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every vertex v ∈ V (G), it holds that χ(G − e), χ(G − v) ∈ {χ(G)− 1, χ(G)}. Thus,
for every edge e ∈ E(G), we proceed as follows to efficiently determine whether e
is χ -critical or χ -stable in G: Let u, v ∈ V (G) be the vertices with e = {u, v}. Then
G − u and G − v are induced subgraphs of G − e, and G − e is a subgraph of G.
Again according to [1, Observation 1], it must hold that

χ(G − v), χ(G − u)
︸ ︷︷ ︸

∈{χ(G)−1,χ(G)}
≤ χ(G − e) ≤ χ(G).

Hence, if χ(G−v) = χ(G) or χ(G−u) = χ(G), which we can compute efficiently,
it immediately follows that χ(G − e) = χ(G). In other words, if u or v is χ -stable,
we know that e must be χ -stable, too.6

On the other hand, if both u and v are χ -critical, it follows by Proposition 4.56 that
e is χ -critical. Since, for every vertex in V (G), we can determine whether it is χ -stable
in time O(n), we can also determine for every edge in E(G) whether it is χ -stable in
time O(n). Consequently, we can decide in time O(n + m + nm) = O(nm) whether
G is χ -stable, and it follows that χ -Stability is in P for co-graphs. 	


Next, we study the problem ω-Stability for co-graphs. To do so, we need the
following lemma.

Lemma 4.58 Let G be a graph and let v ∈ V (G) and e ∈ E(G). Then ω(G − v) and
ω(G − e) are in {ω(G) − 1, ω(G)}.
Proof First of all, it is obvious that by removing a vertex or an edge from G we cannot
increase ω(G). Hence, ω(G−v) ≤ ω(G) and ω(G−e) ≤ ω(G). Furthermore, when
we remove v from G, either v is part of all cliques in G of size ω(G) (so ω(G − v) =
ω(G) − 1) or v is not part of all cliques in G of size ω(G) (so ω(G − v) = ω(G)).
Generally speaking, by removing a vertex from G, we can either reduce a clique’s size
by one or leave it as it is. Now, let e = {u, v} be an edge of G. Either e is between
two vertices of a clique in G of size ω(G) or not. That is, by removing e we either
reduce a largest clique’s size by one or leave it unchanged. Therefore, for all v ∈ V (G)

and e ∈ E(G), we have that ω(G − v) and ω(G − e) are in {ω(G) − 1, ω(G)}, as
claimed. 	


Having these results, we can show the next theorem.

Theorem 4.59 For co-graphs, ω-Stability can be solved in time O(n2m) and thus
is in P.

Proof Let G be a co-graph. According to Theorem 4.49, we can compute the graph’s
co-tree T in time O(n + m). By Theorem 4.50 we can compute ω for G and all
induced subgraphs in timeO(n). In order to decide whether G is ω-stable, we proceed
as follows for every edge e = {u, v}:

Case 1: G = G1 ∪ G2 for two co-graphs G1,G2, and either u, v ∈ V (G1) or
u, v ∈ V (G2) holds, since there are no edges between G1 and G2. Without loss

6 Recall that this has been noted by Frei et al. [1, Observation 3].
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of generality, assume that u, v ∈ V (G1). As ω(G) = max{ω(G1), ω(G2)}, we
efficiently check whether ω(G2) ≥ ω(G1). In this case, we know that e cannot be
ω-critical for G, because even if e were ω-critical for G1, using Lemma 4.58, we
would still have

ω(G − e) = max{ω(G1 − e), ω(G2)} = max{ω(G1) − 1, ω(G2)} = ω(G2).

Otherwise, if ω(G1) > ω(G2) holds, we study whether e is ω-critical for G1 by
recursively selecting the appropriate case, this time withG1 asG. This is sufficient
because if e is ω-critical for G1, it is also ω-critical for G.
Case 2: G = G1 + G2 for two co-graphs G1,G2, and u, v ∈ V (G1) or u, v ∈
V (G2). In this case, it is sufficient to check whether e is ω-critical for the partial
graph (i.e., G1 or G2) containing u and v. That is so because ω(G) = ω(G1) +
ω(G2) and so, if e is ω-critical for one of the two partial graphs, e is also ω-critical
for G. Once again, we check this by recursively applying the appropriate case for
the corresponding partial graph.
Case 3: G = G1 + G2 for two co-graphs G1,G2, and u and v are in different
partial graphs. Assume that u ∈ V (G1) and v ∈ V (G2). For any graph H , we
denote by W (H) the set of all maximum cliques in H , i.e., the set of all cliques
of size ω(H). Now, in order for e to be ω-critical, for every clique V ′ ∈ W (G1),
it must hold that u ∈ V ′, and for every clique V ′′ ∈ W (G2), it must hold that
v ∈ V ′′. For some fixed edge e, we can check both conditions in time O(n) by
ω(G1 − u) = ω(G1)− 1 and ω(G2 − v) = ω(G2)− 1. If this is the case, then all
other cliques in G1 are strictly smaller than all V ′ ∈ W (G1), and all other cliques
in G2 are strictly smaller than all V ′′ ∈ W (G2). Hence, all cliques of size ω(G)

in G are composed as V ′ ∪ V ′′, with V ′ ∈ W (G1), V ′′ ∈ W (G2), u ∈ V ′, and
v ∈ V ′′. Removing e = {u, v} from G causes ω(G) to be reduced by one, since
every clique of size ω(G) contains e and afterwards it is missing the edge e in
G − e. Therefore, only in this case e is ω-critical.

The number of recursive calls is limited by the height of the co-tree T , which is at
most n. Every case can be handled in time O(n), since we only need to compute ω

for a constant number of induced subgraphs. Thus, for a given co-graph G, we can
determine in timeO(n+m +mnn) = O(n2m) whether G is ω-stable. Consequently,
for all co-graphs, ω-Stability is in P. 	


As we now know that we can efficiently determine whether a given co-graph G
is ω-stable, we can exploit the fact that co-graphs are closed under complements to
obtain the following corollary.

Corollary 4.60 For co-graphs, α-Stability can be solved in time O(n4) and thus is
in P.

Proof Let G be a co-graph. Then G is a co-graph and α(G) = ω(G). It follows
immediately that G is α-stable if, and only if, G is ω-stable, which we can determine
in time O(n2m)) by Theorem 4.59. Hence, we can determine in time O(n2m) =
O

(
n2

(
n(n−1)

2 − m
))

⊆ O(n2n2) = O(n4) whether a given co-graph G is α-stable,

so α-Stability is in P for co-graphs. 	
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The next corollary follows immediately from Lemma 2.1 and [1, Proposition 34].

Corollary 4.61 For co-graphs, β-Stability can be solved in time O(n4) and thus is
in P.

At this point, we have completed our study of stability problems for co-graphs, as
all open questions have been answered, and we turn to the unfrozenness problems for
co-graphs. The next two corollaries exploit the fact that co-graphs are closed under
complements and follow a similar argumentation.

Corollary 4.62 For co-graphs,α-Unfrozennessandβ-Unfrozenness canbe solved
in time O(n4) and thus are in P.

Proof Let G be a co-graph. Co-graphs are closed under complements, so G is a co-
graph as well and we can compute G from G and a co-tree for G in time O(n + m).
According to Theorem 4.59, we can check in time O(n2m) ⊆ O(n2n2) = O(n4)
whether G is ω-stable. Using [1, Proposition 34(2)], we immediately know that G
is α-unfrozen and β-unfrozen if, and only if, G is ω-stable. Hence, both problems,
α-Unfrozenness and β-Unfrozenness, can be solved in time O(n4) and thus, for
all co-graphs, belong to P. 	

Corollary 4.63 For co-graphs, ω-Unfrozenness can be solved in time O(n4) and
thus is in P.

Proof Let G be a co-graph. Thus G is a co-graph, too, which we can compute effi-
ciently, and from Corollary 4.60 we know that in time O(n4) we can decide for G
whether it is α-stable. Applying [1, Proposition 34(1)], we know that G is α-stable
exactly if G is ω-unfrozen, which completes the proof. 	


Finally, we answer the last remaining open question related to the unfrozenness of
co-graphs.

Theorem 4.64 For co-graphs, χ -Unfrozenness can be solved in time O(n3) and
thus is in P.

Proof Let G be a co-graph and e = {u, v} ∈ E(G) be a nonedge of G. Since G has
at least two vertices, u and v, we have either G = G1 + G2 or G = G1 ∪ G2 for two
co-graphs G1 and G2. We handle both cases separately:

Case 1: If G = G1 + G2 is true, then e must belong either to E(G1) or to
E(G2), since {{u, v} | u ∈ V (G1), v ∈ V (G2)} ⊆ E(G) such that E(G) =
E(G1) ∪ E(G2). Without loss of generality, assume that e ∈ E(G1). If e is χ -
unfrozen for G1, i.e., χ(G1 + e) = χ(G1), then e is χ -unfrozen for G, since

χ(G + e) = χ(G1 + e) + χ(G2) = χ(G1) + χ(G2) = χ(G).

Conversely, if e isχ -frozen forG1, i.e.,χ(G1+e) = χ(G1)+1, then e isχ -frozen
for G as well, as

χ(G + e) = χ(G1 + e) + χ(G2) = χ(G1) + 1 + χ(G2) = χ(G) + 1.
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Hence, it is enough to determine whether e is χ -unfrozen or χ -frozen for G1 and
we can follow the argumentation of this proof recursively for G1.
Case 2: If G = G1 ∪ G2 is true, e can belong to E(G1) ∪ E(G2) or E(G) \
(E(G1) ∪ E(G2)). Consider the following two subcases:

Case 2.a: If e ∈ E(G1) or e ∈ E(G2), we proceed as follows. Without loss
of generality, assume e ∈ E(G1). Since χ(G) = max{χ(G1), χ(G2)}, an
increase of χ(G1) affects χ(G) only if χ(G1) ≥ χ(G2). Otherwise, e is χ -
unfrozen for G (but not necessarily for G1). If χ(G1) ≥ χ(G2), then if e is
χ -unfrozen for G1, e is χ -unfrozen for G, since

χ(G + e) = max{χ(G1 + e), χ(G2)} = χ(G1 + e) = χ(G1) = χ(G).

Similarly, if e is χ -frozen for G1, e is χ -frozen for G, since

χ(G+e) = max{χ(G1+e), χ(G2)} = χ(G1+e) = χ(G1)+1 = χ(G)+1.

Consequently, it is enough to determine whether e is χ -unfrozen or χ -frozen
for G1 and we can follow the argumentation of this proof recursively for G1.
Case 2.b: If e ∈ E(G) \ (E(G1) ∪ E(G2)), then u ∈ V (G1) and v ∈ V (G2).
Now, if χ(G1) = χ(G2) = 1, e isχ -frozen for G, since

χ(G + e) = 1 + 1 = 2 > 1 = max{χ(G1), χ(G2)} = χ(G).

Conversely, if χ(G1) > 1 or χ(G2) > 1, e is χ -unfrozen for G since G1 and
G2 share no edge but e. Because of that we can arrange the colors for V (G1)

and V (G2) in such a way that both vertices incident to e have different colors,
resulting in χ(G + e) = χ(G).

According toTheorem4.49,we can compute the graph’s co-tree T in timeO(n+m).
Following these cases, for each of the atmost n2 nonedges e ∈ E(G), we can efficiently
(namely, in time O(n)) determine whether it is χ -frozen or χ -unfrozen for G, so χ -
Unfrozenness can be solved in time O(n3) and thus, for all co-graphs, belongs
to P. 	


5 Conclusion

We have studied the stability, vertex stability, and unfrozenness problems introduced
by Frei et al. [1] when restricted to special graph classes. In particular, we have studied
these three problems for six important graph classes and four central graph parameters:
α, β, ω, and χ . While Frei et al. [1] provided hardness results for their problems for
general graphs, we showed that restricting to special graph classes allows for efficient
solvability. Thus our work provides some baseline for further, more expanding work
along this line of research. In particular, these results can be useful for real-world
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Table 1 Overview of the running times of algorithms designed for stability (E), vertex stability (V), and
unfrozenness with respect to the four graph parameters studied here for graphs G of bounded tree-width
and clique-width, where m = |E(G)| and n = |V (G)| and k is the tree-width or clique-width

Bounded tree-width: T Wk Bounded clique-width: CWk

α Stable E O(2kmn) C. 4.11 O(22kmn) T. 4.24

V O(2kn2) C. 4.12 O(22kn2) C. 4.25

Unfrozen O(2kn3) T. 4.13 O(22kn3) T. 4.26

β Stable E O(2kmn) C. 4.11 O(22kmn) T. 4.24

V O(2kn2) C. 4.12 O(22kn2) C. 4.25

Unfrozen O(2kn3) T. 4.13 O(22kn3) T. 4.26

ω Stable E O(2kmn) C. 4.11 O(22kmn) T. 4.24

V O(2kn2) C. 4.12 O(22kn2) C. 4.25

Unfrozen O(2kn3) T. 4.13 O(22kn3) T. 4.26

χ Stable E O(kO(k)mn) C. 4.11 O(23kk2mn2
2k+5+1) T. 4.24

V O(kO(k)n2) C. 4.12 O(23kk2n2
2k+1+2) C. 4.25

Unfrozen O(kO(k)n3) T. 4.13 O(23kk2n2
2k+5+3) T. 4.26

Behind each running time we state the number of the theorem (T.) or corollary (C.) establishing this result

applications when knowledge about the stability, vertex stability, or unfrozenness of
a graph with respect to a certain graph parameter is required and graphs with such a
special structure may typically occur in this application.

Table 2 Overview of the running times of algorithms designed for stability (E), vertex stability (V), and
unfrozenness with respect to the four graph parameters studied here for some special graph classes, where
m = |E(G)| and n = |V (G)|

Trees: T Forests: F Bipartite graphs: B Co-graphs: C

α Stable E O(n2) C. 4.42 O(n2) T. 4.40 O(n2.5m) C. 4.29 O(n4) C. 4.60

V O(n2) C. 4.42 O(n2) T. 4.40 O(n3.5) C. 4.29 O(n2) T. 4.52

Unfrozen O(n3) C. 4.47 O(n3) C. 4.47 O(n4.5) C. 4.39 O(n4) C. 4.62

β Stable E O(n2) C. 4.42 O(n2) T. 4.40 O(n2.5m) C. 4.29 O(n4) C. 4.61

V O(n2) C. 4.42 O(n2) T. 4.40 O(n3.5) C. 4.29 O(n2) C. 4.53

Unfrozen O(n3) C. 4.47 O(n3) C. 4.47 O(n4.5) T. 4.38 O(n4) C. 4.62

ω Stable E O(1) C. 4.43 O(1) C. 4.41 O(1) P. 4.31 O(n2m) T. 4.59

V O(n) C. 4.43 O(n) C. 4.41 O(n) T. 4.32 O(n2) C. 4.54

Unfrozen O(1) P. 4.44 O(n) T. 4.46 O(n) C. 4.36 O(n4) C. 4.63

χ Stable E O(1) C. 4.43 O(1) C. 4.41 O(1) P. 4.33 O(nm) T. 4.57

V O(n) C. 4.43 O(n) C. 4.41 O(n) T. 4.34 O(n2) T. 4.51

Unfrozen O(1) P. 4.44 O(n) T. 4.46 O(n) T. 4.35 O(n3) T. 4.64

Behind each running time we state the number of the theorem (T.), corollary (C.), or proposition (P.)
establishing this result
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Table 1 summarizes our results for graphs of bounded tree-width and bounded
clique-width.While this already shows that the stability, vertex stability, and unfrozen-
ness problems are solvable in polynomial time for some of the other special graph
classes we study (namely, for trees, forests, and co-graphs), we have also investigated
these problems for these three classes of graphs as well as for the class of bipartite
graphs in detail to obtain better running times. These results are summarized in Table 2.

For future work, we propose to study further special graph classes that are not
covered here. Besides the study of stability for other graph classes, one can also study
the concept of cost of stability:7 Given a graph, the question is how costly it is to
stabilize it. In other words, what is the smallest number of vertices or edges to be
added to or removed from the graph such that the resulting graph is stable or unfrozen
with respect to some graph parameter. Relatedly, it would make sense to combine
these two approaches and study the cost of stability for special graph classes.
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43. Kőnig, D.: Gráfok és mátrixok. Matematikai és Fizikai Lapok 38, 116–119 (1931)
44. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to algorithms, 4th edn. MIT Press, Cam-

bridge, Massachusetts, USA (2022)
45. Alt, H., Blum, N., Mehlhorn, K., Paul, M.: Computing a maximum cardinality matching in a bipartite

graph in time O(n1.5m log n). Inf. Process. Lett. 37(4), 237–240 (1991)
46. Bollobás, B.: Modern graph theory. Graduate Texts in Mathematics, vol. 184. Springer, Heidelberg

and Berlin, Germany (1998)
47. Kleinberg, J., Tardos, É.: Algorithm design. Addison-Wesley Publishing Company, Boston, Mas-

sachusetts, USA (2004)
48. Corneil, D., Lerchs, H., Burlingham, L.S.: Complement reducible graphs. Discret. Appl. Math. 3(3),

163–174 (1981)
49. Corneil, D., Perl, Y., Stewart, L.: A linear recognition algorithm for cographs. SIAM J. Comput. 14(4),

926–934 (1985)
50. Bachrach, Y., Elkind, E., Malizia, E., Meir, R., Pasechnik, D., Rosenschein, J., Rothe, J., Zuckerman,

M.: Bounds on the cost of stabilizing a cooperative game. Journal of Artificial Intelligence Research
63, 987–1023 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

102 Theory of Computing Systems (2024) 68:75–102

http://arxiv.org/abs/0806.4073
http://arxiv.org/abs/org

	Stability, Vertex Stability, and Unfrozenness for Special Graph Classes
	Abstract
	1 Introduction
	2 Preliminaries
	3 General Stability and Unfrozenness Results
	4 Tractability Results for Special Graph Classes
	4.1 Graphs of Bounded Tree-Width
	4.2 Graphs of Bounded Clique-Width
	4.3 Bipartite Graphs
	4.4 Trees and Forests
	4.5 Co-Graphs

	5 Conclusion
	Acknowledgements
	References




